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We analyze the generalized analytic function space Feynman integral and then defined a modified generalized analytic function
space Feynman integral to explain the physical circumstances. Integration formulas involving the modified generalized analytic
function space Feynman integral are established which can be applied to several classes of functionals.

1. Introduction

Let 𝐶
0
[0, 𝑇] denote the one-parameter Wiener space, that is,

the space of continuous real-valued functions𝑥 on [0, 𝑇]with
𝑥(0) = 0, and let𝑚 denoteWienermeasure. Since the concept
of the Feynman integral was introduced by Feynman and
Kac, many mathematicians studied the “analytic” Feynman
integral of functionals in several classes of functionals [1–
7]. Recently the authors have introduced an approach to
the solutions of the diffusion equation and the Schrödinger
equation via the Fourier-type functionals on Wiener space
[6].

The function space 𝐶
𝑎,𝑏

[0, 𝑇], induced by a generalized
Brownian motion, was introduced by Yeh in [8] and studied
extensively in [9–11]. In [11] the authors have studied the
generalized analytic Feynman integral for functionals in a
very general function space 𝐶

𝑎,𝑏
[0, 𝑇].

In this paper, we present an analysis of the generalized
analytic Feynman integral on function space. We define
a modified generalized analytic function space Feynman
integral (AFSFI) and then explain the physical circumstances
with respect to an anharmonic oscillator using the concept
of the modified generalized analytic Feynman integral on
function space.

The Wiener process used in [1–7] is stationary in time
and is free of drift while the stochastic process used in this

paper, as well as in [9–12], is nonstationary in time, is subject
to a drift 𝑎(𝑡), and can be used to explain the position of the
Ornstein-Uhlenbeck process in an external force field [13].

2. Preliminaries

Let 𝑎(𝑡) be an absolutely continuous real-valued function on
[0, 𝑇] with 𝑎(0) = 0, 𝑎󸀠(𝑡) ∈ 𝐿

2
[0, 𝑇], and let 𝑏(𝑡) be a strictly

increasing, continuously differentiable real-valued function
with 𝑏(0) = 0 and 𝑏

󸀠
(𝑡) > 0 for each 𝑡 ∈ [0, 𝑇].The generalized

Brownian motion process 𝑌 determined by 𝑎(𝑡) and 𝑏(𝑡) is
a Gaussian process with mean function 𝑎(𝑡) and covariance
function 𝑟(𝑠, 𝑡) = min{𝑏(𝑠), 𝑏(𝑡)}. By Theorem 14.2 in [14],
the probability measure 𝜇 induced by 𝑌, taking a separable
version, is supported by 𝐶

𝑎,𝑏
[0, 𝑇] (which is equivalent to the

Banach space of continuous functions 𝑥 on [0, 𝑇]with 𝑥(0) =

0 under the sup norm). Hence, (𝐶
𝑎,𝑏

[0, 𝑇],B(𝐶
𝑎,𝑏

[0, 𝑇]), 𝜇)

is the function space induced by 𝑌 where B(𝐶
𝑎,𝑏

[0, 𝑇]) is
the Borel 𝜎-algebra of 𝐶

𝑎,𝑏
[0, 𝑇]. We then complete this

function space to obtain (𝐶
𝑎,𝑏

[0, 𝑇],W(𝐶
𝑎,𝑏

[0, 𝑇]), 𝜇) where
W(𝐶
𝑎,𝑏

[0, 𝑇]) is the set of all Wiener measurable subsets of
𝐶
𝑎,𝑏

[0, 𝑇].
A subset 𝐴 of 𝐶

𝑎,𝑏
[0, 𝑇] is said to be scale-invariant

measurable provided 𝜌𝐴 ∈ W(𝐶
𝑎,𝑏

[0, 𝑇]) for all 𝜌 > 0, and a
scale-invariantmeasurable set𝑁 is said to be a scale-invariant
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null set provided 𝜇(𝜌𝑁) = 0 for all 𝜌 > 0. A property that
holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.) [15].

Let 𝐿2
𝑎,𝑏

[0, 𝑇] be the Hilbert space of functions on [0, 𝑇]

which are Lebesgue measurable and square integrable with
respect to the Lebesgue Stieltjes measures on [0, 𝑇] induced
by 𝑎(⋅) and 𝑏(⋅); that is,

𝐿
2

𝑎,𝑏
[0, 𝑇] = {V : ∫

𝑇

0

V2 (𝑠) 𝑑𝑏 (𝑠) < ∞,

∫

𝑇

0

V2 (𝑠) 𝑑 |𝑎| (𝑠) < ∞} ,

(1)

where |𝑎|(𝑡) denotes the total variation of the function 𝑎 on
the interval [0, 𝑡].

