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A system of differential set-valued variational inequalities is introduced and studied in finite dimensional Euclidean spaces. An
existence theorem of weak solutions for the system of differential set-valued variational inequalities in the sense of Carathéodory
is proved under some suitable conditions. Furthermore, a convergence result on Euler time-dependent procedure for solving the
system of differential set-valued variational inequalities is also given.

1. Introduction

For a set-valued mapping 𝐹 : 𝑅𝑛  𝑅𝑛 and a nonempty
closed convex set 𝐾 in 𝑅𝑛, the VI(𝐾, 𝐹), is to find 𝑢 ∈ 𝐾
and 𝑢∗ ∈ 𝐹(𝑢) such that ⟨𝑢∗, 𝑢 − 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝐾.
Let SOL(𝐾, 𝐹) denote the solution set of this problem. We
write �̇� := 𝑑𝑥/𝑑𝑡 for the time-derivative of a function 𝑥(𝑡).
In this paper, we consider the following system of differential
set-valued variational inequalities:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵
1
(𝑡, 𝑥 (𝑡)) 𝑢 (𝑡) + 𝐵

2
(𝑡, 𝑥 (𝑡)) V (𝑡) ,

⟨𝐺
1
(𝑡, 𝑥 (𝑡)) + 𝐹

1
(𝑢 (𝑡)) , 𝑢



− 𝑢 (𝑡)⟩ ≥ 0, ∀𝑢


∈ 𝐾,

⟨𝐺
2
(𝑡, 𝑥 (𝑡)) + 𝐹

2
(V (𝑡)) , V − V (𝑡)⟩ ≥ 0, ∀V ∈ 𝐾,

𝑥 (0) = 𝑥
0
,

(1)

where Ω ≡ [0, 𝑇] × 𝑅𝑚, 𝑓 : Ω → 𝑅
𝑚, 𝐵
𝑖
: Ω → 𝑅

𝑚×𝑛,
𝐺
𝑖
: Ω → 𝑅

𝑛, and𝐹
𝑖
: 𝑅
𝑛

 𝑅
𝑛 (𝑖 = 1, 2) are givenmappings.

In [1], Pang and Stewart introduced a class of differen-
tial variational inequalities in finite dimensional Euclidean
spaces. For some related results, we refer to [2–17]. Recently,
the differential variational inequalities have been used in
cellular biology (see [18]). In [18], the authors needed two
or more variational inequalities to formulate the switching

between the metabolic models. Sometimes it is convenient to
apply the differential vector variational inequalities in [19] to
show the fermentation dynamics. However, when we study
the fermentation model (20) in [18], we find that the system
(1) in this paper can help us a lot.

In this paper, we establish an existence theorem of weak
solutions for the system (1) in the sense of Carathéodory
under some suitable conditions. Furthermore, we give a
convergence result on Euler time-dependent procedure for
solving the system (1).

2. Preliminaries

In this section, we will introduce some basic notations and
preliminary results.

In the rest of this paper, we will use the following
assumptions (A) and (B).

(A) 𝑓, 𝐵
1
, 𝐵
2
, 𝐺
1
, and 𝐺

2
are Lipschitz continuous func-

tions onΩwith Lipschitz constants 𝐿
𝑓
, 𝐿
𝐵
1

, 𝐿
𝐵
2

, 𝐿
𝐺
1

,
and 𝐿

𝐺
2

, respectively.
(B) 𝐵
1
is bounded on Ω with 𝜎

𝐵
1

≡ sup
(𝑡,𝑥)∈Ω

‖𝐵
1
(𝑡, 𝑥)‖ <

∞; 𝐵
2

is bounded on Ω with 𝜎
𝐵
2

≡

sup
(𝑡,𝑥)∈Ω

‖𝐵
2
(𝑡, 𝑥)‖ < ∞.
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Definition 1. A set-valued map 𝐹 : 𝑅𝑛  𝑅𝑛 is said to be

