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We introduce a new sequence space which is defined by the operator 𝑊 = (𝑤
𝑛𝑘
) on the sequence space ℓ(𝑝). We define a modular

functional on this space and investigate structure of this space equipped with Luxemburg norm. Also we study some geometric
properties which are called Kadec-Klee, k-NUC, and uniform Opial properties and prove that this new space possesses these
properties.

1. Introduction

In literature, there are many papers about geometric proper-
ties and their applications on different sequence spaces. Some
of them are as follows.

In [1], Opial defined the Opial property with his name
mentioned and he proved that ℓ

𝑝
(1 < 𝑝 < ∞) satisfies this

property but the space 𝐿
𝑝
[0, 2𝜋] (𝑝 ̸= 2, 1 < 𝑝 < ∞) does

not.
Franchetti [2] has shown that any infinite dimensional

Banach space has an equivalent norm satisfying the Opial
property. Later, Prus [3] has introduced and investigated
uniform Opial property for Banach spaces.

In [4], the notion of nearly uniform convexity for Banach
spaces was introduced by Huff. Also Huff proved that every
nearly uniformly convex space is reflexive and it has uniform
Kadec-Klee property. However, Kutzarova [5] defined 𝑘-
nearly uniformly convex Banach spaces.

Shue [6] first defined Cesaro sequence spaces with norm.
In [7], it is shown that the Cesaro sequence spaces ces

𝑝
(1 ≤

𝑝 < ∞) have Kadec-Klee and local uniform rotundity
properties.

In [8], it was shown that Banach-Saks of type-𝑝 property
holds in these spaces.

Later, Sanhan and Suantai [9] generalized the normed
sequence spaces to the paranormed sequence spaces. He

showed that the sequence spaces ces(𝑝) equipped Luxemburg
norm are rotund and have Kadec-Klee property.

Petrot and Suantai [10] studied the uniform Opial prop-
erty of these spaces. In [9], Sanhan and Suantai have showed
that the Cesaro sequence space ces(𝑝), where the sum runs
over 2

𝑟

≤ 𝑘 ≤ 2
𝑟+1, equipped with Luxemburg norm has

property (𝐻) but it is not rotund.
Karakaya [11] introduced a new sequence space involving

lacunary sequences connected with Cesaro sequence space
and examined some geometric properties of this space
equipped with Luxemburg norm. In [12], Karakaş et al.
defined and studied a new difference sequence space involv-
ing lacunary sequences by using difference operator.

In [13], Khan and Rahman introduced sequence spaces
ces[(𝑝

𝑛
), (𝑞
𝑛
)]. Afterwards, Mursaleen and Khan [14] gener-

alized this space to the vector-valued sequence space. In the
space ces[(𝑝

𝑛
), (𝑞
𝑛
)], if we specialize 𝑞

𝑛
= 1 for all 𝑛 ∈ N, then

we get ces[(𝑝
𝑛
), (𝑞
𝑛
)] = ces(𝑝) defined in [9].

In [15], Şimşek and Karakaya generalized sequence
space ces[(𝑝

𝑛
), (𝑞
𝑛
)] to vector-valued space ces(𝑋, 𝑝

𝑛
, 𝑞
𝑛
) and

investigated some topological and geometrical properties as
Kadec-Klee and rotund according to Luxemburg normof this
space.

In [16], Savaş et al. introduced an ℓ
𝑝
-type new sequence

space and examined some geometrical properties of this
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space concerning Banach-Saks of type-𝑝 andGurarii’smodu-
lus of convexity. Also, in [17], Şimşek et al. investigated the k-
nearly uniform convexity (k-NUC) property and some fixed
point results inmodular space𝑉

𝜌
(𝜆; 𝑝); Şimşek andKarakaya

[18] introduced modular sequence space ℓ
𝜌
(𝑢, V, 𝑝) obtained

from paranormed ones by generalized weighted means on
Köthe sequence spaces and investigated Kadec-Klee property
of this space.

2. Preliminaries and Notation

Let (𝑋, ‖ ⋅‖) (for the brevity𝑋 = (𝑋, ‖ ⋅ ‖)) be a normed linear
space and let 𝐵(𝑋) (resp. 𝑆(𝑋)) be the closed unit ball (resp.
unit sphere) of 𝑋. The space of all real sequences is denoted
by 𝑤. For any sequence {𝑥

𝑛
} in 𝑋, we denote by conv({𝑥

𝑛
})

the convex hull of the elements of {𝑥
𝑛
}.

A Banach space 𝑋 is called uniformly convex (UC) if for
each 𝜀 > 0, there is 𝛿 > 0 such that, for 𝑥, 𝑦 ∈ 𝑆(𝑋), the
inequality ‖𝑥 − 𝑦‖ > 𝜀 implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
(𝑥 + 𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< 1 − 𝛿. (1)

Recall that for a number 𝜀 > 0 a sequence {𝑥
𝑛
} is said to be an

𝜀-seperated sequence if

sep ({𝑥
𝑛
}) = inf {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑚

󵄩󵄩󵄩󵄩 , 𝑛 ̸=𝑚} > 𝜀. (2)

A Banach space 𝑋 is said to have the Kadec-Klee property
(H property) if every weakly convergent sequence on the unit
sphere is convergent in norm.

