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For an arbitrary n positive integer, we investigate the existence of n-tuplet coincidence points in intuitionistic fuzzy normed space.
Results of the paper are more general than those of the coupled and the tripled fixed point works in intuitionistic fuzzy normed
space.

1. Introduction

One of the most important fields in mathematics is the
fixed point theory. This theory is used to solve a variety
of problems in many areas such as economics, chemistry,
computer science, and engineering as well as many branches
of mathematics. One of the main theorems in the fixed point
theory is the Banach contraction theorem [1]. This theorem
states that contraction map in complete metric space has a
unique fixed point. Many authors studied the generalization
of the Banach contraction theorem. Generalization on the
complete partial ordered metric space was given by Ran
and Reurings [2] with a weaker condition. In their theo-
rem, contraction condition is provided only for comparable
elements with respect to partial order relation in complete
metric space. Some fixed point theorems have been obtained
bymany authors based on [2]. Bhaskar and Lakshmikantham
[3] defined the concept of coupled fixed point and used a
theorem associated with it for existence and uniqueness of
solution of the periodic boundary value problem. Later on,
Lakshmikantham and Ćirić [4] introduced the concept of
coincidence point which is a generalization of fixed point.
By inspiring these works, coupled fixed point theorems have
been studied for different type contraction mappings (see

[5–12]). The interest on coupled fixed point theorem has
motivated the authors to generalize it as tripled fixed point
theorem in [13, 14], afterwards as quadruple fixed point
theorem in [15–17], and as 𝑛-tuplet fixed point theorem in
[18–21].

On the other hand, fuzzy theory was introduced by
Zadeh [22] and it was generalized by Atanassov [23] as
intuitionistic fuzzy theory. While fuzzy theory assigns degree
of membership for each element, intuitionistic fuzzy theory
assigns degree of membership and nonmembership for each
element. Both of themwere applied inmany fields of sciences.

Introduction of the intuitionistic fuzzy metric space by
Park [24] and of the intuitionistic fuzzy normed space by
Saadati and Park [25] has enabledmany subjects in functional
analysis to be studied in intuitionstic fuzzy normed (metric)
spaces. Fixed point theory is one of these subjects. Many
fixed point theorems have been studied in intuitionistic fuzzy
normed (metric) space. Numerous works have been pro-
duced since richness of fixed point theory and intuitionistic
fuzzy functional analysis. Some of the articles concerning
these fields can be found in the literature (such as [26–33]).

Coupled and tripled fixed point theorems in intuitionistic
fuzzy normed space were proved via 𝑛-property in [29,
30], respectively. The purpose of our paper is to study
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𝑛-tuplet coincidence point theorem without 𝑛-property in
intuitionistic fuzzy normed space, which is the generalization
of coupled fixed point theorem [29] and tripled fixed point
theorem [30] in intuitionistic fuzzy normed space.

Let us start by recalling some of the concepts used in this
paper.

Definition 1 (see [34]). A binary operation ∗ : [0, 1] × [0, 1]
is a continuous 𝑡-norm if it satisfies the following conditions:
(i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii)
𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ [0, 1]; (iv) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐
and 𝑏 ≤ 𝑑 for each 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].

Definition 2 (see [34]). A binary operation⬦ : [0, 1]×[0, 1] is
a continuous 𝑡-conorm if it satisfies the following conditions:
(i)⬦ is associative and commutative; (ii)⬦ is continuous; (iii)
𝑎 ⬦ 0 = 𝑎 for all 𝑎 ∈ [0, 1]; (iv) 𝑎 ⬦ 𝑏 ≤ 𝑐 ⬦ 𝑑 whenever 𝑎 ≤ 𝑐
and 𝑏 ≤ 𝑑 for each 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].

Definition 3 (see [25]). Let ∗ be a continuous 𝑡-norm, let
⬦ be a continuous 𝑡-conorm, and let 𝑋 be a linear space
over the field 𝐼𝐹(R or C). If 𝜇 and ] are fuzzy sets on
𝑋 × (0,∞) satisfying the following conditions, the five-tuple
(𝑋, 𝜇, ], ∗, ⬦) is said to be an intuitionistic fuzzy normed
space and (𝜇, ]) is called an intuitionistic fuzzy norm. For
every 𝑥, 𝑦 ∈ 𝑋 and 𝑠, 𝑡 > 0, one has the following:

(i) 𝜇(𝑥, 𝑡) + ](𝑥, 𝑡) ≤ 1,

(ii) 𝜇(𝑥, 𝑡) > 0,

(iii) 𝜇(𝑥, 𝑡) = 1 ⇔ 𝑥 = 0,

(iv) 𝜇(𝑎𝑥, 𝑡) = 𝜇(𝑥, 𝑡/|𝑎|) for each 𝑎 ̸= 0,

(v) 𝜇(𝑥, 𝑡) ∗ 𝜇(𝑦, 𝑠) ≤ 𝜇(𝑥 + 𝑦, 𝑡 + 𝑠),

(vi) 𝜇(𝑥, ⋅) : (0,∞) → [0, 1] is continuous,

(vii) lim
𝑡→∞

𝜇(𝑥, 𝑡) = 1 and lim
𝑡→0
𝜇(𝑥, 𝑡) = 0,

(viii) ](𝑥, 𝑡) < 1,

(ix) ](𝑥, 𝑡) = 0 ⇔ 𝑥 = 0,

(x) ](𝑎𝑥, 𝑡) = ](𝑥, 𝑡/|𝑎|) for each 𝑎 ̸= 0,

(xi) ](𝑥, 𝑡) ⬦ ](𝑦, 𝑠) ≥ ](𝑥 + 𝑦, 𝑡 + 𝑠),

(xii) ](𝑥, ⋅) : (0,∞) → [0, 1] is continuous,

(xiii) lim
𝑡→∞

](𝑥, 𝑡) = 0 and lim
𝑡→0

](𝑥, 𝑡) = 1;

we further assume that (𝑋, 𝜇, ], ∗, ⬦) satisfies the following
axiom:

(xiv) 𝑎 ⬦ 𝑎 = 𝑎 and 𝑎 ∗ 𝑎 = 𝑎 for all 𝑎 ∈ [0, 1].

Throughout this paper, expression “intuitionistic fuzzy
normed space” will be denoted by IFNS for short.

Similar to Definition 4.12 in [25], Definition 4 can be
given as the following:

Definition 4. Let (𝑋, 𝜇, ], ∗, ⬦) be an IFNS. (𝑋𝑛, Φ, Ψ, ∗, ⬦)
is called a cartesian product of intuitionistic fuzzy normed

spaces if (Φ,Ψ) is a cartesian product of intuitionistic fuzzy
norms defined

Φ (𝑥, 𝑡) =

𝑛

∏

𝑖=1

𝜇 (𝑥
𝑖
, 𝑡) ,

Ψ (𝑥, 𝑡) =

𝑛

∐

𝑖=1

] (𝑥
𝑖
, 𝑡) ,

(1)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
),∏
𝑛

𝑖=1
𝑎
𝑖
= 𝑎
1
∗𝑎
2
∗⋅ ⋅ ⋅∗𝑎

𝑛
,∐
𝑛

𝑖=1
𝑎
𝑖
=

𝑎
1
⬦ 𝑎
2
⬦ ⋅ ⋅ ⋅ ⬦ 𝑎

𝑛
and 𝑡 > 0.