(i) monotone on a convex set 𝐾 ⊂ 𝑅𝑛 if for each pair of
points 𝑥, 𝑦 ∈ 𝐾, and for all 𝑥∗ ∈ 𝐹(𝑥) and 𝑦∗ ∈ 𝐹(𝑦),
⟨𝑥
∗

− 𝑦
∗

, 𝑥 − 𝑦⟩ ≥ 0;
(ii) pseudo monotone on a convex set 𝐾 ⊂ 𝑅𝑛 if for each

pair of points 𝑥, 𝑦 ∈ 𝐾, and for all 𝑥∗ ∈ 𝐹(𝑥) and 𝑦∗ ∈
𝐹(𝑦), ⟨𝑦∗, 𝑥 − 𝑦⟩ ≥ 0 implies that ⟨𝑥∗, 𝑥 − 𝑦⟩ ≥ 0.

Definition 2. A function𝑓 : Ω → 𝑅𝑛 (resp., 𝐵 : Ω → 𝑅𝑛×𝑚)
is said to be Lipschitz continuous if there exists a constant
𝐿
𝑓
> 0 (resp., 𝐿

𝐵
> 0) such that, for any (𝑡

1
, 𝑥), (𝑡

2
, 𝑦) ∈ Ω,

𝑓 (𝑡1, 𝑥) − 𝑓 (𝑡2, 𝑦)
 ≤ 𝐿𝑓 (

𝑡1 − 𝑡2
 +
𝑥 − 𝑦

)

(resp., 𝐵 (𝑡1, 𝑥) − 𝐵 (𝑡2, 𝑦)
 ≤ 𝐿𝐵 (

𝑡1 − 𝑡2
 +
𝑥 − 𝑦

)) .

(2)

Definition 3. Let 𝑋, 𝑌 be topological spaces and let 𝐹 :
𝑋  𝑌 be a set-valued mapping with nonempty values. One
says that 𝐹 is upper semicontinuous at 𝑥

0
∈ 𝑋 if and only

if, for any neighborhood N(𝐹(𝑥
0
)) of 𝐹(𝑥

0
), there exists a

neighborhoodN(𝑥
0
) of 𝑥
0
such that

𝐹 (𝑥) ⊂N (𝐹 (𝑥
0
)) , ∀𝑥 ∈N (𝑥

0
) . (3)

Lemma 4 (see [1]). Let F : Ω  𝑅𝑚 be an upper semi-
continuous set-valued map with nonempty closed convex
values. Suppose that there exists a scalar 𝜌F > 0 satisfying

sup {𝑦
 : 𝑦 ∈ F (𝑡, 𝑥)} ≤ 𝜌F (1 + ‖𝑥‖) , ∀ (𝑡, 𝑥) ∈ Ω.

(4)

For every 𝑥0 ∈ 𝑅𝑛, the 𝐷𝐼 : �̇� ∈ F(𝑡, 𝑥), 𝑥(0) = 𝑥0 has a weak
solution in the sense of Carathéodory.

Lemma 5 (see [1]). Let ℎ : Ω × 𝑅𝑚 → 𝑅
𝑛 be a continuous

function and let 𝑈 : Ω  𝑅𝑚 be a closed set-valued map such
that, for some constant 𝜂

𝑈
> 0,

sup
𝑢∈𝑈(𝑡,𝑥)

‖𝑢‖ ≤ 𝜂
𝑈
(1 + ‖𝑥‖) , ∀ (𝑡, 𝑥) ∈ Ω. (5)

Let V : [0, 𝑇] → 𝑅𝑛 be ameasurable function and let 𝑥 : [0, 𝑇]
→ 𝑅

𝑛 be a continuous function satisfying V(𝑡) ∈ ℎ(𝑡, 𝑥(𝑡),
𝑈(𝑡, 𝑥(𝑡))) for almost all 𝑡 ∈ [0, 𝑇]. There exists a measurable
function 𝑢 : [0, 𝑇] → 𝑅

𝑚 such that 𝑢(𝑡) ∈ 𝑈(𝑡, 𝑥(𝑡)) and
V(𝑡) = ℎ(𝑡, 𝑥(𝑡), 𝑢(𝑡)) for almost all 𝑡 ∈ [0, 𝑇].

