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The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering
and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the
variational iterationmethod, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional
and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and
reliability of this method. The solutions of these examples are contingent only on the initial conditions.

1. Introduction

Nonlinear equations are of great importance to our contem-
porary world. Nonlinear phenomena have important appli-
cations in applied mathematics, physics, and issues related to
engineering. Despite the importance of obtaining the exact
solution of nonlinear partial differential equations in physics
and applied mathematics, there is still the daunting problem
of finding newmethods to discover new exact or approximate
solutions.

In the recent years, many authors have devoted their
attention to study solutions of nonlinear partial differential
equations using various methods. Among these attempts
are the Adomian decomposition method, homotopy pertur-
bation method, variational iteration method [1–5], Laplace
variational iteration method [6–8], differential transform
method, and projected differential transform method.

Many analytical and numerical methods have been pro-
posed to obtain solutions for nonlinear PDEs with fractional
derivatives, such as local fractional variational iterationmeth-
od [9], local fractional Fourier method, Yang-Fourier trans-
form, and Yang-Laplace transform. Two Laplace variational
iteration methods are currently suggested by Wu in [10–13].

In this work, we will use the new method termed He’s
Laplace variational iteration method, and it will be employed
in a straightforward manner.

Also, the main result of this paper is to introduce an
alternative Laplace correction functional and express the
integral as a convolution. This approach can tackle functions
with discontinuities and impulse functions effectively.

2. New Laplace Variational Iteration Method

To illustrate the idea of new Laplace variational iteration
method, we consider the following general differential equa-
tions in physics:

𝐿 [𝑢 (𝑥, 𝑡)] + 𝑁 [𝑢 (𝑥, 𝑡)] = ℎ (𝑥, 𝑡) , (1)

where 𝐿 is a linear partial differential operator given by
𝜕
2
/𝜕𝑡
2, 𝑁 is nonlinear operator, and ℎ(𝑥, 𝑡) is a known

analytical function.
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According to the variational iteration method, we can
construct a correction function for (1) as follows:
𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡)

+ ∫

𝑡

0

𝜆 (𝑥, 𝜍) [𝐿𝑢
𝑛
(𝑥, 𝜍) + 𝑁𝑢̃

𝑛
(𝑥, 𝜍) − ℎ (𝑥, 𝜍)] 𝑑𝜍,

𝑛 ≥ 0,

(2)
where 𝜆 is a general Lagrange multiplier, which can be
identified optimally via the variational theory, the subscripts
𝑛 denote the 𝑛th approximation, and𝑁𝑢̃

𝑛
(𝑥, 𝜍) is considered

as a restricted variation, that is, 𝛿𝑁𝑢̃
𝑛
(𝑥, 𝜍) = 0.

Also we can find the Lagrange multipliers easily by using
integration by parts of (1), but in this paper, the Lagrange
multipliers are found to be of the form 𝜆 = 𝜆(𝑥, 𝑡 − 𝜍), and in
such a case, the integration is basically the single convolution
with respect to 𝑡, and hence Laplace transform is appropriate
to use.

Take Laplace transform of (2); then, the correction
functional will be constructed in the form
ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [∫

𝑡

0

𝜆 (𝑥, 𝜍) [𝐿𝑢
𝑛
(𝑥, 𝜍) + 𝑁𝑢̃

𝑛
(𝑥, 𝜍) − ℎ (𝑥, 𝜍)] 𝑑𝜍] ,

𝑛 ≥ 0;

(3)
therefore,
ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡) ∗ [𝐿𝑢
𝑛
(𝑥, 𝑡) + 𝑁𝑢̃

𝑛
(𝑥, 𝑡) − ℎ (𝑥, 𝑡)]]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡)] ℓ [𝐿𝑢
𝑛
(𝑥, 𝑡) + 𝑁𝑢̃

𝑛
(𝑥, 𝑡) − ℎ (𝑥, 𝑡)] ,

(4)
where ∗ is a single convolution with respect to 𝑡.

To find the optimal value of 𝜆(𝑥, 𝑡 − 𝜍), we first take the
variation with respect to 𝑢

𝑛
(𝑥, 𝑡). Thus,

𝛿

𝛿𝑢
𝑛

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

=
𝛿

𝛿𝑢
𝑛

ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+
𝛿

𝛿𝑢
𝑛

ℓ [𝜆 (𝑥, 𝑡)] ℓ [𝐿𝑢
𝑛
(𝑥, 𝑡) + 𝑁𝑢̃

𝑛
(𝑥, 𝑡) − ℎ (𝑥, 𝑡)] ;

(5)
then (5) becomes
ℓ [𝛿𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] + 𝛿ℓ [𝜆 (𝑥, 𝑡)] ℓ [𝐿𝑢

𝑛
(𝑥, 𝑡)] .