Definition 5 (see [25]). Let (𝑋, 𝜇, ], ∗, ⬦) be an IFNS. Then a
sequence (𝑥

𝑘
) in 𝑋 is said to be Cauchy sequence if for each

𝜖 > 0 and 𝑡 > 0 there exists 𝑘
0
∈ N such that

𝜇 (𝑥
𝑘
− 𝑥
𝑚
, 𝑡) > 1 − 𝜖, ] (𝑥

𝑘
− 𝑥
𝑚
, 𝑡) < 𝜖 (2)

for each 𝑘,𝑚 > 𝑘
0
.

Definition 6 (see [25]). Let (𝑋, 𝜇, ], ∗, ⬦) be an IFNS.
(𝑋, 𝜇, ], ∗, ⬦) is said to be complete if every Cauchy sequence
in (𝑋, 𝜇, ], ∗, ⬦) is convergent.

Definition 7 (see [35]). Let 𝑋 and 𝑌 be two IFNSs. 𝑓 : 𝑋 →
𝑌 is continuous at 𝑥

0
∈ 𝑋 if (𝑓(𝑥

𝑘
)) in 𝑌 convergences to

𝑓(𝑥
0
) for any (𝑥

𝑘
) in 𝑋 converging to 𝑥

0
. If 𝑓 : 𝑋 → 𝑌 is

continuous at each element of 𝑋, then 𝑓 : 𝑋 → 𝑌 is said to
be continuous on𝑋.

Definition 8 (see [18]). Let (𝑋, ⪯) be partially ordered set
and 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋. It is said that 𝐹
has the mixed 𝑔-monotone property if 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
)

is monotone 𝑔-nondecreasing in its odd argument and it is
monotone 𝑔-nonincreasing in its even argument. That is, for
any 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝑋,

𝑦
1
, 𝑧
1
∈ 𝑋, 𝑔 (𝑦

1
) ⪯ 𝑔 (𝑧

1
)

󳨐⇒ 𝐹 (𝑦
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ⪯ 𝐹 (𝑧

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ,

𝑦
2
, 𝑧
2
∈ 𝑋, 𝑔 (𝑦

2
) ⪯ 𝑔 (𝑧

2
)

󳨐⇒ 𝐹 (𝑥
1
, 𝑦
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ⪰ 𝐹 (𝑥

1
, 𝑧
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ,

...

𝑦
𝑛
, 𝑧
𝑛
∈ 𝑋, 𝑔 (𝑦

𝑛
) ⪯ 𝑔 (𝑧

𝑛
)

󳨐⇒ 𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑦

𝑛
) ⪯ 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑧

𝑛
)

(if 𝑛 is odd) ,

𝑦
𝑛
, 𝑧
𝑛
∈ 𝑋, 𝑔 (𝑦

𝑛
) ⪯ 𝑔 (𝑧

𝑛
)

󳨐⇒ 𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑦

𝑛
) ⪰ 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑧

𝑛
)

(if 𝑛 is even) .

(3)

Note that if 𝑔 is the identity mapping, this definition is
reduced to Definition 1 in [18].
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Definition 9 (see [18]). Let 𝑋 be a nonempty set and let
𝐹 : 𝑋

𝑛
→ 𝑋 be a given mapping. An element

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 is called an 𝑛-tuplet coincidence
point of 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) = 𝑔 (𝑥

1
) ,

𝐹 (𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 𝑥
1
) = 𝑔 (𝑥

2
) ,

...

𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) = 𝑔 (𝑥

𝑛
) .

(4)

Note that if 𝑔 is the identity mapping, this definition is
reduced to Definition 2 in [18].

Definition 10 (see [18]). Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be
two mappings. 𝐹 and 𝑔 are called commutative if

𝑔 (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
))

= 𝐹 (𝑔 (𝑥
1
) , 𝑔 (𝑥

2
) , 𝑔 (𝑥

3
) , . . . , 𝑔 (𝑥

𝑛
))

(5)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝑋.

2. Main Results

Theorem 11. Let 𝐹 : 𝑋𝑛 → 𝑋 be continuous map having
mixed 𝑔-monotone property on the complete (𝑋, 𝜇, ], ∗, ⬦)
having partial order relation denoted by⪯. Also𝐹(𝑋𝑛) ⊂ 𝑔(𝑋);
𝑔 is continuous and commutes with 𝐹. Suppose that 𝐹 : 𝑋𝑛 →
𝑋 and 𝑔 : 𝑋 → 𝑋 hold the following conditions, for all
𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
∈ 𝑋 and 𝛼 ∈ (0, 1):

𝜇 (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) − 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
) , 𝛼𝑡)

≥ 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑦

1
) , 𝑡)

∗𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑦

2
) , 𝑡) ∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥

𝑛
) − 𝑔 (𝑦

𝑛
) , 𝑡) ,

(6)

] (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) − 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
) , 𝛼𝑡)

≤ ] (𝑔 (𝑥
1
) − 𝑔 (𝑦

1
) , 𝑡)

⬦] (𝑔 (𝑥
2
) − 𝑔 (𝑦

2
) , 𝑡) ⬦ ⋅ ⋅ ⋅ ⬦ ] (𝑔 (𝑥

𝑛
) − 𝑔 (𝑦

𝑛
) , 𝑡) ,

(7)

where 𝑔(𝑥
2𝑖−1
) ⪯ 𝑔(𝑦

2𝑖−1
), 𝑖 ∈ {1, 2, . . . , (𝑛 + 1)/2},

and 𝑔(𝑥
2𝑖
) ⪰ 𝑔(𝑦

2𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑛/2}. If there exist

𝑥
1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 such that

𝑔 (𝑥
1

0
) ⪯ 𝐹 (𝑥

1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
) ,

𝑔 (𝑥
2

0
) ⪰ 𝐹 (𝑥

2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
, 𝑥
1

0
) ,

...

𝑔 (𝑥
𝑛

0
) ⪯ 𝐹 (𝑥

𝑛

0
, 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛−1

0
) (if 𝑛 is odd) ,

𝑔 (𝑥
𝑛

0
) ⪰ 𝐹 (𝑥

𝑛

0
, 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛−1

0
) (if 𝑛 is even) ,

(8)

then there exist 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝑋 such that

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) = 𝑔 (𝑥

1
) ,

𝐹 (𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 𝑥
1
) = 𝑔 (𝑥

2
) ,

...

𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) = 𝑔 (𝑥

𝑛
) ;

(9)

that is, 𝐹 and 𝑔 have an 𝑛-tuplet coincidence point.

Proof. Proof of this theorem consists of four steps.