A Banach space 𝑋 is said to have the uniform Kadec-Klee
property (UKK) if for every 𝜀 > 0 there exists 𝛿 > 0 such that
if 𝑥 is the weak limit of a normalized 𝜀-separated sequence,
then ‖𝑥‖ < 1 − 𝛿 (see [4]). We have that every (UKK) Banach
space has the Kadec-Klee property.

A Banach space𝑋 is said to be the nearly uniformly convex
(NUC) if for every 𝜀 > 0 there exists 𝛿 > 0 such that, for every
sequence {𝑥

𝑛
} ⊂ 𝐵(𝑋) with sep({𝑥

𝑛
}) > 𝜀, we have

conv ({𝑥
𝑛
}) ∩ (1 − 𝛿) 𝐵 (𝑋) ̸= 0. (3)

Let 𝑘 ≥ 2be an integer. ABanach space𝑋 is said to be 𝑘-nearly
uniformly convex (𝑘-NUC) if for any 𝜀 > 0 there exists 𝛿 > 0

such that, for every sequence {𝑥
𝑛
} ⊂ 𝐵(𝑋)with sep({𝑥

𝑛
}) > 𝜀,

there are 𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑘
∈ N such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑛
1

+ 𝑥
𝑛
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑘

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 1 − 𝛿. (4)

Of course a Banach space𝑋 is (NUC)whenever it is (𝑘-NUC)
for some integer 𝑘 ≥ 2. Clearly, (𝑘-NUC) Banach spaces are
(NUC) but the opposite implication does not hold in general
(see [5]).

A Banach space 𝑋 is said to have the Opial property if
every sequence {𝑥

𝑛
} that is weakly convergent to 𝑥

0
satisfies

lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
0

󵄩󵄩󵄩󵄩 < lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 , (5)

for every 𝑥 ∈ 𝑋 and 𝑥 ̸= 𝑥
0
(see [1]).

A Banach space 𝑋 is said to have the uniform Opial
property if every 𝜀 > 0 there exists 𝛿 > 0 such that, for each
weakly null sequence {𝑥

𝑛
} ⊂ 𝑆(𝑋) and 𝑥 ∈ 𝑋 with ‖𝑥‖ ≥ 𝜀,

we have (see [3])
1 + 𝜏 ≤ lim

𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑥
󵄩󵄩󵄩󵄩 . (6)

A point 𝑥 ∈ 𝑆(𝑋) is called an extreme point if for any 𝑦, 𝑧 ∈

𝐵(𝑋) the equality 2𝑥 = 𝑦 + 𝑧 implies that 𝑦 = 𝑧. A Banach
space𝑋 is said to be rotund (abbreviated as (𝑅)) if every point
of 𝑆(𝑋) is an extreme point. A Banach space 𝑋 is said to be
𝑓𝑢𝑙𝑙𝑦 𝑘-rotund (written as kR) (see [19]) if for every sequence
{𝑥
𝑛
} ⊂ 𝐵(𝑋)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1

+ 𝑥
𝑛
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩
󳨀→ 𝑘 as 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
󳨀→ ∞ (7)

implies that {𝑥
𝑛
} is convergent.

It is well known that (UC) implies (kR) and (kR) implies
((𝑘 + 1)𝑅), and (kR) spaces are reflexive and rotund, and it is
easy to see that (𝑘-NUC) implies (kR).

For a real vector space 𝑋, a function 𝜌 : 𝑋 → [0,∞] is
called a modular if it satisfies the following conditions:

(i) 𝜌(𝑥) = 0 ⇔ 𝑥 = 0,
(ii) 𝜌(𝛼𝑥) = 𝜌(𝑥) for all 𝛼 ∈ 𝐹 with |𝛼| = 1,
(iii) 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝜌(𝑥) + 𝜌(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and all

𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. Further, the modular 𝜌 is
called convex if

(iv) 𝜌(𝛼𝑥+𝛽𝑦) ≤ 𝛼𝜌(𝑥)+𝛽𝜌(𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋 and
all 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1.

For any modular 𝜌 on 𝑋, the space

𝑋
𝜌
= {𝑥 ∈ 𝑋 : 𝜌 (𝜆𝑥) 󳨀→ 0 as 𝜆 󳨀→ 0

+

} (8)

is called the modular space.
A sequence (𝑥

𝑛
) of elements of 𝑋

𝜌
is called modular

convergent to 𝑥 ∈ 𝑋
𝜌
if there exists a 𝜆 > 0 such that

𝜌(𝜆(𝑥
𝑛
− 𝑥)) → 0 as 𝑛 → ∞. If 𝜌 is a convex modular, then

the following formula defines a norm on 𝑋
𝜌
which is called

the Luxemburg norm:

‖𝑥‖
𝐿
= inf {𝜆 > 0 : 𝜌 (

𝑥

𝜆
) ≤ 1} . (9)

A modular 𝜌 is said to satisfy the Δ
2
-condition (𝜌 ∈ Δ

2
)

if for any 𝜀 > 0 there exist constants 𝐾 ≥ 2 and 𝑎 > 0 such
that

𝜌 (2𝑥) ≤ 𝐾𝜌 (𝑥) + 𝜀, (10)

for all 𝑥 ∈ 𝑋
𝜌
with 𝜌(𝑥) ≤ 𝑎.

If 𝜌 satisfies the Δ
2
-condition for all 𝑎 > 0 with 𝐾 ≥

2 dependent on 𝑎, we say that 𝜌 satisfies the strong Δ
2
-

condition (𝜌 ∈ Δ
𝑠

2
).