(6)

In this paper, we assume that 𝐿 is a linear partial differential
operator given by 𝜕2/𝜕𝑡2; then, (6) can be written in the form

ℓ [𝛿𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)] [𝑠

2
ℓ𝛿𝑢
𝑛
(𝑥, 𝑡)] .

(7)

The extreme condition of 𝑢
𝑛+1

(𝑥, 𝑡) requires that 𝛿𝑢
𝑛+1

(𝑥, 𝑡) =

0. This means that the right hand side of (7) should be set to
zero; then, we have the following condition:

ℓ [𝜆 (𝑥, 𝑡)] =
−1

𝑠2
󳨐⇒ 𝜆 (𝑥, 𝑡) = −𝑡; (8)

then, we have the following iteration formula:

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

− ℓ [∫

𝑡

0

(𝑡 − 𝜍) [𝐿𝑢
𝑛
(𝑥, 𝜍) + 𝑁𝑢̃

𝑛
(𝑥, 𝜍) − ℎ (𝑥, 𝜍)] 𝑑𝜍] ,

𝑛 ≥ 0.

(9)

3. Applications

In this section, we apply the Laplace variational iteration
method for solving some linear and nonlinear partial differ-
ential equations in physics.

Example 1. Consider the initial linear partial differential
equation:

𝑢
𝑡𝑡
(𝑥, 𝑡) − 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) = 0,

𝑢 (𝑥, 0) = 0,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥.

(10)

The Laplace variational iteration correction functional will be
constructed in the following manner:

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [∫

𝑡

0

𝜆 (𝑥, 𝑡 − 𝜍)

× [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝜍) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝜍) + 𝑢
𝑛
(𝑥, 𝜍)] 𝑑𝜍] ,

(11)

or

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡) ∗ [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
𝑛
(𝑥, 𝑡)]]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡)] ℓ [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
𝑛
(𝑥, 𝑡)]
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= ℓ [𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)]

× [𝑠
2
ℓ𝑢
𝑛
(𝑥, 𝑡) − 𝑠𝑢

𝑛
(𝑥, 0) −

𝜕𝑢
𝑛

𝜕𝑡
(𝑥, 0)

− ℓ(𝑢
𝑛
)
𝑥𝑥

(𝑥, 𝑡) + ℓ𝑢
𝑛
(𝑥, 𝑡) ] .

(12)
Take the variation with respect to 𝑢

𝑛
(𝑥, 𝑡) of (12) to obtain

𝛿

𝛿𝑢
𝑛

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

=
𝛿

𝛿𝑢
𝑛

ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+
𝛿

𝛿𝑢
𝑛

ℓ [𝜆 (𝑥, 𝑡)]

× [𝑠
2
ℓ𝑢
𝑛
(𝑥, 𝑡) − 𝑠𝑢

𝑛
(𝑥, 0) −

𝜕𝑢
𝑛

𝜕𝑡
(𝑥, 0)

− ℓ(𝑢
𝑛
)
𝑥𝑥

(𝑥, 𝑡) + ℓ𝑢
𝑛
(𝑥, 𝑡) ] ;

(13)

then we have
ℓ [𝛿𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡)] [𝑠
2
ℓ𝑢
𝑛
(𝑥, 𝑡) + ℓ𝑢

𝑛
(𝑥, 𝑡)]

= ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)]

× {1 + ℓ [𝜆 (𝑥, 𝑡)] (𝑠
2
+ 1)} .

(14)
The extreme condition of 𝑢

𝑛+1
(𝑥, 𝑡) requires that

𝛿𝑢
𝑛+1

(𝑥, 𝑡) = 0. Hence, we have

1 + (𝑠
2
+ 1) ℓ𝜆 (𝑥, 𝑡) = 0,

𝜆 (𝑥, 𝑡) = ℓ
−1

[
−1

𝑠2 + 1
] = − sin 𝑡.