Step 1. In first step, let us define (𝑥1
𝑘
), (𝑥
2

𝑘
), . . . , (𝑥

𝑛

𝑘
). Let

𝑥
1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 be as in (8). Since 𝐹(𝑋𝑛) ⊂ 𝑔(𝑋), we

construct the sequence (𝑥1
𝑘
), (𝑥2
𝑘
), . . . , (𝑥

𝑛

𝑘
) as in [18]:

𝑔 (𝑥
1

𝑘
) = 𝐹 (𝑥

1

𝑘−1
, 𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
) ,

𝑔 (𝑥
2

𝑘
) = 𝐹 (𝑥

2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
) ,

...

𝑔 (𝑥
𝑛

𝑘
) = 𝐹 (𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
, . . . , 𝑥

𝑛−1

𝑘−1
)

(10)

for 𝑘 = 1, 2, 3, . . ..

Step 2. We prove that the following inequalities hold:

𝑔 (𝑥
1

𝑘−1
) ⪯ 𝑔 (𝑥

1

𝑘
) ,

𝑔 (𝑥
2

𝑘−1
) ⪰ 𝑔 (𝑥

2

𝑘
) ,

...

𝑔 (𝑥
𝑛

𝑘−1
) ⪯ 𝑔 (𝑥

𝑛

𝑘
) (if 𝑛 is odd) ,

𝑔 (𝑥
𝑛

𝑘−1
) ⪰ 𝑔 (𝑥

𝑛

𝑘
) (if 𝑛 is even)

(11)

for all 𝑘 ≥ 1. This step is similar to a part of proof ofTheorem
1 in [18]. So, we omit it. However, since we use it in the proof,
we express it again for the integrity of our proof.We can write
(12) from (11) as follows:

⋅ ⋅ ⋅ ⪰ 𝑔 (𝑥
1

𝑘
) ⪰ 𝑔 (𝑥

1

𝑘−1
) ⪰ ⋅ ⋅ ⋅ ⪰ 𝑔 (𝑥

1

1
) ⪰ 𝑔 (𝑥

1

0
) ,

⋅ ⋅ ⋅ ⪯ 𝑔 (𝑥
2

𝑘
) ⪯ 𝑔 (𝑥

2

𝑘−1
) ⪯ ⋅ ⋅ ⋅ ⪯ 𝑔 (𝑥

2

1
) ⪯ 𝑔 (𝑥

2

0
) ,

...

⋅ ⋅ ⋅ ⪰ 𝑔 (𝑥
𝑛

𝑘
) ⪰ 𝑔 (𝑥

𝑛

𝑘−1
) ⪰ ⋅ ⋅ ⋅ ⪰ 𝑔 (𝑥

𝑛

1
) ⪰ 𝑔 (𝑥

𝑛

0
)

(if 𝑛 is odd) ,

⋅ ⋅ ⋅ ⪯ 𝑔 (𝑥
𝑛

𝑘
) ⪯ 𝑔 (𝑥

𝑛

𝑘−1
) ⪯ ⋅ ⋅ ⋅ ⪯ 𝑔 (𝑥

𝑛

1
) ⪯ 𝑔 (𝑥

𝑛

0
)

(if 𝑛 is even) .

(12)

Step 3. In this step, we show that 𝑔(𝑥1
𝑘
), 𝑔(𝑥
2

𝑘
), . . . , 𝑔(𝑥

𝑛

𝑘
) are

Cauchy sequences in (𝑋, 𝜇, ], ∗, ⬦).
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To do this, we define

𝛿
1

𝑘
(𝑡) = 𝜇 (𝑔 (𝑥

1

𝑘
) − 𝑔 (𝑥

1

𝑘+1
) , 𝑡)

∗ 𝜇 (𝑔 (𝑥
2

𝑘
) − 𝑔 (𝑥

2

𝑘+1
) , 𝑡)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘
) − 𝑔 (𝑥

𝑛

𝑘+1
) , 𝑡) ,

𝛿
2

𝑘
(𝑡) = V (𝑔 (𝑥1

𝑘
) − 𝑔 (𝑥

1

𝑘+1
) , 𝑡)

⬦ V (𝑔 (𝑥2
𝑘
) − 𝑔 (𝑥

2

𝑘+1
) , 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘
) − 𝑔 (𝑥

𝑛

𝑘+1
) , 𝑡) .

(13)

By considering (6) and (12), we have in the following
inequalities:

𝜇 (𝑔 (𝑥
1

𝑘
) − 𝑔 (𝑥

1

𝑘+1
) , 𝑡)

= 𝜇 (𝐹 (𝑥
1

𝑘−1
, 𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
) − 𝐹 (𝑥

1

𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
) , 𝛼

𝑡

𝑎

)

≥ 𝜇 (𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

∗ 𝜇 (𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

= 𝛿
𝑘−1
(

𝑡

𝛼

) ,

𝜇 (𝑔 (𝑥
2

𝑘
) − 𝑔 (𝑥

2

𝑘+1
) , 𝑡)

= 𝜇 (𝐹 (𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
) − 𝐹 (𝑥

2

𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
) , 𝛼

𝑡

𝛼

)

≥ 𝜇 (𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

∗ 𝜇 (𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

= 𝛿
1

𝑘−1
(

𝑡

𝛼

)

...

𝜇 (𝑔 (𝑥
𝑛

𝑘
) − 𝑔 (𝑥

𝑛

𝑘+1
) , 𝑡)

= 𝜇 (𝐹 (𝑥
𝑛

𝑘−1
, 𝑥
1

𝑘−1
, . . . , 𝑥

𝑛−1

𝑘−1
) − 𝐹 (𝑥

𝑛

𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
) , 𝛼

𝑡

𝛼

)

≥ 𝜇(𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

∗ 𝜇 (𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛−1

𝑘−1
) − 𝑔 (𝑥

𝑛−1

𝑘
) ,

𝑡

𝛼

)

= 𝛿
1

𝑘−1
(

𝑡

𝛼

) .

(14)

Using the property (iv) of 𝑡-norm and property (xiv) in
Definition 3 together with (14), we get

𝛿
1

𝑘
(𝑡) ≥ 𝛿

1

𝑘−1
(

𝑡

𝛼

) ∗ 𝛿
1

𝑘−1
(

𝑡

𝛼

) ∗ ⋅ ⋅ ⋅ ∗ 𝛿
1

𝑘−1
(

𝑡

𝛼

) = 𝛿
1

𝑘−1
(

𝑡

𝛼

) .