Lemma 1. If 𝜌 ∈ Δ
𝑠

2
, then, for any 𝐿 > 0 and 𝜀 > 0, there exists

𝛿 > 0 such that
󵄨󵄨󵄨󵄨𝜌 (𝑢 + V) − 𝜌 (𝑢)

󵄨󵄨󵄨󵄨 < 𝜀 (11)

whenever 𝑢, V ∈ 𝑋
𝜌
with 𝜌(𝑢) ≤ 𝐿 and 𝜌(V) ≤ 𝛿.

Proof. See [20].
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Lemma 2. If 𝜌 ∈ Δ
𝑠

2
, then, for any 𝜀 > 0, there exists 𝛿 > 0

such that ‖𝑥‖ ≤ 1 − 𝛿 whenever 𝜌(𝑥) ≤ 1 − 𝜀.

See [21].

Lemma 3. If 𝜌 ∈ Δ
𝑠

2
, then for any (𝑥

𝑛
) ∈ 𝑋
𝜌

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0 ⇐⇒ 𝜌 (𝑥

𝑛
) 󳨀→ 0. (12)

See [20].

Lemma 4. If 𝜌 ∈ Δ
𝑠

2
, then for any 𝜀 > 0 there exists 𝛿 > 0 such

that ‖𝑥‖ ≥ 1 − 𝛿 whenever 𝜌(𝑥) ≥ 1 − 𝜀.

See [20].
In this paper, we will need the following inequalities in

the sequel:

󵄨󵄨󵄨󵄨𝑎𝑘 + 𝑏
𝑘

󵄨󵄨󵄨󵄨

𝑝

≤ 2
𝑝−1

(
󵄨󵄨󵄨󵄨𝑎𝑘

󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨

𝑝

) , (13)

for 𝑝 ≥ 1.
In [22], Polat et al. defined the matrix 𝑉 = (V

𝑛𝑘
) by

V
𝑛𝑘

=

{{

{{

{

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) , 𝑘 < 𝑛

𝑢
𝑛
V
𝑛
, 𝑘 = 𝑛

0, 𝑘 > 𝑛.

(14)

Here, for all 𝑛 ∈ N, 𝑢
𝑛

̸= 0, V
𝑛

̸= 0, and (𝑢
𝑛
) depend on 𝑛; (V

𝑘
)

depend on 𝑘.
Using this matrix, we define ℓ

Δ
(𝑢, V, 𝑝) sequence space as

follows:

ℓ
Δ
(𝑢, V, 𝑝) = {𝑥 = (𝑥

𝑛
) ∈ 𝑤 : (𝑦

𝑛
)

= (

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) 𝑥
𝑘
+ 𝑢
𝑛
V
𝑛
𝑥
𝑛
) ∈ ℓ (𝑝) ,

𝑛 ∈ N.} ,

(15)

where Δ𝑥
𝑘

= 𝑥
𝑘

− 𝑥
𝑘−1

is back difference, and ΔV
𝑘

=

V
𝑘

− V
𝑘+1

is forward difference. Throughout this study,
𝑝 = (𝑝

𝑘
) is a bounded sequence of positive real numbers;

𝐻 = sup𝑝
𝑟
and 𝑀 = max{1,𝐻}. We denote (𝑉𝑥)

𝑛
=

(∑
𝑛−1

𝑘=1
𝑢
𝑛
(V
𝑘
− V
𝑘+1

)𝑥
𝑘
+ 𝑢
𝑛
V
𝑛
𝑥
𝑛
)
𝑛
for short in proof.

Theorem5. Thesequence space ℓ
Δ
(𝑢, V, 𝑝) is a completemetric

space of nonabsolute type with respect to the paranorm defined
by

𝑔 (𝑥) = (∑

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) 𝑥
𝑘
+ 𝑢
𝑛
V
𝑛
𝑥
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

. (16)

Proof. The linearity of ℓ
Δ
(𝑢, V, 𝑝) with respect to the coordi-

natewise and scalar multiplication follows from the following
inequalities which are satisfied for 𝑥, 𝑦 ∈ ℓ

Δ
(𝑢, V, 𝑝):

(∑

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) (𝑥
𝑘
+ 𝑦
𝑘
) + 𝑢
𝑛
V
𝑛
(𝑥
𝑛
+ 𝑦
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

≤ (∑

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) 𝑥
𝑘
+ 𝑢
𝑛
V
𝑛
𝑥
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

+ (∑

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) 𝑦
𝑘
+ 𝑢
𝑛
V
𝑛
𝑦
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

,

(17)

and for any 𝛼 ∈ R

|𝛼|
𝑝
𝑘 ≤ max {1, |𝛼|

𝑀

} . (18)

It is clear that 𝑔(𝜃) = 0 and 𝑔(𝑥) = 𝑔(−𝑥) for all 𝑥 ∈

ℓ
Δ
(𝑢, V, 𝑝). From (17), it can be seen the subadditivity of 𝑔 and

𝑔(𝛼𝑥) ≤ max{1, |𝛼|𝑀}𝑔(𝑥).
Let (𝑥𝑚) be any sequence in ℓ

Δ
(𝑢, V, 𝑝) such that 𝑔(𝑥𝑚 −

𝑥) → 0 and (𝛼
𝑚
) are any sequence of scalars such that 𝛼

𝑚
→

𝛼. Then, since the inequality

𝑔 (𝑥
𝑚

) ≤ 𝑔 (𝑥) + 𝑔 (𝑥
𝑚

− 𝑥) (19)

holds, the subadditivity of𝑔, (𝑔(𝑥𝑚)), is bounded and thus we
have

𝑔 (𝛼
𝑚
𝑥
𝑚

− 𝛼𝑥)