(15)

Substituting (15) into (11), we obtain
ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

− ℓ [∫

𝑡

0

sin (𝑡 − 𝜍)

× [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝜍) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝜍) + 𝑢
𝑛
(𝑥, 𝜍)] 𝑑𝜍]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

− ℓ [sin 𝑡] ℓ [(𝑢𝑛)𝑡𝑡 (
𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
𝑛
(𝑥, 𝑡)] .

(16)
Let 𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑡(𝜕𝑢/𝜕𝑡)(𝑥, 0) = 𝑥𝑡; then, from (16),

we have

ℓ [𝑢
1
(𝑥, 𝑡)] = ℓ [𝑥𝑡] − ℓ [sin 𝑡] ℓ [𝑥𝑡] =

𝑥

𝑠2
−

𝑥

𝑠2 (𝑠2 + 1)
.

(17)

The inverse Laplace transforms yields

𝑢
1
(𝑥, 𝑡) = 𝑥 sin 𝑡. (18)

Substituting (18) into (11), we obtain

ℓ [𝑢
2
(𝑥, 𝑡)] = ℓ [𝑥 sin 𝑡]

− ℓ [sin 𝑡] ℓ [0] ; then 𝑢
2
(𝑥, 𝑡) = 𝑥 sin 𝑡;

(19)

then, the exact solution of (10) is

𝑢 (𝑥, 𝑡) = 𝑥 sin 𝑡. (20)

We see that the exact solution is coming very fast by using
only few terms of the iterative scheme.

Example 2. Consider the nonlinear partial differential equa-
tion:

𝑢
𝑡𝑡
(𝑥, 𝑡) − 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) = 𝑥

2
𝑡
2
,

𝑢 (𝑥, 0) = 0,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥.

(21)

The Laplace variational iteration correction functional will be
constructed as follows:

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [∫

𝑡

0

𝜆 (𝑥, 𝑡 − 𝜍) [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝜍) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝜍)

+ 𝑢
2

𝑛
(𝑥, 𝜍) − 𝑥

2
𝑡
2
] 𝑑𝜍]

(22)

or

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡)

∗ [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
2

𝑛
(𝑥, 𝑡) − 𝑥

2
𝑡
2
]]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡)]

× ℓ [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
2

𝑛
(𝑥, 𝑡) − 𝑥

2
𝑡
2
]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)]

× [𝑠
2
ℓ𝑢
𝑛
(𝑥, 𝑡) − 𝑠𝑢

𝑛
(𝑥, 0) −

𝜕𝑢
𝑛

𝜕𝑡
(𝑥, 0) − ℓ(𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡)

+ ℓ𝑢
2

𝑛
(𝑥, 𝑡) − ℓ (𝑥

2
𝑡
2
) ] .

(23)
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Take the variation with respect to 𝑢
𝑛
(𝑥, 𝑡) of (23) and make

the correction functional stationary to obtain

ℓ [𝛿𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)] [𝑠

2
ℓ𝛿𝑢
𝑛
(𝑥, 𝑡)]

= ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] {1 + 𝑠

2
ℓ [𝜆 (𝑥, 𝑡)]} .

(24)

This implies that

1 + 𝑠
2
ℓ𝜆 (𝑥, 𝑡) = 0, 𝜆 (𝑥, 𝑡) = ℓ

−1
[
−1

𝑠2
] = −𝑡. (25)

Substituting (25) into (22), we obtain

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝑢
𝑛
(𝑥, 𝑡)]

− ℓ [∫

𝑡

0

(𝑡 − 𝜍) [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝜍) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝜍)

+ 𝑢
2

𝑛
(𝑥, 𝜍) − 𝑥

2
𝜍
2
] 𝑑𝜍]

(26)
or

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)] + ℓ [−𝑡]

× ℓ [(𝑢
𝑛
)
𝑡𝑡
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥

(𝑥, 𝑡) + 𝑢
2

𝑛
(𝑥, 𝑡) − 𝑥

2
𝑡
2
] .

(27)

Let 𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑡(𝜕𝑢/𝜕𝑡)(𝑥, 0) = 𝑥𝑡; then, from (27),

we have

ℓ [𝑢
1
(𝑥, 𝑡)] = ℓ [𝑥𝑡] + ℓ [−𝑡] ℓ [0 − 0 + 𝑥

2
𝑡
2
− 𝑥
2
𝑡
2
]

𝑢
1
(𝑥, 𝑡) = 𝑥𝑡;

(28)

then, the exact solution of (21) is

𝑢 (𝑥, 𝑡) = 𝑥𝑡. (29)

Again the exact solution is coming very fast by using only few
terms of the iterative scheme.