(15)

Again, by (6) and (12),

𝜇(𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

= 𝜇 (𝐹 (𝑥
1

𝑘−2
, 𝑥
2

𝑘−2
, . . . , 𝑥

𝑛

𝑘−2
)

−𝐹 (𝑥
1

𝑘−1
, 𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≥ 𝜇(𝑔 (𝑥
1

𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

∗ 𝜇(𝑔 (𝑥
2

𝑘−2
) − 𝑔 (𝑥

2

𝑘−1
) ,

𝑡

𝛼
2
)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
1

𝑘−2
(

𝑡

𝛼
2
) ,

𝜇 (𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

= 𝜇 (𝐹 (𝑥
2

𝑘−2
, . . . , 𝑥

𝑛

𝑘−2
, 𝑥
1

𝑘−2
)

−𝐹 (𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≥ 𝜇(𝑔 (𝑥
2

𝑘−2
) − 𝑔 (𝑥

2

𝑘−1
) ,

𝑡

𝛼
2
)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

∗ 𝜇(𝑔 (𝑥
1

𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
1

𝑘−2
(

𝑡

𝛼
2
)

...
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𝜇(𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

= 𝜇 (𝐹 (𝑥
𝑛

𝑘−2
, 𝑥
1

𝑘−2
, . . . , 𝑥

𝑛−1

𝑘−2
)

−𝐹 (𝑥
𝑛

𝑘−1
, 𝑥
1

𝑘−1
, . . . , 𝑥

𝑛−1

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≥ 𝜇(𝑔 (𝑥
𝑛

𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

∗ 𝜇(𝑔 (𝑥
1

𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛−1

𝑘−2
) − 𝑔 (𝑥

𝑛−1

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
1

𝑘−2
(

𝑡

𝛼
2
) .

(16)

By the property (iv) of 𝑡-norm together with (16), we get

𝛿
1

𝑘−1
(

𝑡

𝛼

) ≥ 𝛿
1

𝑘−2
(

𝑡

𝛼
2
) . (17)

Thus, if we continue this process in this way, we have

𝛿
1

𝑘
(𝑡) ≥ 𝛿

1

𝑘−1
(

𝑡

𝛼

) ≥ 𝛿
1

𝑘−2
(

𝑡

𝛼
2
) ≥ ⋅ ⋅ ⋅ ≥ 𝛿

1

0
(

𝑡

𝛼
𝑘
) . (18)

Now we will do the same calculations for 𝛿2
𝑘
(𝑡). By using

(7) and (12),

V (𝑔 (𝑥1
𝑘
) − 𝑔 (𝑥

1

𝑘+1
) , 𝑡)

= V (𝐹 (𝑥1
𝑘−1
, 𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
) − 𝐹 (𝑥

1

𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
) , 𝛼

𝑡

𝛼

)

≤ V (𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

) ⬦ V (𝑔 (𝑥2
𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

= 𝛿
2

𝑘−1
(

𝑡

𝛼

) ,

V (𝑔 (𝑥2
𝑘
) − 𝑔 (𝑥

2

𝑘+1
) , 𝑡)

= V (𝐹 (𝑥2
𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
) − 𝐹 (𝑥

2

𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
) , 𝛼

𝑡

𝛼

)

≤ V (𝑔 (𝑥2
𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

⬦ V (𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

= 𝛿
2

𝑘−1
(

𝑡

𝛼

)

...

V (𝑔 (𝑥𝑛
𝑘
) − 𝑔 (𝑥

𝑛

𝑘+1
) , 𝑡)

= V (𝐹 (𝑥𝑛
𝑘−1
, 𝑥
1

𝑘−1
, . . . , 𝑥

𝑛−1

𝑘−1
) − 𝐹 (𝑥

𝑛

𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
) , 𝛼

𝑡

𝛼

)

≤ V (𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

) ⬦ V (𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛−1
𝑘−1
) − 𝑔 (𝑥

𝑛−1

𝑘
) ,

𝑡

𝛼

)

= 𝛿
2

𝑘−1
(

𝑡

𝛼

) .

(19)

Using the property (iv) of 𝑡-norm and property (xiv) in
Definition 3 together with (19), we get

𝛿
2

𝑘
(𝑡) ≤ 𝛿

2

𝑘−1
(

𝑡

𝛼

) ⬦ 𝛿
2

𝑘−1
(

𝑡

𝛼

) ⬦ ⋅ ⋅ ⋅ ⬦ 𝛿
2

𝑘−1
(

𝑡

𝛼

)

= 𝛿
2

𝑘−1
(

𝑡

𝛼

) .

(20)

Again, by (7) and (12),

V (𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝛼

)

= V (𝐹 (𝑥1
𝑘−2
, 𝑥
2

𝑘−2
, . . . , 𝑥

𝑛

𝑘−2
)

−𝐹 (𝑥
1

𝑘−1
, 𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≤ V (𝑔 (𝑥1
𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ V (𝑔 (𝑥2
𝑘−2
) − 𝑔 (𝑥

2

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
2

𝑘−2
(

𝑡

𝛼
2
) ,

V (𝑔 (𝑥2
𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝛼

)

= V (𝐹 (𝑥2
𝑘−2
, . . . , 𝑥

𝑛

𝑘−2
, 𝑥
1

𝑘−2
)

−𝐹 (𝑥
2

𝑘−1
, . . . , 𝑥

𝑛

𝑘−1
, 𝑥
1

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≤ V (𝑔 (𝑥2
𝑘−2
) − 𝑔 (𝑥

2

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ V (𝑔 (𝑥1
𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
2

𝑘−2
(

𝑡

𝛼
2
)

...



6 Journal of Function Spaces

V (𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝛼

)

= V (𝐹 (𝑥𝑛
𝑘−2
, 𝑥
1

𝑘−2
, . . . , 𝑥

𝑛−1

𝑘−2
)

−𝐹 (𝑥
𝑛

𝑘−1
, 𝑥
1

𝑘−1
, . . . , 𝑥

𝑛−1

𝑘−1
) , 𝛼

𝑡

𝛼
2
)

≤ V (𝑔 (𝑥𝑛
𝑘−2
) − 𝑔 (𝑥

𝑛

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ V (𝑔 (𝑥1
𝑘−2
) − 𝑔 (𝑥

1

𝑘−1
) ,

𝑡

𝛼
2
)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛−1
𝑘−2
) − 𝑔 (𝑥

𝑛−1

𝑘−1
) ,

𝑡

𝛼
2
)

= 𝛿
2

𝑘−2
(

𝑡

𝛼
2
) .

(21)

Hence, from (21),

𝛿
2

𝑘−1
(

𝑡

𝛼

) ≤ 𝛿
2

𝑘−2
(

𝑡

𝛼
2
) . (22)

Thus, if we continue this process in this way, we have

𝛿
2

𝑘
(𝑡) ≤ 𝛿

2

𝑘−1
(

𝑡

𝛼

) ≤ 𝛿
2

𝑘−2
(

𝑡

𝛼
2
) ≤ ⋅ ⋅ ⋅ ≤ 𝛿

2

0
(

𝑡

𝛼
𝑘
) . (23)

Now, we can show 𝑔(𝑥1
𝑘
), 𝑔(𝑥
2

𝑘
), . . . , 𝑔(𝑥

𝑛

𝑘
) are Cauchy

sequences in (𝑋, 𝜇, ], ∗, ⬦) bymeans of (18) and (23). For each
𝑡 > 0 and 𝑝 > 0,

𝜇 (𝑔 (𝑥
1

𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘
) , 𝑡) ∗ 𝜇 (𝑔 (𝑥

2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘
) , 𝑡)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘
) , 𝑡)