= (∑

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑘=1

𝑢
𝑛
(V
𝑘
− V
𝑘+1

) (𝛼
𝑚
𝑥
𝑚

𝑘
− 𝛼𝑥
𝑘
)

+𝑢
𝑛
V
𝑛
(𝛼
𝑚
𝑥
𝑚

𝑛
− 𝛼𝑥
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

≤
󵄨󵄨󵄨󵄨𝛼𝑚 − 𝛼

󵄨󵄨󵄨󵄨

𝑝
𝑘
/𝑀

𝑔 (𝑥
𝑚

) + |𝛼|
𝑝
𝑘
/𝑀

𝑔 (𝑥
𝑚

− 𝑥) ,

(20)

which tends to zero as 𝑛 → ∞. Therefore, the scalar
multiplication is continuous. Hence, 𝑔 is a paranorm on the
space ℓ

Δ
(𝑢, V, 𝑝). It remains to prove the completeness of the

space ℓ
Δ
(𝑢, V, 𝑝). Let (𝑥𝑗) be anyCauchy sequence in the space

ℓ
Δ
(𝑢, V, 𝑝). Then, for a given 𝜀 > 0, there exists a positive

integer 𝑚
0
(𝜀) ∈ N such that 𝑔(𝑥

𝑖

− 𝑥
𝑗

) < 𝜀/2 for all 𝑖, 𝑗 ≥

𝑚
0
(𝜀). Using definition of 𝑔, we obtain for each fixed 𝑛 ∈ N

that

󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥
𝑖

)
𝑛

− (𝑉𝑥
𝑗

)
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘
/𝑀

≤ (∑

𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥
𝑖

)
𝑛

− (𝑉𝑥
𝑗

)
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

)

1/𝑀

<
𝜀

2
,

(21)

for every 𝑖, 𝑗 ≥ 𝑚
0
(𝜀) which leads us to the fact that

{(𝑉𝑥
0

)
𝑛
, (𝑉𝑥
1

)
𝑛
, . . .} is a Cauchy sequence of real num-

bers for every fixed 𝑛 ∈ N. Since R is complete,
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(𝑉𝑥
𝑖

)
𝑛

→ 𝑉(𝑥) as 𝑖 → ∞. Using these infinitely many
limits (𝑉𝑥)

0
, (𝑉𝑥)
1
, (𝑉𝑥)
2
, . . ., we may write the sequence

{(𝑉𝑥)
0
, (𝑉𝑥)
1
, . . .}.

For all 𝑗 ≥ 𝑚
0
(𝜀) and every fixed 𝑛 ∈ N

󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥
𝑗

)
𝑛

− (𝑉𝑥)
𝑛

󵄨󵄨󵄨󵄨󵄨
<

𝜀

2
. (22)

Now, we have to show 𝑥 ∈ ℓ
Δ
(𝑢, V, 𝑝). To do this, we have

󵄨󵄨󵄨󵄨(𝑉𝑥)𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑘

=
󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥)
𝑛
− (𝑉𝑥

𝑖

)
𝑛

+ (𝑉𝑥
𝑖

)
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

(∑

𝑛

󵄨󵄨󵄨󵄨(𝑉𝑥)𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑛

)

1/𝑀

≤ (∑

𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥)
𝑛
− (𝑉𝑥

𝑖

)
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑛

)

1/𝑀

+ (∑

𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑉𝑥
𝑖

)
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑛

)

1/𝑀

.

(23)

Hence, we get 𝑥 ∈ ℓ
Δ
(𝑢, V, 𝑝). As a result ℓ

Δ
(𝑢, V, 𝑝) is a

complete metric space.

We introduce a modular sequence space ℓ
𝜌Δ

(𝑢, V, 𝑝) by

ℓ
𝜌Δ

(𝑢, V, 𝑝)

=
{

{

{

𝑥 = (𝑥
𝑛
) ∈ 𝑤 :

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

< ∞.
}

}

}

.

(24)

The Luxemburg norm on the sequence space ℓ
𝜌Δ

(𝑢, V, 𝑝) is
defined as follows:

‖𝑥‖
𝐿
= inf {𝜆 > 0 : 𝜌 (

𝑥

𝜆
) ≤ 1}

for every 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝) .

(25)

Here, the modular defined by

𝜌 (𝑥) =

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

(26)

is a convex modular on ℓ
𝜌Δ

(𝑢, V, 𝑝).

3. Main Results

In this section, we will give some basic properties of the
modular 𝜌 on the space ℓ

𝜌Δ
(𝑢, V, 𝑝). Also, we will investigate

some relationships between the modular 𝜌 and the Luxem-
burg norm on ℓ

𝜌Δ
(𝑢, V, 𝑝). Finally, we study some geometric

properties on this space.
Let us start with some lemmas which will be used in

the proof of the theorems about geometric properties of this
space.

Lemma 6. The functional 𝜌 is a convex modular on
ℓ
𝜌Δ

(𝑢, V, 𝑝).

Proof. Let 𝑥, 𝑦 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝). It is obvious that

(i) 𝜌(𝑥) = 0 ⇔ 𝑥 = 0.
(ii) 𝜌(𝜆𝑥) = 𝜌(𝑥) for all scalar 𝜆 with |𝜆| = 1

𝜌 (𝜆𝑥) =

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝛼𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝛼𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

=

∞

∑

𝑘=1

|𝛼|
𝑝
𝑘(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

= 𝜌 (𝑥) .