For 𝑢, V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], let

(𝑢, V)
𝑎,𝑏

= ∫

𝑇

0

𝑢 (𝑡) V (𝑡) 𝑑 [𝑏 (𝑡) + |𝑎| (𝑡)] . (2)

Then (⋅, ⋅)
𝑎,𝑏

is an inner product on 𝐿
2

𝑎,𝑏
[0, 𝑇] and ‖𝑢‖

𝑎,𝑏
=

√(𝑢, 𝑢)
𝑎,𝑏

is a norm on 𝐿
2

𝑎,𝑏
[0, 𝑇]. In particular note that

‖𝑢‖
𝑎,𝑏

= 0 if and only if 𝑢(𝑡) = 0 a.e. on [0, 𝑇]. Furthermore
(𝐿
2

𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑎,𝑏
) is a separable Hilbert space. Note that all

functions of bounded variation on [0, 𝑇] are elements of
𝐿
2

𝑎,𝑏
[0, 𝑇]. Also note that if 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡, then

𝐿
2

𝑎,𝑏
[0, 𝑇] = 𝐿

2
[0, 𝑇]. In fact,

(𝐿
2

𝑎,𝑏
[0, 𝑇] , ‖⋅‖𝑎,𝑏) ⊂ (𝐿

2

0,𝑏
[0, 𝑇] , ‖⋅‖0,𝑏)

= (𝐿
2
[0, 𝑇] , ‖⋅‖2)

(3)

since the two norms ‖ ⋅ ‖
0,𝑏

and ‖ ⋅ ‖
2
are equivalent.

For V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇] and 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] we let

⟨V, 𝑥⟩ = ∫

𝑇

0

V (𝑡) 𝑑𝑥 (𝑡) (4)

denote the Paley-Wiener-Zygmund (PWZ) stochastic inte-
gral. Following are some facts about the PWZ stochastic
integral [10–12].

(1) The PWZ stochastic integral ⟨V, 𝑥⟩ is essentially inde-
pendent of the complete orthonormal set {𝜙

𝑗
}
∞

𝑗=1
.

(2) If V is of bounded variation on [0, 𝑇], then the PWZ
stochastic integral ⟨V, 𝑥⟩ equals the Riemann-Stieltjes
integral ∫𝑇

0
V(𝑡) 𝑑𝑥(𝑡) for s-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

(3) The PWZ integral has the expected linearity proper-
ties.

(4) For all V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], ⟨V, 𝑥⟩ is aGaussian randomvari-

able with mean ∫
𝑇

0
V(𝑠) 𝑑𝑎(𝑠) and variance ∫

𝑇

0
V2(𝑠)

𝑑𝑏(𝑠).

Throughout this paper we will assume that each func-
tional 𝐹 : 𝐶

𝑎,𝑏
[0, 𝑇] → C we consider is scale-invariant

measurable and that

∫
𝐶
𝑎,𝑏
[0,𝑇]

󵄨󵄨󵄨󵄨𝐹 (𝜌𝑥)
󵄨󵄨󵄨󵄨 𝑑𝜇 (𝑥) < ∞ (5)

for each 𝜌 > 0.
We finish this section by stating the notion of generalized

analytic function space Feynman integral, cf. [10, 11].

Definition 1. Let C denote the complex numbers, let C
+

=

{𝜆 ∈ C : Re(𝜆) > 0}, and let C̃
+

= {𝜆 ∈ C :

𝜆 ̸= 0 and Re(𝜆) ≥ 0}. Let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] → C be a
measurable functional such that, for each 𝜆 > 0, the function
space integral

𝐽 (𝜆) = ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥) 𝑑𝜇 (𝑥) (6)

exists. If there exists a function 𝐽
∗
(𝜆) analytic in C

+
such

that 𝐽∗(𝜆) = 𝐽(𝜆) for all 𝜆 > 0, then 𝐽
∗
(𝜆) is defined to be

the analytic function space integral of 𝐹 over 𝐶
𝑎,𝑏

[0, 𝑇] with
parameter 𝜆, and for 𝜆 ∈ C

+
we write

𝐽
∗
(𝜆) = ∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) . (7)

Let 𝑞 ̸= 0 be a real number and let 𝐹 be a functional such
that 𝐽∗(𝜆) exists for all 𝜆 ∈ C

+
. If the following limit exists,

we call it the generalized AFSFI of 𝐹with parameter 𝑞 and we
write

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = lim
𝜆→−𝑖𝑞

∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) , (8)

where 𝜆 → −𝑖𝑞 through values in C
+
.

3. Analogue of the Generalized AFSFI

The differential equation

𝜕

𝜕𝑡
𝜓 (𝑢, 𝑡) =

1

2𝜆
Δ𝜓 (𝑢, 𝑡) − 𝑉 (𝑢) 𝜓 (𝑢, 𝑡) (9)

is called the diffusion equation with initial condition
𝜓(𝑢, 0) = 𝜑(𝑢), where Δ is the Laplacian and 𝑉 is an
appropriate potential function. Many mathematicians have
considered the Wiener integral of functionals of the form