= 𝜇(𝑔 (𝑥
1

𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) + 𝑔 (𝑥

1

𝑘+𝑝−1
) − 𝑔 (𝑥

1

𝑘+𝑝−2
)

+ 𝑔 (𝑥
1

𝑘+𝑝−2
) − ⋅ ⋅ ⋅ − 𝑔 (𝑥

1

𝑘−1
) + 𝑔 (𝑥

1

𝑘−1
)

−𝑔 (𝑥
1

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘+𝑝−1
) + 𝑔 (𝑥

2

𝑘+𝑝−1
)

− 𝑔 (𝑥
2

𝑘+𝑝−2
) + 𝑔 (𝑥

2

𝑘+𝑝−2
) − ⋅ ⋅ ⋅ − 𝑔 (𝑥

2

𝑘−1
)

+ 𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) + 𝑔 (𝑥

𝑛

𝑘+𝑝−1
)

− 𝑔 (𝑥
𝑛

𝑘+𝑝−2
)+ 𝑔 (𝑥

𝑛

𝑘+𝑝−2
)− ⋅ ⋅ ⋅ −𝑔 (𝑥

𝑛

𝑘−1
)

+ 𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

≥ 𝜇(𝑔 (𝑥
1

𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
1

𝑘+𝑝−1
) − 𝑔 (𝑥

1

𝑘+𝑝−2
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
𝑛

𝑘+𝑝−1
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−2
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

)

= 𝜇(𝑔 (𝑥
1

𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘+𝑝−1
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
1

𝑘+𝑝−1
) − 𝑔 (𝑥

1

𝑘+𝑝−2
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
2

𝑘+𝑝−1
) − 𝑔 (𝑥

2

𝑘+𝑝−2
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝−1
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−2
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝑝

)

∗ 𝜇(𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝑝

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

)

≥ 𝜇(𝑔 (𝑥
1

0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

∗ 𝜇(𝑔 (𝑥
2

0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

∗ 𝜇(𝑔 (𝑥
1

0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

∗ 𝜇(𝑔 (𝑥
2

0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
1

0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘
)
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∗ 𝜇(𝑔 (𝑥
2

0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘
)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘
) ,

V (𝑔 (𝑥1
𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘
) , 𝑡) ⬦ V (𝑔 (𝑥2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘
) , 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘
) , 𝑡)

= V(𝑔 (𝑥1
𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) + 𝑔 (𝑥

1

𝑘+𝑝−1
)

− 𝑔 (𝑥
1

𝑘+𝑝−2
) + 𝑔 (𝑥

1

𝑘+𝑝−2
) − ⋅ ⋅ ⋅ − 𝑔 (𝑥

1

𝑘−1
)

+𝑔 (𝑥
1

𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

⬦ V(𝑔 (𝑥2
𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘+𝑝−1
) + 𝑔 (𝑥

2

𝑘+𝑝−1
)

− 𝑔 (𝑥
2

𝑘+𝑝−2
) + 𝑔 (𝑥

2

𝑘+𝑝−2
) − ⋅ ⋅ ⋅ − 𝑔 (𝑥

2

𝑘−1
)

+𝑔 (𝑥
2

𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) + 𝑔 (𝑥

𝑛

𝑘+𝑝−1
)

− 𝑔 (𝑥
𝑛

𝑘+𝑝−2
) + 𝑔 (𝑥

𝑛

𝑘+𝑝−2
) − ⋅ ⋅ ⋅ − 𝑔 (𝑥

𝑛

𝑘−1
)

+𝑔 (𝑥
𝑛

𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

+

𝑡

𝑝

+ ⋅ ⋅ ⋅ +

𝑡

𝑝

)

≤ V(𝑔 (𝑥1
𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) ,

𝑡

𝑝

)

⬦ V(𝑔 (𝑥1
𝑘+𝑝−1

) − 𝑔 (𝑥
1

𝑘+𝑝−2
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) ,

𝑡

𝑝

)

⬦ V(𝑔 (𝑥𝑛
𝑘+𝑝−1

) − 𝑔 (𝑥
𝑛

𝑘+𝑝−2
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

)

= V(𝑔 (𝑥1
𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘+𝑝−1
) ,

𝑡

𝑝

)

⬦ V(𝑔 (𝑥2
𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘+𝑝−1
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘+𝑝−1
) ,

𝑡

𝑝

)

⬦ V(𝑔 (𝑥1
𝑘+𝑝−1

) − 𝑔 (𝑥
1

𝑘+𝑝−2
) ,

𝑡

𝑝

)

⬦ (𝑔 (𝑥
2

𝑘+𝑝−1
) − 𝑔 (𝑥

2

𝑘+𝑝−2
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘+𝑝−1

) − 𝑔 (𝑥
𝑛

𝑘+𝑝−2
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥1
𝑘−1
) − 𝑔 (𝑥

1

𝑘
) ,

𝑡

𝑝

)

⬦ V(𝑔 (𝑥2
𝑘−1
) − 𝑔 (𝑥

2

𝑘
) ,

𝑡

𝑝

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
𝑘−1
) − 𝑔 (𝑥

𝑛

𝑘
) ,

𝑡

𝑝

)

≤ V(𝑔 (𝑥1
0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

⬦ V(𝑔 (𝑥2
0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−1

)

⬦ V(𝑔 (𝑥1
0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

⬦ V(𝑔 (𝑥2
0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘+𝑝−2

)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥1
0
) − 𝑔 (𝑥

1

1
) ,

𝑡

𝑝𝛼
𝑘
)

⬦ V(𝑔 (𝑥2
0
) − 𝑔 (𝑥

2

1
) ,

𝑡

𝑝𝛼
𝑘
)

⬦ ⋅ ⋅ ⋅ ⬦ V(𝑔 (𝑥𝑛
0
) − 𝑔 (𝑥

𝑛

1
) ,

𝑡

𝑝𝛼
𝑘
) ,

(24)

𝑡/𝑝𝛼
𝑘+𝑝−1

, 𝑡/𝑝𝛼
𝑘+𝑝−2

, . . . , 𝑡/𝑝𝛼
𝑘 tend to infinity when 𝑘 →

∞ in (24). So, we get (25) with properties (vii) and (xiii) of
intuitionistic fuzzy norm:

lim
𝑘→∞

𝜇 (𝑔 (𝑥
1

𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘
) , 𝑡) ∗ 𝜇 (𝑔 (𝑥

2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘
) , 𝑡)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘
) , 𝑡) ≥ 1 ∗ 1 ∗ ⋅ ⋅ ⋅ ∗ 1 = 1,

lim
𝑘→∞

V (𝑔 (𝑥1
𝑘+𝑝
) − 𝑔 (𝑥

1

𝑘
) , 𝑡) ⬦ V (𝑔 (𝑥2

𝑘+𝑝
) − 𝑔 (𝑥

2

𝑘
) , 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ V (𝑔 (𝑥𝑛
𝑘+𝑝
) − 𝑔 (𝑥

𝑛

𝑘
) , 𝑡) ≤ 0 ⬦ 0 ⬦ ⋅ ⋅ ⋅ ⬦ 0 = 0.