(27)

(iii) For 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1, by the convexity of
𝑡 → |𝑡|

𝑝
𝑘 for every 𝑘 ∈ N, we have

𝜌 (𝜆𝑥 + 𝛽𝑦) =

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝛼𝑥𝑖 + 𝛽𝑦
𝑖

󵄨󵄨󵄨󵄨+ 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝛼𝑥𝑘+ 𝛽𝑦
𝑘

󵄨󵄨󵄨󵄨)

𝑝
𝑘

≤

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝛼𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝛼𝑥𝑘
󵄨󵄨󵄨󵄨

+

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝛽𝑦𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝛽𝑦𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

≤

∞

∑

𝑘=1

|𝛼|
𝑝
𝑘(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

+

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

𝑝
𝑘

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑦𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

≤ 𝛼𝜌 (𝑥) + 𝛽𝜌 (𝑦) .

(28)

For 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝), themodular 𝜌 on ℓ
𝜌Δ

(𝑢, V, 𝑝) satisfies the
following properties:

(i) if 0 < 𝑎 < 1, then 𝑎
𝑀

𝜌(𝑥/𝑎) ≤ 𝜌(𝑥) and 𝜌(𝑎𝑥) ≤

𝑎𝜌(𝑥),
(ii) if 𝑎 ≥ 1, then 𝜌(𝑥) ≤ 𝑎

𝑀

𝜌(𝑥/𝑎),
(iii) if 𝑎 ≥ 1, then 𝜌(𝑥) ≤ 𝑎𝜌(𝑥) ≤ 𝜌(𝑎𝑥).

Proof. It can be proved with standard techniques in a similar
way as in [23].

Lemma 7. For any 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝),

(i) if ‖𝑥‖ < 1, then 𝜌(𝑥) ≤ ‖𝑥‖,
(ii) if ‖𝑥‖ > 1, then 𝜌(𝑥) ≥ ‖𝑥‖,
(iii) ‖𝑥‖ = 1 ⇔ 𝜌(𝑥) = 1,
(iv) if ‖𝑥‖ < 1, then 𝜌(𝑥) < 1,
(v) if ‖𝑥‖ > 1, then 𝜌(𝑥) > 1.
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Proof. It can be proved with standard techniques in a similar
way as in [23].

Lemma 8. Let {𝑥
𝑛
} be a sequence in ℓ

𝜌Δ
(𝑢, V, 𝑝):

(i) if lim
𝑛→∞

‖𝑥
𝑛
‖ = 1, then lim

𝑛→∞
𝜌(𝑥
𝑛
) = 1,

(ii) if lim
𝑛→∞

𝜌(𝑥
𝑛
) = 0, then lim

𝑛→∞
‖𝑥
𝑛
‖ = 0.

Proof. It can be proved with standard techniques in a similar
way as in [23].

Lemma 9. For any 𝐿 > 0 and 𝜀 > 0, there exists 𝛿 > 0 such
that

󵄨󵄨󵄨󵄨𝜌 (𝑢 + V) − 𝜌 (𝑢)
󵄨󵄨󵄨󵄨 < 𝜀, (29)

whenever 𝑢, V ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝) with 𝜌(𝑢) ≤ 𝐿 and 𝜌(V) ≤ 𝛿.

Proof. Since 𝑝 = (𝑝
𝑘
) is bounded, it is easy to see that 𝜌 ∈ Δ

𝑠

2
.

Hence, the lemma is obtained directly from Lemma 1.

Lemma 10. For any sequence (𝑥
𝑛
) ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝),

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0 ⇐⇒ 𝜌 (𝑥

𝑛
) 󳨀→ 0. (30)

Proof. Since 𝜌 ∈ Δ
𝑠

2
, the lemma is obtained directly from

Lemma 3.

Lemma 11. For any 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝) and 𝜀 ∈ (0, 1), there exists
𝛿 ∈ (0, 1) such that 𝜌(𝑥) ≤ 1 − 𝜀 implies ‖𝑥‖ ≤ 1 − 𝛿.

Proof. Since 𝜌 ∈ Δ
𝑠

2
, the lemma is obtained directly from

Lemma 2.

Now we will show that the ℓ
𝜌Δ

(𝑢, V, 𝑝) is a Banach space
with respect to the Luxemburg norm

Theorem 12. The space ℓ
𝜌Δ

(𝑢, V, 𝑝) is a Banach space with
respect to the Luxemburg norm defined by

‖𝑥‖ = inf {𝜆 > 0 : 𝜌 (
𝑥

𝜆
) ≤ 1} . (31)

Proof. We will show that every Cauchy sequence in
ℓ
𝜌Δ

(𝑢, V, 𝑝) is convergent according to the Luxemburg norm.
Let (𝑥

𝑛

𝑘
) be a Cauchy sequence ℓ

𝜌Δ
(𝑢, V, 𝑝) and 𝜀 ∈ (0, 1).

Thus, there exists 𝑛
0
(𝜀) such that ‖𝑥

𝑛

− 𝑥
𝑚

‖ < 𝜀 for all
𝑚, 𝑛 ≥ 𝑛

0
. By the Lemma 8(i), we obtain

𝜌 (𝑥
𝑛

− 𝑥
𝑚

) <
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
𝑚󵄩󵄩󵄩󵄩 < 𝜀, (32)

for all 𝑚, 𝑛 ≥ 𝑛
0
(𝜀); that is,

∞

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)− 𝑥
𝑚

(𝑖)
󵄨󵄨󵄨󵄨+ 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘) − 𝑥
𝑚

(𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

< 𝜀.