𝐹 (𝜆
−1/2

𝑥 + 𝑢) , (10)

where 𝑢 is a real number. It is a well-known fact that the
Wiener integral of the functional having the form

exp{−∫

𝑇

0

𝑉(𝜆
−1/2

𝑥 (𝑡) + 𝑢) 𝑑𝑡} 𝜑 (𝜆
−1/2

𝑥 (𝑇) + 𝑢) (11)

forms the solution of the diffusion equation (9) by the
Feynman-Kac formula. If time is replaced by an imaginary
time, this diffusion equation becomes the Schrödinger equa-
tion

𝑖
𝜕

𝜕𝑡
𝜓 (𝑢, 𝑡) = −

1

2
Δ𝜓 (𝑢, 𝑡) + 𝑉 (𝑢) 𝜓 (𝑢, 𝑡) (12)
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with the initial condition 𝜓(𝑢, 0) = 𝜑(𝑢). Hence the solution
to the Schrödinger equation (12) can be obtained via the ana-
lytic Feynman integral. An approach to finding the solution
to the diffusion equation (9) and the Schrödinger equation
(12) involves the harmonic oscillator 𝑉(𝑢) = (𝑘/2)𝑢

2; for
a more detailed study, see [6]. However, it can be difficult
to obtain the solution for the diffusion equation (9) and
the Schrödinger equation (12) with respect to anharmonic
oscillators.

In this paper, we consider the following functional:

exp{−∫

𝑇

0

𝑉(𝜆
−1/2

𝑥 (𝑡) + 𝑐 (𝜆) ℎ (𝑡)) 𝑑𝑡}

× 𝜑 (𝜆
−1/2

𝑥 (𝑇) + 𝑐 (𝜆) ℎ (𝑡)) ,

(13)

where 𝑐(𝜆) is a real numberwith respect to 𝜆 and ℎ(𝑡) is a real-
valued function on [0, 𝑇]. When ℎ(𝑡) = 𝑢 for all 𝑡 ∈ [0, 𝑇]

and 𝑐(𝜆) is independent of the value 𝜆, the functional in (13)
reduces the functional in (11). That is to say, our functional
(13) is more generalized compared with the functional in (11).
Hence, all results and formulas for the functional in (11) are
special cases of our results and formulas.

We will now explain the importance of the functionals
given by (13). For a positive real number 𝑘, when the potential
function is𝑉(𝑢) = (𝑘/2)𝑢

2, the diffusion equation (9) is called
the diffusion equation for a harmonic oscillator with 𝑉. For
𝜉 ∈ R,

𝑉
1
(𝑢) ≡ 𝑉 (𝑢 + 𝜉) =

𝑘

2
(𝑢 + 𝜉)

2 (14)

is just the translation of 𝑉; thus, it is called the diffusion
equation for a harmonic oscillator with 𝑉

1
. However, for an

appropriate function ℎ(𝑡) on [0, 𝑇],

𝑉
2
(𝑢) ≡ 𝑉 (𝑢 + ℎ (𝑢)) =

𝑘

2
(𝑢 + ℎ(𝑢))

2 (15)

may be an anharmonic oscillator. For example, consider the
following.

(1) If ℎ(𝑡) = 𝑢
2 on [0, 𝑇], then

𝑉
3
(𝑢) =

𝑘

2
(𝑢
2
+ 2𝑢
3
+ 𝑢
4
) . (16)

In this case, the diffusion equation (9) is called the
diffusion equation for anharmonic oscillator with 𝑉

3

because it contains the “𝑢3-term.”This means that the
status of the harmonic oscillator can be exchanged
for the status of the anharmonic oscillator under
certain physical circumstances. We can explain this
phenomenon by considering the Wiener integral of
the functional in (13).

(2) For a real number 𝛾, if ℎ(𝑡) = −𝑢 + √𝑢2(𝑢2 − 𝛾2) on
[0, 𝑇], then

𝑉
4
(𝑢) =

𝑘

2
𝑢
2
(𝑢
2
− 𝛾
2
) . (17)

In this case, the diffusion equation (9) is called the
diffusion equation for double-well potential with 𝑉

4
.

As such, it is a harmonic oscillator.

(3) Furthermore, we see that, for V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], ℎ ∈

𝐶
𝑎,𝑏

[0, 𝑇], and 𝑢 ∈ R,

⟨V, 𝑥 + 𝑢⟩ = ⟨V, 𝑥⟩ ,

⟨V, 𝑥 + ℎ⟩ = ⟨V, 𝑥⟩ + ⟨V, ℎ⟩
(18)

provided ⟨V, ℎ⟩ ̸= 0.Thus, the functionals presented in
this paper are more meaningful than the functionals
given in previous papers [6, 11]. This also has impli-
cations regarding the generalizations of our research
observations.

We are now ready to state the definition of the modified
generalized AFSFI.