Lemma 6 (see [20]). Let �̂� denote the Lebesgue measure on
𝑅
𝑛 and let 𝑓 : 𝑅𝑛 → 𝑅𝑚 be a measurable function. Let 𝐿 be

a measurable set in 𝑅𝑛 with �̂�(𝐿) < ∞. Then, for any 𝜀 > 0,
there exists a compact set 𝐾 ⊆ 𝐿 with �̂�(𝐿 \ 𝐾) < 𝜀 such that
the restriction of 𝑓 to 𝐾 is continuous.

Definition 7 (see [21]). An acyclic set is a set whose homology
is the same as the homology of the space consisting of just one
point. An acyclic map is an upper semicontinuous set-valued
map which has compact acyclic values.

In [21], we can find that every homeomorphic image of a
compact convex set is an acyclic set.

Lemma 8 (see [1]). Every acyclic set-valued map 𝐹 : 𝑋 → 𝑋
on a compact convex set𝑋 has a fixed point: 𝑥 ∈ 𝐹(𝑥) for some
𝑥 ∈ 𝑋.

3. Main Results

In this section, we obtain existence theorem for weak solu-
tions of the differential set-valued variational inequality in
the sense of Carathéodory. Furthermore, we establish a con-
vergence result for solving differential set-valued variational
inequality.

Theorem 9. Assume that (𝑓, 𝐵
1
, 𝐵
2
, 𝐺
1
, 𝐺
2
) satisfy conditions

(A) and (B) and 𝐹
𝑖
: 𝑅
𝑛

 𝑅
𝑛

(𝑖 = 1, 2) are upper
semicontinuous with nonempty and compact values such that
𝑞
𝑖
+ 𝐹
𝑖
(𝑖 = 1, 2) are pseudo monotone on 𝑅𝑛 for each 𝑞

𝑖
∈

𝐺
𝑖
(Ω) (𝑖 = 1, 2). If 𝐾 is a bounded, closed, and convex subset

of 𝑅𝑛, then initial-value system (1) has a weak solution.

Proof. From the proofs of Lemmas 3.2, 3.3, and 3.4 and
Theorem 3.1 in [19], it is easy to see that the assumption “𝐹
is pseudo monotone on 𝑅𝑛” in there should be replaced by
the assumption “𝑞 + 𝐹 is pseudo monotone on 𝑅𝑛 for each
𝑞 ∈ 𝐺(Ω).” Since 𝐾 is a bounded, closed, and convex subset
of 𝑅𝑛, it follows from Lemma 3.3 in [19] that SOL(𝐾, 𝑞

𝑖
+

𝐹
𝑖
) (𝑖 = 1, 2) are nonempty and bounded. Let 𝑢 = (𝑢

1
, 𝑢
2
),

where 𝑢
𝑖
∈ SOL(𝐾, 𝑞

𝑖
+ 𝐹
𝑖
), (𝑖 = 1, 2). Then it follows that

𝑢 is bounded on 𝑅2𝑛. Moreover, Lemma 3.4 in [19] shows
that SOL(𝐾, 𝑞

𝑖
+ 𝐹
𝑖
) (𝑖 = 1, 2) are closed and convex for all

𝑞
𝑖
∈ 𝐺
𝑖
(Ω). Therefore, SOL(𝐾, 𝑞

1
+ 𝐹
2
) × SOL(𝐾, 𝑞

2
+ 𝐹
2
) is

closed and convex. Let

F (𝑡, 𝑥) ≡ {𝑓 (𝑡, 𝑥) + 𝐵
1
(𝑡, 𝑥) 𝑢

1
+ 𝐵
2
(𝑡, 𝑥) 𝑢

2
:

𝑢
𝑖
∈ SOL (𝐾, 𝐺

𝑖
(𝑡, 𝑥) + 𝐹

𝑖
)} .