(33)

For fixed 𝑘 we get that
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖) − 𝑥

𝑚
(𝑖)

󵄨󵄨󵄨󵄨 < 𝜀. (34)

Hence, we obtain that the sequence (𝑥
𝑛
(𝑖)) is a Cauchy

sequence inR. Since the real numberR is complete, 𝑥
𝑚
(𝑖) →

𝑥(𝑖) as 𝑚 → ∞. Therefore, for fixed 𝑘 and

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖) − 𝑥 (𝑖)
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘) − 𝑥 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

< 𝜀 ∀𝑛 ≥ 𝑛
0
(𝜀) .

(35)

So, we obtain that for all 𝑛 ≥ n
0
(𝜀) and as 𝑚 goes to infinity

𝜌 (𝑥
𝑛
− 𝑥
𝑚
) 󳨀→ 𝜌 (𝑥

𝑛
− 𝑥) . (36)

So, for all 𝑛 ≥ 𝑛
0
(𝜀) from Lemma 8(i),

𝜌 (𝑥
𝑛
− 𝑥) <

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < 𝜀. (37)

It can be seen that, for all 𝑛 ≥ 𝑛
0
, 𝑥
𝑛

→ 𝑥 and (𝑥
𝑛
− 𝑥) ∈

ℓ
𝜌Δ

(𝑢, V, 𝑝).
From the linearity of the sequence space ℓ

𝜌Δ
(𝑢, V, 𝑝), we

can write that

𝑥 = 𝑥
𝑛
− (𝑥
𝑛
− 𝑥) ∈ ℓ

𝜌Δ
(𝑢, V, 𝑝) . (38)

Hence, the sequence space ℓ
𝜌Δ

(𝑢, V, 𝑝) is a Banach space with
respect to the Luxemburg norm. This completes the proof of
the theorem.

Lemma 13. Let 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝) and {𝑥
𝑛
} ⊆ ℓ

𝜌Δ
(𝑢, V, 𝑝). If

𝜌(𝑥
𝑛
) → 𝜌(𝑥) as 𝑛 → ∞ and 𝑥

𝑛
(𝑖) → 𝑥(𝑖) as 𝑛 → ∞ for

all 𝑖 ∈ N, then 𝑥
𝑛

→ 𝑥 as 𝑛 → ∞.

Now, we shall give the main theorems of this paper
involving the geometric properties of the space ℓ

𝜌Δ
(𝑢, V, 𝑝).

Theorem 14. The space ℓ
𝜌Δ

(𝑢, V, 𝑝) has the Kadec-Klee prop-
erty.

Proof. Let 𝑥 ∈ 𝑆(ℓ
𝜌Δ

(𝑢, V, 𝑝)) and 𝑥
𝑛
(𝑖) ⊆ ℓ

𝜌Δ
(𝑢, V, 𝑝) such

that ‖𝑥
𝑛
(𝑖)‖ → 1 and 𝑥

𝑛
(𝑖)
𝑤

󳨀→ 𝑥(𝑖) as 𝑛 → ∞. From
Lemma 8(iii), we get 𝜌(𝑥) = 1. So, from Lemma 9(i), it
follows that 𝜌(𝑥

𝑛
) → 𝜌(𝑥) as 𝑛 → ∞. Since mapping

𝜋
𝑖
: ℓ
𝜌Δ

(𝑢, V, 𝑝) → R defined by 𝜋
𝑖
(𝑦) = 𝑦

𝑖
is a continuous

linear functional on ℓ
𝜌Δ

(𝑢, V, 𝑝). It follows that 𝑥
𝑛
(𝑖) → 𝑥(𝑖)

as 𝑛 → ∞ for all 𝑖 ∈ N. So from Lemma 13, 𝑥
𝑛

→ 𝑥 as
𝑛 → ∞.

Theorem 15. The space ℓ
𝜌Δ

(𝑢, V, 𝑝) is 𝑘-NUC for any integer
𝑘 ≥ 2 where 1 < 𝑝 < ∞.

Proof. Let 𝜀 > 0 and {𝑥
𝑛
} ⊆ 𝐵(ℓ

𝜌Δ
(𝑢, V, 𝑝)) with sep(𝑥

𝑛
) ≥ 𝜀.

For each 𝑚 ∈ N let

𝑥
𝑚

𝑛
= (0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

, 𝑥
𝑛
(𝑚) , 𝑥

𝑛
(𝑚 + 1) , . . .) , (39)

since for each 𝑖 ∈ N(𝑥
𝑛
(𝑖))
∞

𝑛=1
is bounded; by using the

diagonal method, we have that, for each 𝑚 ∈ N, we can find
that a subsequence (𝑥

𝑛
𝑗

) of (𝑥
𝑛
) such that (𝑥

𝑛
𝑗

) converges for
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each 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚. Therefore, there exists an increasing
sequence of positive integer (𝑡

𝑚
) such that sep((𝑥𝑚

𝑛
𝑗

)
𝑗>𝑡
𝑚

) ≥ 𝜀.
Hence, there is a sequence of positive integer (𝑟

𝑚
)
∞

𝑚=1
with

𝑟
1
< 𝑟
2
< 𝑟
3
< ⋅ ⋅ ⋅ such that ‖𝑥𝑚

𝑟
𝑚

‖ ≥ 𝜀/2 for all 𝑚 ∈ N. Then,
by Lemma 11, wemay assume that there exists 𝜇 > 0 such that