Definition 2. Let ℎ ∈ 𝐶
𝑎,𝑏

[0, 𝑇] be given. Let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] →

C be such that, for each 𝜆 > 0, the function space integral

𝐽 (𝜆) = ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝑐 (𝜆) ℎ) 𝑑𝜇 (𝑥) (19)

exists for all 𝜆 > 0 where 𝑐(𝜆) is a nonnegative real number
which depends on 𝜆. If there exists a function 𝐽

∗
(𝜆) analytic

in C
+
such that 𝐽

∗
(𝜆) = 𝐽(𝜆) for all 𝜆 > 0, then 𝐽

∗
(𝜆) is

defined to be the modified analytic function space integral of
𝐹 over 𝐶

𝑎,𝑏
[0, 𝑇] with parameter 𝜆, and for 𝜆 ∈ C

+
we write

𝐽
∗
(𝜆) = ∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) . (20)

Let 𝑞 ̸= 0 be a real number and let 𝐹 be a functional such

that ∫𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥) 𝑑𝜇(𝑥) exists for all 𝜆 ∈ C
+
. If the following

limit exists, we call it the modified generalized AFSFI of 𝐹
with parameter 𝑞 and we write

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = lim
𝜆→−𝑖𝑞

∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) , (21)

where 𝜆 approaches −𝑖𝑞 through values in C
+
.

Remark 3. We have the following assertions with respect to
the modified generalized AFSFI.

(1) If ℎ(𝑡) ≡ 0 on [0, 𝑇] or 𝑐(𝜆) = 0, then we can write

∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = ∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) ,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = ∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) .

(22)

(2) In the setting of classical Wiener space (in our
research, when 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡 on [0, 𝑇]), our
modified generalized AFSFI, the generalized AFSFI,
and the analytic Feynman integral coincide. Hence all
results and formulas in [2, 3, 5, 6, 16] are corollaries of
our results and formulas in this paper.

We conclude this section by listing several integration for-
mulas for simple functionals to compare with the generalized
AFSFI and the modified generalized AFSFI. For all nonzero
real number 𝑞, we have Tables 1 and 2.
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Table 1: Modified generalized AFSFI (𝑗 = 1, 2).

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
, ℎ

𝐶
𝑎, 𝑏
[0, 𝑇]

𝐹
𝑗
(𝑥) 𝑑𝜇 (𝑥)

𝐹
1
(𝑥) = 𝑥 (𝑇) (

𝑖

𝑞
)

1/2

𝑎 (𝑇) + 𝑐 (𝑞) ℎ (𝑇)

𝐹
2
(𝑥) = 𝑒

𝑥(𝑇) exp{(
𝑖

𝑞
)

1/2

𝑎 (𝑇) +
𝑖

2𝑞
𝑏 (𝑇) + 𝑐 (𝑞) ℎ (𝑇)}

Table 2: Generalized AFSFI (𝑗 = 1, 2).

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎, 𝑏
[0, 𝑇]

𝐹
𝑗
(𝑥) 𝑑𝜇 (𝑥)

𝐹
1
(𝑥) = 𝑥 (𝑇) (

𝑖

𝑞
)

1/2

𝑎 (𝑇)

𝐹
2
(𝑥) = 𝑒

𝑥(𝑇) exp{(
𝑖

𝑞
)

1/2

𝑎 (𝑇) +
𝑖

2𝑞
𝑏 (𝑇)}

4. Some Properties for the Modified
Generalized AFSFI

In this section we establish a Fubini theorem for themodified
analytic function space integrals and the modified general-
ized AFSFIs for functionals on 𝐶

𝑎,𝑏
[0, 𝑇]. We also use these

Fubini theorems to establish various modified generalized
analytic Feynman integration formulas.

First, we define a function to simply express many results
and formulas in this paper. For 𝑛 ≥ 2, define a function 𝐻

𝑛
:

C̃𝑛
+

→ C̃
+
by

𝐻
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
) =

𝑛

∑

𝑗=1

𝑧
−1/2

𝑗
− (

𝑛

∑

𝑗=1

𝑧
−1

𝑗
)

1/2

, (23)

where ∑
𝑛

𝑗=1
𝑧
−1/2

𝑗
̸= 0 and ∑

𝑛

𝑗=1
𝑧
−1

𝑗
̸= 0. Note that 𝐻

𝑛
is a

symmetric function for all 𝑛 = 2, 3, . . .. In this paper we
will assume that, for all (𝑧

1
, . . . , 𝑧

𝑛
) ∈ C̃𝑛

+
and (∑

𝑛

𝑗=1
𝑧
−1

𝑗
)
1/2,

𝑛 = 1, 2, . . ., and 𝑧
−1/2

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, are always chosen to

have positive real parts.
In our first theorem, we show that the modified general-

ized AFSFIs are commutative.

Theorem 4. Let ℎ
1
and ℎ

2
be elements of 𝐶

𝑎,𝑏
[0, 𝑇] and let 𝐹

be a functional defined on 𝐶
𝑎,𝑏

[0, 𝑇] such that

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

󵄨󵄨󵄨󵄨𝐹 (𝛾𝑥 + 𝛽𝑦 + 𝑐 (𝛾) ℎ
1
+ 𝑐 (𝛽) ℎ

2
)
󵄨󵄨󵄨󵄨

× 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦) < ∞,

(24)

for all nonzero real numbers 𝛾 and 𝛽. Then for all 𝑞
1
, 𝑞
2
∈ R −

{0},

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) ,

(25)

where ≐ means that if either side exists, both sides exist and
equality holds.