(6)

We can prove in a similar way as Lemma 6.3 in [1] that F
has linear growth and it is upper semicontinuous on Ω. Now
it follows from Lemmas 4 and 5 that system (1) has a weak
solution. This completes the proof.

Remark 10. If 𝐹
𝑖
: 𝑅
𝑛

 𝑅
𝑛

(𝑖 = 1, 2) are monotone, then it
is easy to see that 𝑞

𝑖
+ 𝐹
𝑖
(𝑖 = 1, 2) are pseudo monotone on

𝑅
𝑛 for each 𝑞

𝑖
∈ 𝐺
𝑖
(Ω) (𝑖 = 1, 2).

Lemma 11. Let 𝐺 : Ω × 𝑅𝑚 → 𝑅𝑛 be a continuous function,
𝐹 : 𝐿
2

[0, 𝑇]  𝐿
2

[0, 𝑇] a set-valued function, and 𝑢(𝑡) ∈ 𝐾
with 𝑢 ∈ 𝐿2[0, 𝑇]. Suppose there exists 𝑢∗ ∈ 𝐹(𝑢) such that, for
any continuous function �̃� : [0, 𝑇] → 𝐾, one has

∫

𝑇

0

⟨𝐺 (𝑡, 𝑥 (𝑡)) + 𝑢
∗

(𝑡) , �̃� (𝑡) − 𝑢 (𝑡)⟩ 𝑑𝑡 ≥ 0. (7)

Then, for almost all 𝑡 ∈ [0, 𝑇], 𝑢(𝑡) ∈ SOL(𝐾, 𝐺(𝑡, 𝑥(𝑡))+𝐹(⋅)).

Proof. We assume that the contrary holds. Then there exists
a set 𝐸 ⊂ [0, 𝑇] with �̂�(𝐸) > 0 (where �̂�(𝐸) denotes the
Lebesgue measure of 𝐸 such that, for all 𝑡 ∈ 𝐸, 𝑢(𝑡) ∉
SOL(𝐾, 𝐺(𝑡, 𝑥(𝑡)) + 𝐹(⋅)). By Lemma 6, we know that there
exists a closed subset 𝐸

1
of 𝐸 with �̂�(𝐸

1
) > 0 such that 𝑢(𝑡)
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and 𝑢∗(𝑡) are continuous on 𝐸
1
, where 𝑢∗(𝑡) ∈ 𝐹(𝑢(𝑡)). Then

there exists a closed subset 𝐸
2
of 𝐸
1
with �̂�(𝐸

2
) > 0 and

V
0
∈ 𝐾 such that

⟨𝐺 (𝑡, 𝑥 (𝑡)) + 𝑢
∗

(𝑡) , V
0
− 𝑢 (𝑡)⟩ < 0, (8)

and so

∫
𝐸
2

⟨𝐺 (𝑡, 𝑥 (𝑡)) + 𝑢
∗

(𝑡) , V
0
− 𝑢 (𝑡)⟩ 𝑑𝑡 < 0. (9)

Let

𝑢
0
(𝑡) = {

V
0
, 𝑡 ∈ 𝐸

2
,

𝑢 (𝑡) , 𝑡 ∈ [0, 𝑇] \ 𝐸
2
.

(10)

We know that 𝑢
0
(𝑡) ∈ 𝐾 is an integrable function on [0, 𝑇].

Since the space of continuous functions𝐶([0, 𝑇]; 𝑅𝑚) is dense
in 𝐿1([0, 𝑇]; 𝑅𝑚), we can approximate 𝑢

0
(𝑡) ∈ 𝐿

1

([0, 𝑇]; 𝑅
𝑚

)

by continuous functions 𝑢(𝑡) ∈ 𝐾 and obtain that there exists
a continuous function 𝑢(𝑡) such that

∫

𝑇

0

⟨𝐺 (𝑡, 𝑥 (𝑡)) + 𝑢
∗

(𝑡) , 𝑢 (𝑡) − 𝑢 (𝑡)⟩ 𝑑𝑡 < 0, (11)

which contradicts (7). This completes the proof.

