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We introduce the circle-uniqueness of Pythagorean orthogonality in normed linear spaces and show that Pythagorean orthogonality
is circle-unique if and only if the underlying space is strictly convex. Further related results providing more detailed relations
between circle-uniqueness of Pythagorean orthogonality and the shape of the unit sphere are also presented.

1. Introduction

We denote by𝑋 = (𝑋, ‖ ⋅ ‖) a real normed linear space whose
dimension is at least 2.The origin, unit ball, and unit sphere of
𝑋 are denoted by 𝑜, 𝐵

𝑋
, and 𝑆

𝑋
, respectively. When𝑋 is two-

dimensional, it is called aMinkowski plane. Its unit sphere 𝑆
𝑋

is then called the unit circle of 𝑋, and each homothetic copy
of 𝑆
𝑋
is a circle. For two distinct points (or vectors) 𝑥 and 𝑦

in 𝑋, we denote by ⟨𝑥, 𝑦⟩ the line passing through 𝑥 and 𝑦,
by [𝑥, 𝑦⟩ the ray starting from 𝑥 and passing through 𝑦, and
by [𝑥, 𝑦] the (nondegenerate) segment connecting 𝑥 and 𝑦.
Moreover,𝑋 is said to be strictly convex if 𝑆

𝑋
does not contain

a nondegenerate segment.
Pythagorean orthogonality, which was introduced by

James in [1], is one of the most natural extensions of orthog-
onality in inner product spaces to normed linear spaces (for
other orthogonality types in normed linear spaces, we refer to
[2–4] and the references therein). Let 𝑥 and 𝑦 be two vectors
in a real normed linear space. If

𝑥 − 𝑦


2
= ‖𝑥‖

2
+
𝑦



2
, (1)

then 𝑥 and 𝑦 are said to be Pythagorean orthogonal to each
other (denoted by 𝑥⊥

𝑃
𝑦). James showed that the following

facts are equivalent:

(1) 𝑥, 𝑦 ∈ 𝑋, 𝛼 ∈ R, 𝑥⊥
𝑃
𝑦 ⇒ 𝑥⊥

𝑃
𝛼𝑦;

(2) 𝑋 is an inner product space.

In other words, Pythagorean orthogonality is not homoge-
neous in general normed linear spaces. Among other things,
James proved the line-existence of Pythagorean orthogonality:
for each pair of vectors 𝑥 and 𝑦 in 𝑋, there exists a number
𝛼 such that 𝑥⊥

𝑃
𝛼𝑥 + 𝑦. That is, James proved that in each

line parallel to the line ⟨−𝑥, 𝑥⟩ there exists a vector that is
Pythagorean orthogonal to 𝑥.

However, James did not obtain any essential result on the
uniqueness of this orthogonality type. Kapoor and Prasad [5]
fixed this gap by proving that Pythagorean orthogonality is
line-unique in each normed linear space 𝑋, where a binary
relation⊥ on𝑋 is said to be line-unique if and only if for each
𝑥 ̸= 𝑜 and 𝑦 ∈ 𝑋 there exists a unique real number 𝛼 such that
𝑥 ⊥ 𝛼𝑥 + 𝑦. It appears that the uniqueness of Pythagorean
orthogonality has nothing to do with the shape of the unit
ball. By introducing the circle-uniqueness (see Definition 1
next) of Pythagorean orthogonality, we show that this is not
true. Our main result shows that Pythagorean orthogonality
is circle-unique if and only if 𝑋 is strictly convex, which
updates the knowledge about uniqueness of Pythagorean
orthogonality.

For each 𝑥 ∈ 𝑋, we denote by 𝑃(𝑥) the set of points that
are Pythagorean orthogonal to 𝑥; that is,

𝑃 (𝑥) := {𝑧 ∈ 𝑋 : 𝑧⊥
𝑃
𝑥}

= {𝑧 : ‖𝑧 − 𝑥‖
2
= ‖𝑧‖
2
+ ‖𝑥‖
2
} .