Proof. First, using the symmetric property, for all 𝜆, 𝛽 > 0,

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝛽
−1/2

𝑦 + 𝑐 (𝜆) ℎ
1

+ 𝑐 (𝛽) ℎ
2
) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝛽
−1/2

𝑦 + 𝜆
−1/2

𝑥 + 𝑐 (𝛽) ℎ
2

+ 𝑐 (𝜆) ℎ
1
) 𝑑 (𝜇 × 𝜇) (𝑦, 𝑥) .

(26)

This can be analytically continued in 𝜆 and 𝛽 for (𝜆, 𝛽) and so
we have, for all (𝜆, 𝛽) ∈ C

+
× C
+
,

∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) .

(27)

Next, let 𝐸 be a subset of C̃
+

× C̃
+
containing the point

(−𝑖𝑞
1
, −𝑖𝑞
2
) and it is such that (𝜆, 𝛽) ∈ 𝐸 implies that 𝜆+𝛽 ̸= 0.

Note that the function

H (𝜆, 𝛽) ≡ ∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑦 + 𝑧) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑧)

(28)

is continuous on 𝐸 and is uniformly continuous on 𝐸

provided 𝐸 is compact.Then by the continuity ofH and (27),
we can establish (25) as desired.

The following theorem was established in [12, 17]. For-
mula (29) is called the Fubini theorem with respect to the
function space integrals.

Theorem 5. Let 𝐹 be as in Theorem 4 above. Then

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝛾𝑥 + 𝛽𝑦) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝛾2 + 𝛽2𝑧

+ (𝛾 + 𝛽 − √𝛾2 + 𝛽2) 𝑎) 𝑑𝜇 (𝑧)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝛾2 + 𝛽2𝑧 + 𝐻
2
(𝛾
−2
, 𝛽
−2
) 𝑎) 𝑑𝜇 (𝑧) .

(29)
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To establish Theorem 7, we need the following lemma.

Lemma6. Let𝐹 be as inTheorem4 above.Then for all (𝜆, 𝛽) ∈

C
+
× C
+
with 𝜆 + 𝛽 ̸= 0,

∫

𝑎𝑛
𝛽

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(30)

where 𝛾 = 𝜆𝛽/(𝜆 + 𝛽) and 𝑐(𝛾) = 𝐻
2
(𝜆, 𝛽).

Proof. Using (29), it follows that for 𝜆 > 0 and 𝛽 > 0

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝛽
−1/2

𝑦) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝜆−1 + 𝛽−1𝑧 + 𝐻
2
(𝜆, 𝛽) 𝑎) 𝑑𝜇 (𝑧) .

(31)

This last expression is defined for 𝜆 > 0 and 𝛽 > 0. For
𝛽 > 0, it can be analytically continued in 𝜆 ∈ C

+
. Also for

𝜆 > 0, it can be analytically continued in 𝛽 ∈ C
+
. Therefore

since 𝜆 ∈ C
+
and 𝛽 ∈ C

+
implies that 𝜆𝛽/(𝜆 + 𝛽) ∈ C

+
, we

conclude that the last expression in proof of Lemma 6 can be
analytically continued into C

+
to equal the analytic function

space integral

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) , (32)

which completes the proof of Lemma 6 as desired.

The following theorem is the main result with respect to
the modified generalized AFSFI.

Theorem7. Let𝐹 be as in Lemma6 above.Then for all 𝑞
1
, 𝑞
2
∈

R − {0} with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(33)

where 𝑞
3
= 𝑞
1
𝑞
2
/(𝑞
1
+ 𝑞
2
) and 𝑐(𝑞

3
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Proof. First note that, for all 𝑞
1
, 𝑞
2
∈ R−{0}with 𝑞

1
+𝑞
2

̸= 0, if
𝜆 → −𝑖𝑞

1
and 𝛽 → −𝑖𝑞

2
, then 𝜆𝛽/(𝜆+𝛽) → −𝑖(𝑞

1
𝑞
2
/(𝑞
1
+

𝑞
2
)). Now using this fact and (30) it follows that

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ lim
𝛽→−𝑖𝑞

2

lim
𝜆→−𝑖𝑞

1

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

≐ lim
𝜆𝛽/(𝜆+𝛽)→−𝑖(𝑞1𝑞2/(𝑞1+𝑞2))

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(34)

where 𝛾 and 𝑐(𝛾) are as in Lemma 6. Hence we complete the
proof as desired.

Equations (35)–(37) below follow bymathematical induc-
tion andTheorem 7 above.

Corollary 8. Let 𝐹 be as inTheorem 7 above.Then one has the
following assertions.

(1) For all 𝑞 ∈ R − {0},

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞/2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(35)

where 𝑐(𝑞) = 𝐻
2
(−𝑖𝑞, −𝑖𝑞).