Remark 12. If 𝑢(𝑡) is an integrable function satisfying, for
almost all 𝑡 ∈ [0, 𝑇],

𝑢 (𝑡) ∈ SOL (𝐾, 𝐺 (𝑡, 𝑥 (𝑡) , ⋅) + 𝐹 (⋅)) , (12)

then the integral inequality (7) must hold for any continuous
�̂� : [0, 𝑇] → 𝐾.

Now we begin to design a computational method for
solving DVI (1). With 𝑥ℎ,0 := 𝑥0, we compute

{𝑥
ℎ,1

, 𝑥
ℎ,2

, . . . , 𝑥
ℎ,𝑁
ℎ
+1

} ⊂ 𝑅
𝑛

,

{𝑢
ℎ,1

, 𝑢
ℎ,2

, . . . , 𝑢
ℎ,𝑁
ℎ
+1

} ⊂ 𝐾,

{Vℎ,1, Vℎ,2, . . . , Vℎ,𝑁ℎ+1} ⊂ 𝐾,

(13)

by the recursion, for 𝑖 = 0, 1, . . . , 𝑁
ℎ
, where𝑁

ℎ
= (𝑇/ℎ) − 1,

𝑥
ℎ,𝑖+1

= 𝑥
ℎ,𝑖

+ ℎ [𝑓 (𝑡
ℎ,𝑖+1
, 𝜃𝑥
ℎ,𝑖

+ (1 − 𝜃) 𝑥
ℎ,𝑖+1

)

+𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑢
ℎ,𝑖+1

+ 𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) Vℎ,𝑖+1] ,

𝑢
ℎ,𝑖+1

∈ SOL (𝐾, 𝐺
1
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

) + 𝐹
1
) ,

Vℎ,𝑖+1 ∈ SOL (𝐾, 𝐺
2
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

) + 𝐹
2
) ;

(14)

that is,

𝑥
ℎ,𝑖+1

= 𝑥
ℎ,𝑖

+ ℎ [𝑓 (𝑡
ℎ,𝑖+1
, 𝜃𝑥
ℎ,𝑖

+ (1 − 𝜃) 𝑥
ℎ,𝑖+1

)

+𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑢
ℎ,𝑖+1

+ 𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) Vℎ,𝑖+1] ,

⟨𝐺
1
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

) + 𝐹
1
(𝑢
ℎ,𝑖+1

) , 𝑢


− 𝑢
ℎ,𝑖+1

⟩ ≥ 0, ∀𝑢


∈ 𝐾,

⟨𝐺
2
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

) + 𝐹
2
(Vℎ,𝑖+1) , V − Vℎ,𝑖+1⟩ ≥ 0, ∀V ∈ 𝐾.

(15)

Lemma 13. Let (𝑓, 𝐵
1
, 𝐵
2
, 𝐺
1
, 𝐺
2
) satisfy conditions (A) and

(B). Then there exists an ℎ
0
> 0 such that, for any ℎ ∈

(0, ℎ
0
], (𝑥
𝑟𝑒𝑓

, 𝑢, V) ∈ 𝑅𝑛+𝑚+𝑚 with 𝜃 ∈ [0, 1] and 𝑡, 𝑡
𝑟𝑒𝑓

in
[0, 𝑇], there exists a unique vector 𝑥

𝑢V satisfying

𝑥
𝑢V − 𝑥

𝑟𝑒𝑓

= ℎ [𝑓 (𝑡, 𝜃𝑥
𝑟𝑒𝑓

+ (1 − 𝜃) 𝑥
𝑢V) + 𝐵1 (𝑡𝑟𝑒𝑓, 𝑥

𝑟𝑒𝑓

) 𝑢

+𝐵
2
(𝑡
𝑟𝑒𝑓
, 𝑥
𝑟𝑒𝑓

) V] .