Example 3. Consider the physics nonlinear boundary value
problem

𝑢
𝑡
− 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, 𝑢 (𝑥, 0) =
6

𝑥2
, 𝑥 ̸= 0. (30)

The Laplace variational iteration correction functional is as
follows:
ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [∫

𝑡

0

𝜆 (𝑥, 𝑡 − 𝜍) [(𝑢
𝑛
)
𝑡
(𝑥, 𝜍) − 6𝑢

𝑛
(𝑥, 𝜍) (𝑢

𝑛
)
𝑥
(𝑥, 𝜍)

+ (𝑢
𝑛
)
𝑥𝑥𝑥

(𝑥, 𝜍)] 𝑑𝜍]

(31)

or
ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [𝜆 (𝑥, 𝑡) ∗ [(𝑢
𝑛
)
𝑡
(𝑥, 𝑡) − 6 (𝑢

𝑛
) (𝑥, 𝑡) (𝑢

𝑛
)
𝑥
(𝑥, 𝑡)

+(𝑢
𝑛
)
𝑥𝑥𝑥

(𝑥, 𝑡)] ]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)]

×ℓ[(𝑢
𝑛
)
𝑡
(𝑥, 𝑡) − 6 (𝑢

𝑛
) (𝑥, 𝑡) (𝑢

𝑛
)
𝑥
(𝑥, 𝑡) + (𝑢

𝑛
)
𝑥𝑥𝑥

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)]

× [𝑠ℓ𝑢
𝑛
(𝑥, 𝑡) − 𝑢

𝑛
(𝑥, 0)

− ℓ [6 (𝑢
𝑛
) (𝑥, 𝑡) (𝑢

𝑛
)
𝑥
(𝑥, 𝑡) − (𝑢

𝑛
)
𝑥𝑥𝑥

(𝑥, 𝑡)]] .

(32)

Take the variation with respect to 𝑢
𝑛
(𝑥, 𝑡) of the last equation

and make the correction functional stationary to obtain

ℓ [𝛿𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] + ℓ [𝜆 (𝑥, 𝑡)] [𝑠ℓ𝛿𝑢

𝑛
(𝑥, 𝑡)]

= ℓ [𝛿𝑢
𝑛
(𝑥, 𝑡)] {1 + 𝑠ℓ [𝜆 (𝑥, 𝑡)]} ;

(33)

this implies that

1 + 𝑠ℓ𝜆 (𝑥, 𝑡) = 0, 𝜆 (𝑥, 𝑡) = ℓ
−1

[
−1

𝑠
] = −1. (34)

Substituting (34) into (31), we obtain

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)] = ℓ [𝑢
𝑛
(𝑥, 𝑡)]

+ ℓ [∫

𝑡

0

(−1) [(𝑢
𝑛
)
𝑡
(𝑥, 𝜍)

− 6 (𝑢
𝑛
) (𝑥, 𝜍) (𝑢

𝑛
)
𝑥
(𝑥, 𝜍)

+(𝑢
𝑛
)
𝑥𝑥𝑥

(𝑥, 𝜍)] 𝑑𝜍]

(35)
or

ℓ [𝑢
𝑛+1

(𝑥, 𝑡)]

= ℓ [𝑢
𝑛
] + ℓ [−1] ℓ [(𝑢𝑛)𝑡

− (𝑢
𝑛
) (𝑢
𝑛
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥

] .

(36)

Let 𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) = 6/𝑥

2; then, from (36), we have

ℓ [𝑢
1
(𝑥, 𝑡)] = ℓ [

6

𝑥2
] + ℓ [−1] ℓ [

288

𝑥5
] =

6

𝑥2
−

288

𝑥5
𝑡;

𝑢
2
(𝑥, 𝑡) =

6

𝑥2
−

288

𝑥5
𝑡 −

6048

𝑥8
𝑡
2
, . . .

(37)

and then, the exact solution of (30) is

𝑢 (𝑥, 𝑡) =

6𝑥 (𝑥
3
− 24𝑡)

(𝑥3 − 12𝑡)
2

. (38)
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4. Conclusion

Themethod of combining Laplace transforms and variational
iteration method is proposed for the solution of linear
and nonlinear partial differential equations. This method is
applied in a direct waywithout employing linearization and is
successfully implemented by using the initial conditions and
convolution integral.
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