(2) For all 𝑞
1
, . . . , 𝑞

𝑛
∈ R − {0} with ∑

𝑘

𝑗=1
(𝑞
1
. . . 𝑞
𝑘
/𝑞
𝑗
) ̸= 0

for 𝑘 = 2, . . . , 𝑛,

∫

𝑎𝑛𝑓
𝑞𝑛

𝐶
𝑎,𝑏
[0,𝑇]

⋅ ⋅ ⋅ ∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
) 𝑑 (𝜇 × ⋅ ⋅ ⋅ × 𝜇) (𝑥⃗)

≐ ∫

𝑎𝑛𝑓
𝑐(𝛽𝑛)

𝛽𝑛

,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(36)

where 𝑥⃗ = (𝑥
1
, . . . , 𝑥

𝑛
), 𝛽
𝑛
= 𝑞
1
. . . 𝑞
𝑛
/∑
𝑛

𝑗=1
(𝑞
1
. . . 𝑞
𝑛
/

𝑞
𝑗
), and 𝑐(𝛽

𝑛
) = 𝐻

𝑛
(−𝑖𝑞
1
, . . . , −𝑖𝑞

𝑛
). Furthermore,

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

⋅ ⋅ ⋅ ∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
) 𝑑 (𝜇 × ⋅ ⋅ ⋅ × 𝜇) (𝑥⃗)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞/𝑛)

𝑞/𝑛
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(37)

where 𝑐(𝑞/𝑛) = 𝐻
2
(−𝑖𝑞, . . . , −𝑖𝑞).

Next we establish some integration formulas with respect
to the modified generalized AFSFIs.

(1) A formula showing that the double modified gener-
alized AFSFIs can be expressed by just one modified
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generalized AFSFI. For all 𝑞
1
, 𝑞
2

∈ R − {0} with
𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
1
,𝑞
2
)

𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
)
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(38)

where 𝑐(𝑞
1
, 𝑞
2
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
) + 𝑐(𝑞

1
) + 𝑐(𝑞

2
).

Furthermore, if 𝑐(𝑞
1
) + 𝑐(𝑞

2
) = −𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
), then

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
)

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) .

(39)

(2) A relationship between the modified generalized
AFSFI and the generalized AFSFI. For all 𝑞

1
, 𝑞
2

∈

R − {0} with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(40)

where 𝑞
3
= 𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
) and 𝑐(𝑞

3
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
)+

𝑐(𝑞
1
).

(3) A formula relating the modified generalized AFSFI
and the generalized AFSFI. For all 𝑞

1
, 𝑞
2
∈ R − {0},

∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦) .

(41)

5. Examples

In this section, we provide several brief examples in which we
apply our formulas and results.

5.1. Banach Algebra S(𝐿
2

𝑎,𝑏
[0,𝑇]). Let 𝑀(𝐿

2

𝑎,𝑏
[0, 𝑇]) be the

space of complex-valued, countably additive Borel measures
on 𝐿
2

𝑎,𝑏
[0, 𝑇]. The Banach algebra S(𝐿

2

𝑎,𝑏
[0, 𝑇]) consists of

those functionals 𝐹 on 𝐶
𝑎,𝑏

[0, 𝑇] expressible in the form

𝐹 (𝑥) = ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp {𝑖 ⟨V, 𝑥⟩} 𝑑𝑓 (V) (42)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] where the associated measure 𝑓 is an
element of𝑀(𝐿

2

𝑎,𝑏
[0, 𝑇]).

Example 1. Let 𝑞
0
be a fixed nonzero real number. Let

𝐹 ∈ S(𝐿
2

𝑎,𝑏
[0, 𝑇]) be given by (42) above. Suppose that

corresponding measure 𝑓 of 𝐹 satisfies the condition

∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp
{{

{{

{

4

√2
󵄨󵄨󵄨󵄨𝑞0

󵄨󵄨󵄨󵄨

∫

𝑇

0

|V (𝑠)| 𝑑 |𝑎| (𝑠)

}}

}}

}

󵄨󵄨󵄨󵄨𝑑𝑓 (V)󵄨󵄨󵄨󵄨 < ∞.

(43)

Then for all nonzero real number 𝑞 with |𝑞| ≥ |𝑞
0
|,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp{ −
𝑖

2𝑞
(V2, 𝑏󸀠)

+𝑖 (𝑐 (𝑞) + (
𝑖

𝑞
)

1/2

)(V, 𝑎󸀠)} 𝑑𝑓 (V) ,

(44)

where

(V, 𝑎󸀠) = ∫

𝑇

0

V (𝑡) 𝑑𝑎 (𝑡) , (V2, 𝑏󸀠) = ∫

𝑇

0

V2 (𝑡) 𝑑𝑏 (𝑡) .