(16)

Moreover, for any 𝑢, V, 𝑢, V ∈ 𝑅𝑚, one has

𝑥𝑢V − 𝑥𝑢V
 ≤

ℎ𝜎
𝐵
1


𝑢 − 𝑢


+ ℎ𝜎
𝐵
2


V − V



1 − ℎ (1 − 𝜃) 𝐿
𝑓

,


𝑥
𝑢V − 𝑥

𝑟𝑒𝑓

≤

𝜌
𝑓
(1 +

𝑥
𝑟𝑒𝑓

) + 𝜎
𝐵
1
‖𝑢‖ + 𝜎

𝐵
2
‖V‖

1 − ℎ (1 − 𝜃) 𝜌
𝑓

.

(17)

Proof. It suffices to choose ℎ
0
satisfying

0 < ℎ
0
< min{ 1

(1 − 𝜃) 𝐿
𝑓

,
1

(1 − 𝜃) 𝜌
𝑓

} . (18)

The right-hand side is taken to be ∞ if 𝜃 = 1. Under this
choice, consider any tuple (ℎ, 𝑥ref, 𝑢, V, 𝑡, 𝑡ref) as specified. Let

F (𝑥) = ℎ𝑓 (𝑡, 𝜃𝑥
ref
+ (1 − 𝜃) 𝑥) + ℎ𝐵

1
(𝑡ref, 𝑥

ref
) 𝑢

+ ℎ𝐵
2
(𝑡ref, 𝑥

ref
) V + 𝑥ref.

(19)

Then
F (𝑥1) −F (𝑥2)



=

ℎ𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

1
) − ℎ𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

2
)


≤ ℎ𝐿
𝑓
(1 − 𝜃)

𝑥1 − 𝑥2
 ,

(20)

with 0 < ℎ𝐿
𝑓
(1 − 𝜃) < 1. This shows that the map F is

contractive and so there exists a unique vector 𝑥
𝑢V such that

𝑥
𝑢V − 𝑥

ref
= ℎ [𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

𝑢V) + 𝐵1 (𝑡ref, 𝑥
ref
) 𝑢

+𝐵
2
(𝑡ref, 𝑥

ref
) V] .

(21)

It implies that, for any (𝑢
1
, V
1
), (𝑢
2
, V
2
) ∈ 𝑅

𝑚×𝑚, there exist
𝑥
𝑢
1
V
1

and 𝑥
𝑢
2
V
2

such that

𝑥
𝑢
1
V
1

− 𝑥
ref
=ℎ [𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

𝑢
1
V
1

) +𝐵
1
(𝑡ref, 𝑥

ref
) 𝑢
1

+𝐵
2
(𝑡ref, 𝑥

ref
) V
1
] ,

𝑥
𝑢
2
,V
2

− 𝑥
ref
=ℎ [𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

𝑢
2
,V
2

)+ 𝐵
1
(𝑡ref, 𝑥

ref
) 𝑢
2

+𝐵
2
(𝑡ref, 𝑥

ref
) V
2
] .

(22)
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By (22), we have

𝑥
𝑢
1
V
1

− 𝑥
𝑢
2
,V
2



≤ ℎ𝐿
𝑓
(1 − 𝜃)


𝑥
𝑢
1
V
1

− 𝑥
𝑢
2
,V
2


+ ℎ𝜎
𝐵
1

𝑢1 − 𝑢2


+ ℎ𝜎
𝐵
2

V1 − V2


(23)

and so


𝑥
𝑢
1
V
1

− 𝑥
𝑢
2
,V
2


≤

ℎ𝜎
𝐵
1

𝑢1 − 𝑢2
 + ℎ𝜎𝐵2

V1 − V2


1 − ℎ𝐿
𝑓
(1 − 𝜃)

. (24)

Now the Lipschitz continuity of 𝑓 implies that there exists 𝜌
𝑓

satisfying
𝑓 (𝑡, 𝑥)

 ≤ 𝜌𝑓 (1 + ‖𝑥‖) . (25)