(25)

Hence, 𝑔(𝑥1
𝑘
), 𝑔(𝑥
2

𝑘
), . . . , 𝑔(𝑥

𝑛

𝑘
) are Cauchy sequences in

(𝑋, 𝜇, ], ∗, ⬦).
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Step 4. In final step, we prove that 𝑔 and 𝐹 have an 𝑛-
tuplet coincidence point. Since𝑋 is complete, then there exist
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛 such that

lim
𝑘→∞

𝜇 (𝑔 (𝑥
1

𝑘
) − 𝑥
1
, 𝑡) = 1, lim

𝑘→∞

] (𝑔 (𝑥1
𝑘
) − 𝑥
1
, 𝑡) = 0,

lim
𝑘→∞

𝜇 (𝑔 (𝑥
2

𝑘
) − 𝑥
2
, 𝑡) = 1, lim

𝑘→∞

] (𝑔 (𝑥2
𝑘
) − 𝑥
2
, 𝑡) = 0,

...

lim
𝑘→∞

𝜇 (𝑔 (𝑥
𝑛

𝑘
) − 𝑥
𝑛
, 𝑡) = 1, lim

𝑘→∞

] (𝑔 (𝑥𝑛
𝑘
) − 𝑥
𝑛
, 𝑡) = 0.

(26)

By using intuitionistic fuzzy continuity of 𝑔, we write

lim
𝑘→∞

𝜇 (𝑔 (𝑔 (𝑥
1

𝑘
)) − 𝑔 (𝑥

1
) , 𝑡) = 1,

lim
𝑘→∞

] (𝑔 (𝑔 (𝑥1
𝑘
)) − 𝑔 (𝑥

1
) , 𝑡) = 0,

lim
𝑘→∞

𝜇 (𝑔 (𝑔 (𝑥
2

𝑘
)) − 𝑔 (𝑥

2
) , 𝑡) = 1,

lim
𝑘→∞

] (𝑔 (𝑔 (𝑥2
𝑘
)) − 𝑔 (𝑥

2
) , 𝑡) = 0,

...

lim
𝑘→∞

𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘
)) − 𝑔 (𝑥

𝑛
) , 𝑡) = 1,

lim
𝑘→∞

] (𝑔 (𝑔 (𝑥𝑛
𝑘
)) − 𝑔 (𝑥

𝑛
) , 𝑡) = 0.

(27)

Since commutativity of 𝐹 and 𝑔, it follows that

𝑔 (𝑔 (𝑥
1

𝑘+1
)) = 𝑔 (𝐹 (𝑥

1

𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
))

= 𝐹 (𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
)) ,

𝑔 (𝑔 (𝑥
2

𝑘+1
)) = 𝑔 (𝐹 (𝑥

2

𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
))

= 𝐹 (𝑔 (𝑥
2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

...

𝑔 (𝑔 (𝑥
𝑛

𝑘+1
)) = 𝑔 (𝐹 (𝑥

𝑛

𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
))

= 𝐹 (𝑔 (𝑥
𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
)) .

(28)

Using continuous of 𝑡-norm and 𝑡-conorm, we get

lim
𝑘→∞

Φ((𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
)) − (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑡)

= lim
𝑘→∞

Φ((𝑔 (𝑥
1

𝑘
) − 𝑥
1
, 𝑔 (𝑥
2

𝑘
) − 𝑥
2
, . . . , 𝑔 (𝑥

𝑛

𝑘
) − 𝑥
𝑛
) , 𝑡)

= lim
𝑘→∞

[𝜇 (𝑔 (𝑥
1

𝑘
) − 𝑥
1
, 𝑡) ∗ 𝜇 (𝑔 (𝑥

2

𝑘
) − 𝑥
2
, 𝑡)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛

𝑘
) − 𝑥
𝑛
, 𝑡)]

= lim
𝑘→∞

𝜇 (𝑔 (𝑥
1

𝑘
) − 𝑥
1
, 𝑡) ∗ lim
𝑘→∞

𝜇 (𝑔 (𝑥
2

𝑘
) − 𝑥
2
, 𝑡)

∗ ⋅ ⋅ ⋅ ∗ lim
𝑘→∞

𝜇 (𝑔 (𝑥
𝑛

𝑘
) − 𝑥
𝑛
, 𝑡)

= 1 ∗ 1 ∗ ⋅ ⋅ ⋅ ∗ 1 = 1,

lim
𝑘→∞

Ψ((𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
)) − (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑡)

= lim
𝑘→∞

Ψ((𝑔 (𝑥
1

𝑘
) − 𝑥
1
, 𝑔 (𝑥
2

𝑘
) − 𝑥
2
, . . . , 𝑔 (𝑥

𝑛

𝑘
) − 𝑥
𝑛
) , 𝑡)

= lim
𝑘→∞

[] (𝑔 (𝑥1
𝑘
) − 𝑥
1
, 𝑡) ⬦ ] (𝑔 (𝑥2

𝑘
) − 𝑥
2
, 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ ] (𝑔 (𝑥𝑛
𝑘
) − 𝑥
𝑛
, 𝑡)]

= lim
𝑘→∞

] (𝑔 (𝑥1
𝑘
) − 𝑥
1
, 𝑡) ⬦ lim

𝑘→∞

] (𝑔 (𝑥2
𝑘
) − 𝑥
2
, 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ lim
𝑘→∞

] (𝑔 (𝑥𝑛
𝑘
) − 𝑥
𝑛
, 𝑡)

= 0 ⬦ 0 ⬦ ⋅ ⋅ ⋅ ⬦ 0 = 0.

(29)

That is (𝑔(𝑥
1

𝑘
), 𝑔(𝑥
2

𝑘
), . . . , 𝑔(𝑥

𝑛

𝑘
))

(Φ,Ψ)

󳨀󳨀󳨀󳨀→

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
). Similarly (𝑔(𝑥2

𝑘
), . . . , 𝑔(𝑥

𝑛

𝑘
), 𝑔(𝑥
1

𝑘
))

(Φ,Ψ)

󳨀󳨀󳨀󳨀→

(𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
), . . . , (𝑔(𝑥

𝑛

𝑘
), 𝑔(𝑥
1

𝑘
), . . . , 𝑔(𝑥

𝑛−1

𝑘
))

(Φ,Ψ)

󳨀󳨀󳨀󳨀→

(𝑥
𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
). From the intuitionistic fuzzy continuous

assumption of 𝐹, we write in the followings

𝐹 (𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝐹(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

𝐹 (𝑔 (𝑥
2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝐹(𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
)

...

𝐹 (𝑔 (𝑥
𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝐹(𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) .