(2)
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For two linearly independent vectors 𝑥 and 𝑦 we denote
by 𝐿
𝑥,𝑦

the two-dimensional subspace of𝑋 spanned by 𝑥 and
𝑦 and by𝐻

𝑥,𝑦
the closed halfplane of 𝐿

𝑥,𝑦
bounded by the line

⟨−𝑥, 𝑥⟩ and containing 𝑦.

Definition 1. Pythagorean orthogonality on 𝑋 is said to be
circle-unique if, for each pair of linearly independent vectors
𝑥 and 𝑦 and each nonnegative real number 𝛼, there exists a
unique vector 𝑧 in 𝛼𝑆

𝑋
∩ 𝐻
𝑥,𝑦

∩ 𝑃(𝑥).

2. Results and Proofs

The following lemma concerning the intersection of two
circles in a Minkowski plane is one of our main tools.

Lemma 2 (Theorem 2.4 in [6]). Let 𝐶
1

:= 𝛾
1
𝑆
𝑋
+ 𝑐
1
and

𝐶
2
:= 𝛾
2
𝑆
𝑋
+ 𝑐
2
be two circles in a Minkowski plane 𝑋, where

𝑐
1
and 𝑐
2
are two distinct points, and let 𝑝 and 𝑞 be the points

of intersection of ⟨𝑐
1
, 𝑐
2
⟩ and 𝐶

1
. Then the set 𝐶

1
∩ 𝐶
2
has one

of the following forms:

(1) 𝐶
1
∩ 𝐶
2
= 0;

(2) 𝐶
1
∩𝐶
2
is the union of two closed, disjoint segments (one

or both of themmay degenerate to a singleton) lying on
the opposite sides of ⟨𝑐

1
, 𝑐
2
⟩;

(3) 𝐶
1
∩ 𝐶
2
is the union of two segments (one or both

of them may degenerate to a singleton) with common
point 𝑝 or 𝑞.

One can easily verify the following proposition.

Proposition 3. Let 𝑥 and 𝑦 be two points in 𝑋. Then 𝑥⊥
𝑃
𝑦 if

and only if

𝑦 ∈ (√‖𝑥‖
2
+
𝑦



2
𝑆
𝑋
+ 𝑥) . (3)

First we show that Pythagorean orthogonality has the
circle-existence property. More precisely, we show the follow-
ing proposition.

Proposition 4. For each pair of linearly independent vectors 𝑥
and 𝑦 and each number 𝛼 ≥ 0, the set

𝑃 := 𝛼𝑆
𝑋
∩ 𝐻
𝑥,𝑦

∩ 𝑃 (𝑥) (4)

is a nonempty segment that may degenerate to a singleton.

Proof. We only consider the nontrivial case 𝛼 > 0. Clearly,

𝑃

:= 𝐿
𝑥,𝑦

∩ (𝛼𝑆
𝑋
) ∩ 𝑃 (𝑥)

= 𝐿
𝑥,𝑦

∩ (𝛼𝑆
𝑋
) ∩ (√‖𝑥‖

2
+ 𝛼2𝑆
𝑋
+ 𝑥)

= (𝐿
𝑥,𝑦

∩ (𝛼𝑆
𝑋
)) ∩ (𝐿

𝑥,𝑦
∩ (√‖𝑥‖

2
+ 𝛼2𝑆
𝑋
+ 𝑥)) .

(5)

Since

√‖𝑥‖
2
+ 𝛼2 − 𝛼 < ‖𝑥‖ < √‖𝑥‖

2
+ 𝛼2 + 𝛼, (6)

𝑃
 is not empty. It is also clear that 𝑃 ∩ ⟨−𝑥, 𝑥⟩ = 0. Thus,

by Lemma 2, 𝑃 is the union of two closed, disjoint segments
contained in 𝐿

𝑥,𝑦
, one or both of which may degenerate to a

singleton, lying in opposite halfplanes with respect to the line
⟨−𝑥, 𝑥⟩. This completes the proof.

Next we state a simple result on common supporting lines
of two circles.