𝜌 (𝑥
𝑚

𝑟
𝑚

) ≥ 𝜇 ∀𝑚 ∈ N. (40)

Let𝛼 > 0 and 1 < 𝛼 < lim
𝑛→∞

inf 𝑝
𝑛
. For fixed integer 𝑘 ≥ 2,

let 𝜀
1
= ((𝑘
𝛼−1

−1)/(𝑘−1)𝑘
𝛼

)(𝜇/2).Then, by Lemma 10, there
is a 𝛿 > 0 such that

󵄨󵄨󵄨󵄨𝜌 (𝑢 + V) − 𝜌 (𝑢)
󵄨󵄨󵄨󵄨 < 𝜀
1
, (41)

whenever 𝜌(𝑢) ≤ 1 and 𝜌(V) ≤ 𝛿.
Since, by Lemma 8(i), 𝜌(𝑥

𝑛
) ≤ 1 for all 𝑛 ∈ N, there exist

positive integers𝑚
𝑖
(𝑖 = 1, 2, . . . , 𝑘 − 1) with𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ <

𝑚
𝑘−1

such that 𝜌(𝑥𝑚𝑖
𝑖

) ≤ 𝛿 and 𝛼 ≤ 𝑝
𝑗
for all 𝑗 ≥ 𝑚

𝑘−1
. Define

𝑚
𝑘
= 𝑚
𝑘−1

+ 1. From (40), we have 𝜌(𝑥
𝑚
𝑘

𝑟
𝑚
𝑘

) ≥ 𝜇. Let 𝑠
𝑖
= 𝑖 for

1 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑠
𝑘
= 𝑟
𝑚
𝑘

. Then, in virtue of (40), (41), and
convexity of function 𝑓

𝑖
(𝑢) = |𝑢|

𝑝
𝑖 (𝑖 ∈ N), we have

𝜌(

𝑥
𝑠
1

+ 𝑥
𝑠
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑠
𝑘

𝑘
)

=

∞

∑

𝑛=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑖) + 𝑥

𝑠
2
(𝑖) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑛) + 𝑥

𝑠
2
(𝑛) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

=

𝑚
1

∑

𝑛=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑖) + 𝑥

𝑠
2
(𝑖) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑛) + 𝑥

𝑠
2
(𝑛) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

+

∞

∑

𝑛=𝑚
1
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑖) + 𝑥

𝑠
2
(𝑖) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
1
(𝑛) + 𝑥

𝑠
2
(𝑛) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

≤

𝑚
1

∑

𝑛=1

1

𝑘

𝑘

∑

𝑗=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

∞

∑

𝑛=𝑚
1
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
2
(𝑖) + 𝑥

𝑠
3
(𝑖) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
2
(𝑛) + 𝑥

𝑠
3
(𝑛) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

+ 𝜀
1

=

𝑚
1

∑

𝑛=1

1

𝑘

𝑘

∑

𝑗=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

𝑚
2

∑

𝑛=𝑚
1
+1

1

𝑘

𝑘

∑

𝑗=2

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

∞

∑

𝑛=𝑚
2
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
3
(𝑖) + 𝑥

𝑠
4
(𝑖) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
3
(𝑛) + 𝑥

𝑠
4
(𝑛) + ⋅ ⋅ ⋅ + 𝑥

𝑠
𝑘
(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

+ 2𝜀
1

≤

𝑚
1

∑

𝑛=1

1

𝑘

𝑘

∑

𝑗=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

𝑚
2

∑

𝑛=𝑚
1
+1

1

𝑘

𝑘

∑

𝑗=2

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

𝑚
3

∑

𝑛=𝑚
2
+1

1

𝑘

𝑘

∑

𝑗=3

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+ ⋅ ⋅ ⋅

+

𝑚
𝑘−1

∑

𝑛=𝑚
𝑘−2
+1

1

𝑘

𝑘

∑

𝑗=𝑘−1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

∞

∑

𝑛=𝑚
𝑘−1
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
𝑘
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

+ (𝑘 − 1) 𝜀
1

≤

𝜌 (𝑥
𝑠
1

) + 𝜌 (𝑥
𝑠
2

) + ⋅ ⋅ ⋅ + 𝜌 (𝑥
𝑠
𝑘

)

𝑘

+
1

𝑘

𝑚
𝑘

∑

𝑛=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+

∞

∑

𝑛=𝑚
𝑘−1
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
𝑘
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑠
𝑘
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑛

+ (𝑘 − 1) 𝜀
1

≤
𝑘 − 1

𝑘
+

1

𝑘

𝑚
𝑘

∑

𝑛=1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+
1

𝑘𝛼

∞

∑

𝑛=𝑚
𝑘
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+ (𝑘 − 1) 𝜀
1
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≤ 1 −
1

𝑘
+

1

𝑘

× [1 −

∞

∑

𝑛=𝑚
𝑘
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

]

+
1

𝑘𝛼

∞

∑

𝑛=𝑚
𝑘
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+ (𝑘 − 1) 𝜀
1

= 1 −
𝑘
𝛼

− 1

𝑘𝛼

∞

∑

𝑛=𝑚
𝑘
+1

(

𝑛−1

∑

𝑖=1

𝑢
𝑛
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑢
𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑠
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑝
𝑛

+ (𝑘 − 1) 𝜀
1

≤ 1 + (𝑘 − 1) 𝜀
1
−

𝑘
𝛼−1

− 1

𝑘𝛼
𝜇 = 1 −

𝑘
𝛼−1

− 1

𝑘𝛼

𝜇

2
.