(30)
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Considering (28) and (29), we have

𝜇 (𝑔 (𝑥
1
) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑡)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
))

+𝑔 (𝑔 (𝑥
1

𝑘+1
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑡)

≥ 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
1

𝑘+1
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
1

𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝐹 (𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

)

] (𝑔 (𝑥1) − 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝑡)

= ] (𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
))

+𝑔 (𝑔 (𝑥
1

𝑘+1
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑡)

≤ ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥1
𝑘+1
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

)

= ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝐹 (𝑥1
𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

)

= ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝐹 (𝑔 (𝑥1
𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑡

2

) ,

𝜇 (𝑔 (𝑥
2
) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝑡)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
))

+𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝑡)

≥ 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝐹 (𝑔 (𝑥
2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

−𝐹 (𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

) ,

] (𝑔 (𝑥2) − 𝐹 (𝑥2, . . . , 𝑥𝑛, 𝑥1) , 𝑡)

= ] (𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
))

+𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝑡)

≤ ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥2
𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

)

= ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝐹 (𝑥2
𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

)

= ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝑡

2

)

⬦ ] (𝐹 (𝑔 (𝑥2
𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

−𝐹 (𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝑡

2

) ,

...

𝜇 (𝑔 (𝑥
𝑛
) − 𝐹 (𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) , 𝑡)

= 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
))

+𝑔 (𝑔 (𝑥
𝑛

𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) , 𝑡)

≥ 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

)

= 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
𝑛

𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

)
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= 𝜇(𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝑡

2

)

∗ 𝜇 (𝐹 (𝑔 (𝑥
𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

) ,

] (𝑔 (𝑥𝑛) − 𝐹 (𝑥𝑛, 𝑥1, . . . , 𝑥𝑛−1) , 𝑡)

= ] (𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
))

+𝑔 (𝑔 (𝑥
𝑛

𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) , 𝑡)

≤ ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

)

= ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝑔 (𝐹 (𝑥𝑛
𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

)

= ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝑡

2

)

⬦ ](𝐹 (𝑔 (𝑥𝑛
𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ,

𝑡

2

) .

(31)

By taking the limit as 𝑘 → ∞ in (31), we get

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) = 𝑔 (𝑥

1
) ,

𝐹 (𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 𝑥
1
) = 𝑔 (𝑥

2
) ,

...

𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) = 𝑔 (𝑥

𝑛
) .

(32)

Theorem 12. Let 𝐹 : 𝑋
𝑛
→ 𝑋 be map having mixed

𝑔-monotone property on the complete (𝑋, 𝜇, ], ∗, ⬦) having
partial order relation denoted by ⪯. Also 𝐹(𝑋𝑛) ⊂ 𝑔(𝑋); 𝑔
is continuous and commutes with 𝐹. Suppose that 𝑋 has the
following property:

(a) if non decreasing sequence 𝑥
𝑘

(𝜇,])
󳨀󳨀󳨀→ 𝑥, then 𝑥

𝑘
⪯ 𝑥 for

all 𝑘,

(b) if non increasing sequence 𝑦
𝑘

(𝜇,])
󳨀󳨀󳨀→ 𝑦, then 𝑦

𝑘
⪰ 𝑦 for

all 𝑘.

Also, suppose that 𝐹 : 𝑋
𝑛

→ 𝑋 and
𝑔 : 𝑋 → 𝑋 hold the following conditions, for all
𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
∈ 𝑋 and 𝛼 ∈ (0, 1):

𝜇 (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) − 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
) , 𝛼𝑡)

≥ 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑦

1
) , 𝑡) ∗ 𝜇 (𝑔 (𝑥

2
) − 𝑔 (𝑦

2
) , 𝑡)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑦

𝑛
) , 𝑡) ,

] (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) − 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
) , 𝛼𝑡)

≤ ] (𝑔 (𝑥
1
) − 𝑔 (𝑦

1
) , 𝑡) ⬦ ] (𝑔 (𝑥

2
) − 𝑔 (𝑦

2
) , 𝑡)

⬦ ⋅ ⋅ ⋅ ⬦ ] (𝑔 (𝑥
𝑛
) − 𝑔 (𝑦

𝑛
) , 𝑡) ,

(33)

where 𝑔(𝑥
2𝑖−1
) ⪯ 𝑔(𝑦

2𝑖−1
), 𝑖 ∈ {1, 2, . . . , (𝑛 + 1)/2},

and 𝑔(𝑥
2𝑖
) ⪰ 𝑔(𝑦

2𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑛/2}. If there exist

𝑥
1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 such that

𝑔 (𝑥
1

0
) ⪯ 𝐹 (𝑥

1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
) ,

𝑔 (𝑥
2

0
) ⪰ 𝐹 (𝑥

2

0
, 𝑥
3

0
, . . . , 𝑥

𝑛

0
, 𝑥
1

0
) ,

...

𝑔 (𝑥
𝑛

0
) ⪯ 𝐹 (𝑥

𝑛

0
, 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛−1

0
) (if 𝑛 is odd) ,

𝑔 (𝑥
𝑛

0
) ⪰ 𝐹 (𝑥

𝑛

0
, 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛−1

0
) (if 𝑛 is even) ,

(34)

then there exist 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝑋 such that

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) = 𝑔 (𝑥

1
) ,

𝐹 (𝑥
2
, 𝑥
3
, . . . 𝑥
𝑛
, 𝑥
1
) = 𝑔 (𝑥

2
) ,

...

𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) = 𝑔 (𝑥

𝑛
) ;

(35)

that is, 𝐹 and 𝑔 have an 𝑛-tuplet coincidence point.

Proof . Proof of the present theorem is also in four steps.
However, three steps of poof are similar to Theorem 11. We
now prove the last step. Considering the hypotheses (a)-

(b) given in the theorem and 𝑔(𝑥1
𝑘
)

(𝜇,])
󳨀󳨀󳨀→ 𝑥

1
, 𝑔(𝑥
2

𝑘
)

(𝜇,])
󳨀󳨀󳨀→

𝑥
2
, . . . , 𝑔(𝑥

𝑛

𝑘
)

(𝜇,])
󳨀󳨀󳨀→ 𝑥

𝑛, we have

𝑔 (𝑥
1

𝑘
) ⪯ 𝑥
1
,

𝑔 (𝑥
2

𝑘
) ⪰ 𝑥
2
,

...

𝑔 (𝑥
𝑛

𝑘
) ⪯ 𝑥
𝑛
(if 𝑛 is odd) ,

𝑔 (𝑥
𝑛

𝑘
) ⪰ 𝑥
𝑛
(if 𝑛 is even)

(36)
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with (12) for all 𝑘. Due to intuitionistic fuzzy continuity of 𝑔,
we write

𝑔 (𝑔 (𝑥
1

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝑔(𝑥

1
) ,

𝑔 (𝑔 (𝑥
2

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝑔(𝑥

2
) ,

...

𝑔 (𝑔 (𝑥
𝑛

𝑘
))

(𝜇,])
󳨀󳨀󳨀󳨀→ 𝑔 (𝑥

𝑛
) .