Lemma 5. Let 𝑋 be a Minkowski plane, 𝑥 ̸= 𝑜 a vector in 𝑋,
and 𝛼, 𝛽 > 0 two numbers such that

0 < 𝛽 − 𝛼 < ‖𝑥‖ . (7)

Then there are two common supporting lines of 𝛼𝐵
𝑋
and 𝛽𝐵

𝑋
+

𝑥 passing through the point 𝑝 = (𝛼/(𝛼 − 𝛽))𝑥.

Proof. By the hypothesis of the lemma, 𝑝 is exterior to 𝛼𝐵
𝑋
.

Thus two supporting lines 𝑙
1
and 𝑙
2
of 𝛼𝐵

𝑋
can be drawn

through 𝑝. In the following we show that these two lines are
two common supporting lines of 𝛼𝐵

𝑋
and 𝛽𝐵

𝑋
+ 𝑥.

Clearly, there exists a point 𝑢 ∈ 𝑆
𝑋
such that 𝑙

1
supports

𝛼𝐵
𝑋
at 𝛼𝑢. Put 𝜆

0
= (𝛼 − 𝛽)/𝛼. Then

𝜆
0
𝑝 + (1 − 𝜆

0
) 𝛼𝑢 =

𝛼 − 𝛽

𝛼
⋅

𝛼

𝛼 − 𝛽
𝑥 +

𝛽

𝛼
𝛼𝑢

= 𝛽𝑢 + 𝑥 ∈ 𝛽𝑆
𝑋
+ 𝑥,

(8)

which implies that 𝑙
1
intersects 𝛽𝑆

𝑋
+ 𝑥 in 𝛽𝑢 + 𝑥. Moreover,

inf
𝜆∈R

𝑥 − (𝜆𝑝 + (1 − 𝜆) 𝛼𝑢)


= inf
𝜆∈R

𝑥 − 𝜆
0
𝑝 − (1 − 𝜆

0
) 𝛼𝑢 + 𝜆

0
𝑝

+ (1 − 𝜆
0
) 𝛼𝑢 − (𝜆𝑝 + (1 − 𝜆) 𝛼𝑢)



= inf
𝜆∈R

𝛽𝑢 − (𝜆
0
− 𝜆) (𝑝 − 𝛼𝑢)



=
𝛽

𝛼
inf
𝜆∈R



𝛼

𝛽
(𝜆 − 𝜆

0
) 𝑝 +

𝛼

𝛽
(
𝛽

𝛼
− (𝜆 − 𝜆

0
)) 𝛼𝑢



= 𝛽 ‖𝑢‖ ;

(9)

that is, the distance from 𝑥 to 𝑙
1
is 𝛽‖𝑢‖ = 𝛽. Thus 𝑙

1
is a

common supporting line of 𝛼𝐵
𝑋
and 𝛽𝐵

𝑋
+ 𝑥. In a similar

way we can show that 𝑙
2
is also a common supporting line of

these two discs.

Theorem 6. Let 𝑥 and 𝑦 be two linearly independent vectors,
and let 𝛼 be a positive number, 𝛽 = √𝛼2 + ‖𝑥‖

2, and 𝑝 =

(1/(𝛼 − 𝛽))𝑥. Then

𝑃 := 𝛼𝑆
𝑋
∩ 𝐻
𝑥,𝑦

∩ 𝑃 (𝑥) (10)

is a nondegenerate segment if and only if there exist two unit
vectors 𝑢 and V in𝐻

𝑥,𝑦
such that

(1) [𝑢, V] is a nondegenerate maximal segment contained
in 𝑆
𝑋
∩ 𝐻
𝑥,𝑦

;
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(2) [V, 𝑢⟩ intersects ⟨−𝑥, 𝑥⟩ at 𝑝;
(3) ‖𝑢− V‖/‖𝑢−𝑝‖ > 𝛽/𝛼−1 or, equivalently, ‖𝛼𝑢−𝛼V‖ >

‖𝛽𝑢 + 𝑥 − 𝛼𝑢‖.