(42)

By Lemma 13, there exists 𝛾 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑠
1

+ 𝑥
𝑠
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑠
𝑘

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 1 − 𝛾. (43)

Therefore, ℓ
𝜌Δ

(𝑢, V, 𝑝) is 𝑘-NUC.

Theorem 16. For any 1 < 𝑝 < ∞, the space ℓ
𝜌Δ

(𝑢, V, 𝑝) has
the uniform Opial property.

Proof. Take any 𝜀 > 0 and 𝑥 ∈ ℓ
𝜌Δ

(𝑢, V, 𝑝) with ‖𝑥‖ ≥

𝜀. Let (𝑥
𝑛
) be weakly null sequence in 𝑆(ℓ

𝜌Δ
(𝑢, V, 𝑝)). By

lim
𝑛→∞

sup𝑝
𝑟
< ∞, that is, 𝜌 ∈ 𝛿

𝑠

2
by Lemma 13, there exists

𝛿 ∈ (0, 1) independent of 𝑥 such that 𝜌(𝑥) > 𝛿. Also by 𝜌 ∈ 𝛿
𝑠

2

and Lemma 10 asserts that there exists 𝛿
1
∈ (𝛿, 1) such that

󵄨󵄨󵄨󵄨𝜌 (𝑦 + 𝑧) − 𝜌 (𝑦)
󵄨󵄨󵄨󵄨 <

𝛿

4
, (44)

whenever 𝜌(𝑦) ≤ 1 and 𝜌(𝑧) ≤ 𝛿
1
.

Choose 𝑘
0
∈ N such that

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

<
𝛿
1

4
(45)

so, we have

𝛿 <

𝑘
0

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

+

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

≤

𝑘
0

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

+
𝛿
1

4

(46)

which implies that

𝑘
0

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝑝
𝑘

> 𝛿 −
𝛿
1

4

> 𝛿 −
𝛿

4

=
3𝛿

4
.

(47)

Since 𝑥
𝑛

𝑤

󳨀→ 0, then there exists 𝑛
0
∈ N such that

3𝛿

4
≤

𝑘
0

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖) + 𝑥 (𝑖)
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘) + 𝑥 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

,

(48)

for all 𝑛 > 𝑛
0
, since weak convergence implies coordinatewise

convergence. We denote

𝑥
𝑛|𝑘
0

= (𝑥
𝑛
(1) , 𝑥

𝑛
(2) , . . . , 𝑥

𝑛
(𝑘
0
) , 0, 0 . . .)

𝑥
𝑛|N−𝑘

0

= (0, 0 . . . , 0, 𝑥
𝑛
(𝑘
0
+ 1) , 𝑥

𝑛
(𝑘
0
+ 2) , . . .) .

(49)

Again 𝑥
𝑛

𝑤

󳨀→ 0, and then there exists 𝑛
1
∈ N such that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛|𝑘
0

󵄩󵄩󵄩󵄩󵄩
< 1 − (1 −

𝛿

4
)

𝑀

, (50)

for all 𝑛 > 𝑛
1
.

Hence, by the triangle inequality of the norm, we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛|N−𝑘

0

󵄩󵄩󵄩󵄩󵄩
> (1 −

𝛿

4
)

𝑀

. (51)

It follows by the definition of norm that we have

1 < 𝜌(

𝑥
𝑛|N−𝑘

0

(1 − 𝛿/4)
𝑀

)

=

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛
(𝑖)

(1 − 𝛿/4)
𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛
(𝑘)

(1 − 𝛿/4)
𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
𝑘

≤
1

(1 − 𝛿/4)
𝑀

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

,

(52)

which implies that

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

> (1 −
𝛿

4
)

𝑀
2

,

(53)

for all 𝑛 > 𝑛
1
.
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By inequalities (44), (45), and (48), (53) yields for any 𝑛 >

𝑛
1
that

𝜌 (𝑥
𝑛
+ 𝑥)

=

𝑘
0

∑

𝑘=1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)+𝑥 (𝑖)
󵄨󵄨󵄨󵄨+𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘)+𝑥 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

+

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)+𝑥 (𝑖)
󵄨󵄨󵄨󵄨+𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘)+𝑥 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

≥
3𝛿

4
+

∞

∑

𝑘=𝑘
0
+1

(

𝑘−1

∑

𝑖=1

𝑢
𝑘
ΔV
𝑖

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑖)
󵄨󵄨󵄨󵄨 + 𝑢
𝑘
V
𝑘

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑘)
󵄨󵄨󵄨󵄨)

𝑝
𝑘

≥
3𝛿

4
+ (1 −

𝛿

4
)

𝑀
2

−
𝛿

4
.

(54)

Since 𝜌 ∈ 𝛿
𝑠

2
and by Lemma 4, there exists 𝜏 depending on 𝛿

only such that ‖𝑥
𝑛
+ 𝑥‖ ≥ 1 + 𝜏, which implies that

lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑥
󵄩󵄩󵄩󵄩 ≥ 1 + 𝜏. (55)

Therefore, ℓ
𝜌Δ

(𝑢, V, 𝑝) has the uniform Opial property.
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