(45)

Next, using Theorem 7, we can compute the double
generalized AFSFIs of 𝐹 ∈ S(𝐿

2

𝑎,𝑏
[0, 𝑇]) by just one modified

generalized AFSFI. That is to say, for all 𝑞
1
, 𝑞
2

∈ R with
|𝑞
1
| ≥ |𝑞
0
|, |𝑞
2
| ≥ |𝑞
0
| and 𝑞

1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

= ∫

𝑎𝑛𝑓
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

= ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp{−
𝑖

2
(

1

𝑞
1

+
1

𝑞
2

) (V2, 𝑏󸀠)

+ 𝑖 ((
𝑖

𝑞
1

)

1/2

+ (
𝑖

𝑞
2

)

1/2

)

× (V, 𝑎󸀠) } 𝑑𝑓 (V) ,

(46)

where 𝛾 = 𝑞
1
𝑞
2
/(𝑞
1

+ 𝑞
2
) and 𝑐(𝛾) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Furthermore the last expression in (46) equals the expression

∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) . (47)

5.2.The Fourier Transform of a Complex-ValuedMeasure. For
given 𝑚⃗ = (𝑚

1
, . . . , 𝑚

𝑛
) ∈ R𝑛 and ⃗𝜎2 = (𝜎

2

1
, . . . , 𝜎

2

𝑛
) ∈ R𝑛
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with 𝜎
2

𝑗
> 0, 𝑗 = 1, . . . , 𝑛, let ]

𝑚⃗,
⃗
𝜎
2
be the Gaussian measure

given by

]
𝑚⃗,
⃗
𝜎
2
(𝐵) = (

𝑛

∏

𝑗=1

2𝜋𝜎
2

𝑗
)

−1/2

∫
𝐵

exp
{

{

{

−

𝑛

∑

𝑗=1

(𝑢
𝑗
− 𝑚
𝑗
)
2

2𝜎
2

𝑗

}

}

}

𝑑𝑢⃗,

(48)

where 𝐵 ∈ B(R𝑛). Then ]
𝑚⃗,
⃗
𝜎
2
is a complex-valued Borel

measure on R𝑛 and

]̂
𝑚⃗,
⃗
𝜎
2
(𝑢⃗) = exp

{

{

{

−
1

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
𝑢
2

𝑗
+ 𝑖

𝑛

∑

𝑗=1

𝑚
𝑗
𝑢
𝑗

}

}

}

, (49)

where ]̂
𝑚⃗,
⃗
𝜎
2
is the Fourier transform of the Gaussian measure

]
𝑚⃗,
⃗
𝜎
2
.

Example 2. Let {𝛼
1
, . . . , 𝛼

𝑛
} be any orthonormal set in

𝐿
2

𝑎,𝑏
[0, 𝑇] and let 𝐹 : 𝐶

𝑎,𝑏
[0, 𝑇] → R𝑛 be the functional

defined by

𝐹 (𝑥) = ]̂
𝑚⃗,
⃗
𝜎
2
(⟨𝛼
1
, 𝑥⟩ , . . . , ⟨𝛼

𝑛
, 𝑥⟩) , (50)

where Var[⟨𝛼
𝑗
, 𝑥⟩
2
] = 1 for all 𝑗 = 1, 2, . . . , 𝑛. Then for all

nonzero real number 𝑞,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

= (

𝑛

∏

𝑗=1

1

2(1 − (−𝑖𝑞)
−1/2

𝜎
2

𝑗
)

)

1/2

× exp
{

{

{

𝑛

∑

𝑗=1

((−𝑖𝑞)
−1/2

× [𝑖4𝐴
𝑗
𝑚
𝑗
− (−𝑖𝑞)

−1/2
𝑚
2

𝑗
+ 2𝐴
2

𝑗
𝜎
2

𝑗
])

×(2 (2 − (−𝑖𝑞)
−1/2

𝜎
2

𝑗
))
−1}

}

}

× exp
{

{

{

−
𝑐 (𝑞)

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
⟨𝛼
𝑗
, ℎ⟩ + 𝑖𝑐 (𝑞)

𝑛

∑

𝑗=1

𝑚
𝑗
⟨𝛼
𝑗
, ℎ⟩

}

}

}

,

(51)

where𝐴
𝑗
= ∫
𝑇

0
𝛼
𝑗
(𝑡)𝑑𝑎(𝑡). UsingTheorem 7, we can compute

the double generalized AFSFIs of 𝐹 given by (50) by just one

modified generalized AFSFI. That is to say, for all 𝑞
1
, 𝑞
2
∈ R

with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

= (

𝑛

∏

𝑗=1

1

2 (1 − (−𝑖𝑄)
−1/2

𝜎
2

𝑗
)

)

1/2

× exp
{

{

{

𝑛

∑

𝑗=1

((−𝑖𝑄)
−1/2

× [𝑖4𝐴
𝑗
𝑚
𝑗
− (−𝑖𝑄)

−1/2
𝑚
2

𝑗
+ 2𝐴
2

𝑗
𝜎
2

𝑗
])

×(2 (2 − (−𝑖𝑄)
−1/2

𝜎
2

𝑗
))
−1}

}

}

× exp
{

{

{

−
𝑐 (𝑄)

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
⟨𝛼
𝑗
, ℎ⟩ + 𝑖𝑐 (𝑄)