Proof. It is clear that 𝑝 is exterior to 𝐵
𝑋
and 𝛼𝑝 is exterior to

𝛼𝐵
𝑋
.
First suppose that 𝑃 is a segment [𝑚, 𝑛]. Then

[𝑚, 𝑛] ⊂ 𝛼𝑆
𝑋
∩ (𝛽𝑆

𝑋
+ 𝑥) , (11)

which implies that ⟨𝑚, 𝑛⟩ is one of the two common support-
ing lines of 𝛼𝐵

𝑋
and 𝛽𝐵

𝑋
+ 𝑥. Lemma 5 shows that ⟨𝑚, 𝑛⟩

intersects ⟨−𝑥, 𝑥⟩ at 𝛼𝑝. Then there exist two unit vectors 𝑢
and V such that

(1) [𝑢, V] is a maximal segment contained in 𝑆
𝑋
∩ 𝐻
𝑥,𝑦

;
(2) [(1/𝛼)𝑚, (1/𝛼)𝑛] ⊆ [𝑢, V];
(3) 𝑝 ∈ [V, 𝑢⟩ ∩ ⟨−𝑥, 𝑥⟩.

Thus there exists a number 𝜂 ∈ (0, 1) such that 𝑢 = 𝜂𝑝 + (1 −

𝜂)V. Since [𝛽𝑢 + 𝑥, 𝛽V + 𝑥] is the unique maximal segment
contained in (𝛽𝑆

𝑋
+ 𝑥) ∩𝐻

𝑥,𝑦
and parallel to [𝑚, 𝑛], the lines

⟨𝑚, 𝑛⟩ = ⟨𝛼𝑢, 𝛼V⟩ and ⟨𝛽𝑢 + 𝑥, 𝛽V + 𝑥⟩ coincide.
From

[𝑚, 𝑛] ⊆ [𝛼𝑢, 𝛼V] ⊂ 𝛼𝑆
𝑋
,

[𝑚, 𝑛] ⊆ [𝛽𝑢 + 𝑥, 𝛽V + 𝑥] ⊂ 𝛽𝑆
𝑋
+ 𝑥,

𝛽𝑢 + 𝑥 − 𝛼𝑝 = 𝛽𝜂𝑝 + 𝛽 (1 − 𝜂) V + 𝑥 − 𝛼𝑝

= 𝛽𝜂𝑝 + 𝛽 (1 − 𝜂) V − 𝛽𝑝

= 𝛽 (1 − 𝜂) (V − 𝑝) ,

𝛼𝑢 − 𝛼𝑝 = 𝛼 (1 − 𝜂) (V − 𝑝)

(12)

it follows that 𝛽𝑢 + 𝑥 ∈ [𝛼𝑢, 𝛼V] \ {𝛼𝑢, 𝛼V}. Thus

𝛼 ‖𝑢 − V‖ = ‖𝛼𝑢 − 𝛼V‖

>
𝛽𝑢 + 𝑥 − 𝛼𝑢

 = (𝛽 − 𝛼)
𝑢 − 𝑝

 .

(13)

Therefore, 𝑢 and V are two unit vectors having the desired
properties.

Conversely, suppose that 𝑢 and V are two unit vectors
having these properties. Clearly,

[𝛼𝑢, 𝛼V] ⊂ 𝛼𝑆
𝑋
∩ 𝐻
𝑥,𝑦

,

[𝛽𝑢 + 𝑥, 𝛽V + 𝑥] ⊂ (𝛽𝑆
𝑋
+ 𝑥) ∩ 𝐻

𝑥,𝑦
.

(14)

Next we show that the lines ⟨𝛼𝑢, 𝛼V⟩ and ⟨𝛽𝑢 + 𝑥, 𝛽V + 𝑥⟩

coincide. Since these two lines are parallel, we only need to
show that they intersect. Clearly, there exists a number 𝜂 ∈

(0, 1) such that 𝑢 = 𝜂𝑝 + (1 − 𝜂)V or, equivalently, 𝛼𝑢 = 𝜂𝛼𝑝+

(1 − 𝜂)𝛼V. It follows that

𝛽𝑢 + 𝑥 = 𝛽𝜂𝑝 + 𝛽 (1 − 𝜂) V + 𝑥

= 𝛽𝜂𝑝 + (1 − 𝜂) (𝛽V + 𝑥) + 𝜂𝑥

= 𝜂 (𝛽𝑝 + 𝑥) + (1 − 𝜂) (𝛽V + 𝑥)

= 𝜂𝛼𝑝 + (1 − 𝜂) (𝛽V + 𝑥) .