(37)

Then, by (6) and (7), we have

𝜇 (𝑔 (𝑥
1
) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝛼𝑡)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
))

+𝑔 (𝑔 (𝑥
1

𝑘+1
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝛼𝑡)

≥ 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝛼𝑡

2

) ∗ 𝜇 (𝑔 (𝑔 (𝑥
1

𝑘+1
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
1

𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
)) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝐹 (𝑔 (𝑥
1

𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

)

≥ 𝜇 (𝑔 (𝑥
1
) − 𝑔 (𝑔 (𝑥

1

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
1

𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
2

𝑘
)) − 𝑔 (𝑥

2
) ,

𝑡

2

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

) ,

] (𝑔 (𝑥1) − 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝛼𝑡)

= ] (𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) + 𝑔 (𝑔 (𝑥

1

𝑘+1
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝛼𝑡)

≤ ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝛼𝑡

2

) ⬦ ] (𝑔 (𝑔 (𝑥1
𝑘+1
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ] (𝑔 (𝐹 (𝑥1
𝑘
, 𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
))

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝐹(𝑔 (𝑥1
𝑘
) , 𝑔 (𝑥

2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
)

−𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝛼𝑡

2

))

≤ ](𝑔 (𝑥1) − 𝑔 (𝑔 (𝑥1
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥1
𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥2
𝑘
)) − 𝑔 (𝑥

2
) ,

𝑡

2

)

⬦ ⋅ ⋅ ⋅ ⬦ ](𝑔 (𝑔 (𝑥𝑛
𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

)

(38)

by taking limit as 𝑘 → ∞ and using (37), we obtain the
following results from calculation mentioned above:

𝜇 (𝑔 (𝑥
1
) − 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝛼𝑡) = 1,

] (𝑔 (𝑥1) − 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝛼𝑡) = 0.
(39)

Hence, 𝑔(𝑥1) = 𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑛).
In a similar way to the previous calculations,

𝜇 (𝑔 (𝑥
2
) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝛼𝑡)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
))

+𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝛼𝑡)

≥ 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
2

𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝛼𝑡

2

)
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∗ 𝜇(𝐹 (𝑔 (𝑥
2

𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

−𝐹 (𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

≥ 𝜇 (𝑔 (𝑥
2
) − 𝑔 (𝑔 (𝑥

2

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
2

𝑘
)) − 𝑔 (𝑥

2
) ,

𝑡

2

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
1

𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

) ,

] (𝑔 (𝑥2) − 𝐹 (𝑥2, . . . , 𝑥𝑛, 𝑥1) , 𝛼𝑡)

= ] (𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
))

+𝑔 (𝑔 (𝑥
2

𝑘+1
)) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝛼𝑡)

≤ ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝑥2
𝑘+1
) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝐹 (𝑥2
𝑘
, . . . , 𝑥

𝑛

𝑘
, 𝑥
1

𝑘
))

−𝐹 (𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝐹 (𝑔 (𝑥2
𝑘
) , . . . , 𝑔 (𝑥

𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
))

−𝐹 (𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
1
) ,

𝛼𝑡

2

)

≤ ](𝑔 (𝑥2) − 𝑔 (𝑔 (𝑥2
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥2
𝑘
)) − 𝑔 (𝑥

2
) ,

𝑡

2

)

⬦ ⋅ ⋅ ⋅ ⬦ ](𝑔 (𝑔 (𝑥𝑛
𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥1
𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

)

(40)

by taking limit as 𝑘 → ∞ and using (37), we get the following
equalities:

𝜇 (𝑔 (𝑥
2
) − 𝐹 (𝑥

2
, . . . , 𝑥

𝑛
, 𝑥
1
) , 𝛼𝑡) = 1,

] (𝑔 (𝑥2) − 𝐹 (𝑥2, . . . , 𝑥𝑛, 𝑥1) , 𝛼𝑡) = 0.
(41)

Hence, 𝐹(𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥1) = 𝑔(𝑥2), . . ..

We continue process

𝜇 (𝑔 (𝑥
𝑛
) − 𝐹 (𝑥

𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) , 𝛼𝑡)

= 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) + 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) , 𝛼𝑡)

≥ 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝐹 (𝑥
𝑛

𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

= 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝐹 (𝑔 (𝑥
𝑛

𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

≥ 𝜇 (𝑔 (𝑥
𝑛
) − 𝑔 (𝑔 (𝑥

𝑛

𝑘+1
)) ,

𝛼𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛

𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

)

∗ 𝜇 (𝑔 (𝑔 (𝑥
1

𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

)

∗ ⋅ ⋅ ⋅ ∗ 𝜇 (𝑔 (𝑔 (𝑥
𝑛−1

𝑘
)) − 𝑔 (𝑥

𝑛−1
) ,

𝑡

2

) ,

] (𝑔 (𝑥𝑛) − 𝐹 (𝑥𝑛, 𝑥1, 𝑥2 ⋅ ⋅ ⋅ , 𝑥𝑛−1) , 𝛼𝑡)

= ] (𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) + 𝑔 (𝑔 (𝑥

1

𝑘+1
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) , 𝛼𝑡)

≤ ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) − 𝐹 (𝑥

𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝐹 (𝑥𝑛
𝑘
, 𝑥
1

𝑘
, . . . , 𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

= ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝛼𝑡

2

)
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⬦ ](𝐹 (𝑔 (𝑥𝑛
𝑘
) , 𝑔 (𝑥

1

𝑘
) , . . . , 𝑔 (𝑥

𝑛−1

𝑘
))

−𝐹 (𝑥
𝑛
, 𝑥
1
, 𝑥
2
⋅ ⋅ ⋅ , 𝑥

𝑛−1
) ,

𝛼𝑡

2

)

≤ ](𝑔 (𝑥𝑛) − 𝑔 (𝑔 (𝑥𝑛
𝑘+1
)) ,

𝛼𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥𝑛
𝑘
)) − 𝑔 (𝑥

𝑛
) ,

𝑡

2

)

⬦ ](𝑔 (𝑔 (𝑥1
𝑘
)) − 𝑔 (𝑥

1
) ,

𝑡

2

)

⬦ ⋅ ⋅ ⋅ ⬦ ](𝑔 (𝑔 (𝑥𝑛−1
𝑘
)) − 𝑔 (𝑥

𝑛−1
) ,

𝑡

2

)

(42)

by taking limit as 𝑘 → ∞ and using (37), we obtain the last
equalities. That is,

𝜇 (𝑔 (𝑥
𝑛
) − 𝐹 (𝑥

𝑛
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) , 𝛼𝑡) = 1,

] (𝑔 (𝑥𝑛) − 𝐹 (𝑥𝑛, 𝑥1, 𝑥2, . . . , 𝑥𝑛−1) , 𝛼𝑡) = 0.
(43)

Hence, 𝐹(𝑥𝑛, 𝑥1, 𝑥2, . . . , 𝑥𝑛−1) = 𝑔(𝑥𝑛).
Thus,we proved that𝐹 and𝑔have an 𝑛-tuplet coincidence

point.

Remark 13. Theorems 11 and 12 are restricted toTheorem 2.5
in [29] for 𝑛 = 2; it is restricted to Theorem 3.1 in [36] for
𝑛 = 2 and 𝑔 = 𝐼. For 𝑛 = 3, Theorems 11 and 12 are restricted
toTheorem 2.1 in [30].
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