𝑛

∑

𝑗=1

𝑚
𝑗
⟨𝛼
𝑗
, ℎ⟩

}

}

}

,

(52)

where 𝑄 = 𝑞
1
𝑞
2
/(𝑞
1
+ 𝑞
2
) and 𝑐(𝑄) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Furthermore, the last expression in (52) equals the expression

∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) . (53)

5.3. The Generalized Fourier-Hermite Functional on Function
Space. For each 𝑚 = 0, 1, 2, . . ., and for each 𝑗 = 1, 2, . . ., let
𝐻
𝑗

𝑚
(𝑢) denote the generalized Hermite polynomial

𝐻
𝑗

𝑚
(𝑢) ≡ (−1)

𝑚
(𝑚!)
−1/2

(𝐵
𝑗
)
𝑚/2 exp{

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

×
𝑑
𝑚

𝑑𝑢𝑚
(exp

{

{

{

−

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

}

}

) .

(54)

Then for each 𝑗 = 1, 2, . . ., the set

{(2𝜋𝐵
𝑗
)
−1/4

𝐻
𝑗

𝑚
(𝑢) exp{−

(𝑢 − 𝐴
𝑗
)
2

4𝐵
𝑗

} : 𝑚 = 0, 1, . . .}

(55)

is a complete orthonormal set in 𝐿
2
(R). Now we define

Φ
(𝑚
1
,...,𝑚
𝑘
)
(𝑥) =

𝑘

∏

𝑗=1

𝐻
𝑗

𝑚
𝑗

(⟨𝛼
𝑗
, 𝑥⟩) . (56)

The functionals in (56) are called the generalized Fourier-
Hermite functionals. It is known that these functionals form
a complete orthonormal set in 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]); that is to say, let
𝐹 ∈ 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]) and, for𝑁 = 1, 2, . . ., let

𝐹
𝑁
(𝑥) =

𝑁

∑

𝑚
1
,...,𝑚
𝑁
=0

𝐴
𝐹

(𝑚1 ,...,𝑚𝑁)
Φ
(𝑚
1
,...,𝑚
𝑁
)
(𝑥) , (57)
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where 𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
is the generalized Fourier-Hermite coeffi-

cient,

𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
≡ ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥)Φ(𝑚
1
,...,𝑚
𝑁
) (𝑥) 𝑑𝜇 (𝑥) . (58)

Then

𝐹 (𝑥) = lim
𝑁→∞

𝐹
𝑁
(𝑥)

= lim
𝑁→∞

𝑁

∑

𝑚
1
,...,𝑚
𝑁
=0

𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
Φ
(𝑚
1
,...,𝑚
𝑁
)
(𝑥)

(59)

is called the generalized Fourier-Hermite series expansion of
𝐹. In (59), the limit is taken in the 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇])-sense.

Example 3. Let 𝑞
0

be a nonzero real number and let
Φ
(𝑚
1
,...,𝑚
𝑁
)
be the generalized Fourier-Hermite functional

given by (56) above. Then for all nonzero real number 𝑞 with
|𝑞| ≥ |𝑞

0
|, themodified generalized AFSFI ofΦ

(𝑚
1
,...,𝑚
𝑁
)
exists

and it is given by the formula

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

Φ
(𝑚
1
,...,𝑚
𝑁
)
𝑑𝜇 (𝑥) =

𝑁

∏

𝑗=1

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝜙
(𝑚
𝑗
,𝑗)
𝑑𝜇 (𝑥) ,

(60)

where

𝜙
(𝑚
𝑗
,𝑗)

(𝑥) = 𝐻
𝑗

𝑚
𝑗

(⟨𝛼
𝑗
, 𝑥⟩) ,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝜙
(𝑚
𝑗
,𝑗)
𝑑𝜇 (𝑥)

= (2𝜋𝐵
𝑗
)
−1/2

∫
𝑅

𝐻
𝑗

𝑚
((−𝑖𝑞)

−1/2
𝑢 + 𝑐 (𝑞) ⟨𝛼⃗, ℎ⟩)

× exp
{

{

{

−

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

}

}

𝑑𝑢.

(61)

The last expression is valid because the generalized Hermite
functional is a polynomial with degree𝑚

𝑗
and hence it has an

analytic extension.

Remark 9. Since the set of generalized Fourier-Hermite
functionals

M ≡ {Φ
(𝑚
1
,...,𝑚
𝑘
)
}
∞

𝑘=1
(62)

is a complete orthonormal set in 𝐿
2
(𝐶
𝑎,𝑏

[0, 𝑇]), we could
extend the results for functionals in 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]) under the
appropriate conditions.

6. Conclusions

In Section 3, we presented our analysis of the generalized
AFSFI and defined the modified generalized AFSFI. Further-
more we explained the physical circumstances with respect to
an anharmonic oscillator using the concept of the modified

generalized AFSFI. That is to say, we introduced some new
concepts in order to explain various physical circumstances.
In Section 4, we established some relationships with respect
to the modified generalized AFSFI involving the generalized
AFSFI; see Theorem 7. Finally, we applied our results to
various classes of functionals studied in [2, 4, 10, 11].
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