(15)

Thus

𝛼𝑝 ∈ ⟨𝛼𝑢, 𝛼V⟩ ∩ ⟨𝛽𝑢 + 𝑥, 𝛽V + 𝑥⟩. (16)

In the rest of the proof we show that the intersection of the
segments [𝛼𝑢, 𝛼V] and [𝛽𝑢+𝑥, 𝛽V+𝑥] is a nontrivial segment,
which forces the set 𝑃 to be a nondegenerate segment. It
suffices to show that 𝛽𝑢 + 𝑥 is a relatively interior point of
the segment [𝛼𝑢, 𝛼V].

On the one hand, we have
𝛽𝑢 + 𝑥 − 𝛼𝑝 = (1 − 𝜂) (𝛽V + 𝑥 − 𝛼𝑝)

= 𝛽 (1 − 𝜂) (V − 𝑝) ,

𝛼𝑢 − 𝛼𝑝 = 𝛼 (1 − 𝜂) (V − 𝑝) .

(17)

Thus, 𝛽𝑢+𝑥 lies in the set [𝛼𝑢, 𝛼V⟩ \ {𝛼𝑢}. On the other hand,
we have

‖𝛼𝑢 − 𝛼V‖ = 𝛼 ‖𝑢 − V‖ > (𝛽 − 𝛼)
𝑢 − 𝑝



=
𝛽𝑢 + 𝑥 − 𝛼𝑢

 .

(18)

It follows that 𝛽𝑢 + 𝑥 is from the relative interior of [𝛼𝑢, 𝛼V].

Corollary 7. Let 𝑥 and 𝑦 be two linearly independent vectors
and 𝛼 be a positive number, 𝛽 = √𝛼2 + ‖𝑥‖

2, and 𝑝 = (1/(𝛼 −

𝛽))𝑥. If 𝛼𝑆
𝑋
∩𝐻
𝑥,𝑦

∩𝑃(𝑥) is a non-degenerate segment [𝑚, 𝑛],
then there exist two unit vectors 𝑢 and V such that [𝑢, V] is
a maximal segment contained in 𝑆

𝑋
∩ 𝐻
𝑥,𝑦

and containing
[(1/𝛼)𝑚, (1/𝛼)𝑛], [V, 𝑢⟩ intersects ⟨−𝑥, 𝑥⟩ at 𝑝, and

‖𝑢 − V‖ >
‖𝑥‖

𝛼
+ 1 −

𝛽

𝛼
. (19)

Proof. Let 𝑢 and V be defined as in the first part of the proof of
Theorem 6. Then we only need to show (19). By the first part
of the proof ofTheorem 6 and the triangle inequality, we have

‖𝛼V − 𝛼𝑢‖ >
𝛽𝑢 + 𝑥 − 𝛼𝑢



= (𝛽 − 𝛼)



𝑢 +
1

𝛽 − 𝛼
𝑥



≥ (𝛽 − 𝛼)



1 −
‖𝑥‖

𝛽 − 𝛼



= (𝛽 − 𝛼) (
‖𝑥‖

𝛽 − 𝛼
− 1)

= ‖𝑥‖ + 𝛼 − √𝛼2 + ‖𝑥‖
2
,

(20)

from which (19) follows.

Corollary 8. Let 𝑥 and 𝑦 be two linearly independent vectors,
𝛼 be a positive number, 𝛽 = √𝛼2 + ‖𝑥‖

2, and 𝑝 = (1/(𝛼−𝛽))𝑥.
If 𝑆
𝑋
∩𝐻
𝑥,𝑦

contains a segment [𝑢, V] such that the ray [V, 𝑢⟩
intersects the line ⟨−𝑥, 𝑥⟩ at 𝑝 and that


𝑢

− V


>

𝛽

𝛼
− 1 +

‖𝑥‖

𝛼
, (21)

then the set 𝛼𝑆
𝑋
∩ 𝐻
𝑥,𝑦

∩ 𝑃(𝑥) is a nondegenerate segment.
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Proof. Let 𝑢 and V be two unit vectors such that [𝑢, V] ⊆

[𝑢, V], [𝑢, V] is a maximal segment contained in 𝑆
𝑋
∩ 𝐻
𝑥,𝑦

,
and 𝑝 ∈ [V, 𝑢⟩∩⟨−𝑥, 𝑥⟩. ByTheorem 6, we only need to show
‖𝛼𝑢 − 𝛼V‖ > ‖𝛽𝑢 + 𝑥 − 𝛼𝑢‖. In fact,

𝛽𝑢 + 𝑥 − 𝛼𝑢
 ≤ 𝛽 − 𝛼 + ‖𝑥‖

= 𝛼(
𝛽

𝛼
− 1 +

‖𝑥‖

𝛼
)

< 𝛼

𝑢

− V


≤ 𝛼 ‖𝑢 − V‖

= ‖𝛼𝑢 − 𝛼V‖ .

(22)

The proof is complete.

Now we have sufficient tools to prove the following
theorem.

Theorem 9. Pythagorean orthogonality on 𝑋 is circle-unique
if and only if𝑋 is strictly convex.

Proof. If 𝑋 is strictly convex, then Corollary 7 shows that
Pythagorean orthogonality is circle-unique.

Conversely, suppose that Pythagorean orthogonality is
circle-unique. If𝑋 is not strictly convex, then there exist two
distinct unit vectors 𝑢 and V in 𝑋 such that [𝑢, V] ⊂ 𝑆

𝑋
. Let

𝛼 > 0 be a number such that

‖𝑢 − V‖ >
√𝛼2 + 1

𝛼
− 1 +

1

𝛼
. (23)

Put 𝛽 = √𝛼2 + 1. Since

1

𝛽 − 𝛼
=

1

√𝛼2 + 1 − 𝛼

= √𝛼2 + 1 + 𝛼 > 1, (24)

the line ⟨𝑢, V⟩ intersects 1/(𝛽 − 𝛼)𝑆
𝑋

in a point 𝑝. By
interchanging 𝑢 and V if necessary, we may assume that 𝑝 ∈

[V, 𝑢⟩. Put 𝑥 = (𝛼 − 𝛽)𝑝. Then Corollary 8 implies that
Pythagorean orthogonality on 𝑋 is not circle-unique, a
contradiction.

In the end of this section we mention some result on the
uniqueness of isosceles orthogonality, which was introduced
by James in [1]: 𝑥 and 𝑦 are said to be isosceles orthogonal to
each other if ‖𝑥+𝑦‖ = ‖𝑥−𝑦‖.This orthogonality is not homo-
geneous in general normed linear spaces. The line-existence,
line-uniqueness, circle-existence, and circle-uniqueness for
isosceles orthogonality can be defined in a similar way. The
uniqueness of isosceles orthogonality attracted much atten-
tion; see [5, 7, 8]. It has been shown that line-uniqueness and
circle-uniqueness of isosceles orthogonality are equivalent to
strict convexity of the underlying space. If 𝑥 and 𝑦 are two
linearly independent vectors and 𝐼(𝑥) is the set of vectors
isosceles orthogonal to 𝑥, then the property whether 𝛼𝑆

𝑋
∩

𝐻
𝑥,𝑦

∩ 𝐼(𝑥) is a singleton is determined by the length of
the segment (possibly degenerated to a point) contained in
𝑆
𝑋
∩ 𝐿
𝑥,𝑦

and parallel to ⟨−𝑥, 𝑥⟩; see [8]. As we have shown,
if 𝛼𝑆
𝑋
∩ 𝐻
𝑥,𝑦

∩ 𝑃(𝑥) is not a singleton, then its structure
is determined by a segment contained in 𝑆

𝑋
which is not

parallel to ⟨−𝑥, 𝑥⟩. Moreover, for different values of 𝛼, the
segment determining the structure of 𝛼𝑆

𝑋
∩𝐻
𝑥,𝑦

∩𝑃(𝑥)might
be different.
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