It follows that

𝑥
𝑢V − 𝑥

ref

= ℎ

𝑓 (𝑡, 𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

𝑢V) + 𝐵1 (𝑡ref, 𝑥
ref
) 𝑢

+𝐵
2
(𝑡ref, 𝑥

ref
) V


≤ ℎ𝜌
𝑓
(1 +

𝜃𝑥

ref
+ (1 − 𝜃) 𝑥

𝑢V

) + ℎ𝜎

𝐵
1
‖𝑢‖ + ℎ𝜎

𝐵
2
‖V‖

≤ ℎ𝜌
𝑓
(1 + (1 − 𝜃)


𝑥
𝑢V − 𝑥

ref +

𝑥
ref)

+ ℎ𝜎
𝐵
1
‖𝑢‖ + ℎ𝜎

𝐵
2
‖V‖

(26)

and so


𝑥
𝑢V − 𝑥

ref ≤
ℎ𝜌
𝑓
(1 +

𝑥
ref) + ℎ𝜎𝐵1 ‖𝑢‖ + ℎ𝜎𝐵2 ‖V‖

1 − ℎ𝜌
𝑓
(1 − 𝜃)

.

(27)

This completes the proof.

Lemma 14. Let (𝑓, 𝐵
1
, 𝐵
2
, 𝐺
1
, 𝐺
2
) satisfy conditions (A) and

(B). Suppose that SOL(𝐾, 𝑞
1
+ 𝐹
1
) and SOL(𝐾, 𝑞

2
+ 𝐹
2
) satisfy

the linear growth properties

sup {‖𝑢‖ : 𝑢 ∈ SOL (𝐾, 𝑞
1
+ 𝐹
1
)} ≤ 𝜌

1
(1 +
𝑞1
) ,

∀𝑞
1
∈ 𝐺
1
(Ω) ,

sup {‖𝑢‖ : 𝑢 ∈ SOL (𝐾, 𝑞
2
+ 𝐹
2
)} ≤ 𝜌

2
(1 +
𝑞2
) ,

∀𝑞
2
∈ 𝐺
2
(Ω) .

(28)

Then there exist positive scalars 𝐶
0𝑥
, 𝐶
1𝑥
, 𝐶
0𝑢
, 𝐶
1𝑢
, 𝐶
0V, 𝐶1V,

and ℎ
1
such that, for any ℎ ∈ (0, ℎ

1
] and 𝑖 = 0, 1, . . . , 𝑁

ℎ
,


𝑥
ℎ,𝑖+1

≤ 𝐶
0𝑥
+ 𝐶
1𝑥


𝑥
0

,


𝑢
ℎ,𝑖+1

≤ 𝐶
0𝑢
+ 𝐶
1𝑢


𝑥
0

,


Vℎ,𝑖+1

≤ 𝐶
0V + 𝐶1V


𝑥
0

.

(29)

Proof. Throughout the proof below, the scalar ℎ > 0 is taken
to be sufficiently small. Let

𝜌
𝑥
=

𝜌
𝑓
+ 𝜎
𝐵
1

+ 𝜎
𝐵
2

1 − ℎ (1 − 𝜃) 𝜌
𝑓

. (30)

It follows from Lemma 13 that


𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖

≤ ℎ𝜌
𝑥
(1 +

𝑥
ℎ,𝑖

+

𝑢
ℎ,𝑖+1

+

Vℎ,𝑖+1

) .

(31)

By the linear growth of solutions to VI, we have


𝑢
ℎ,𝑖+1


≤ 𝜌
1
(1 +

𝐺
1
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

)

)

≤ 𝜌
1
(1 + 𝜌

𝐺
1

(1 +

𝑥
ℎ,𝑖+1

))

≤ 𝜌
1
[1 + 𝜌

𝐺
1

{1 +

𝑥
ℎ,𝑖

+ ℎ𝜌
𝑥

× (1 +

𝑥
ℎ,𝑖

+

𝑢
ℎ,𝑖+1

+

Vℎ,𝑖+1

)}]

≤ (𝜌
1
+ 𝜌
1
𝜌
𝐺
1

+ ℎ𝜌
1
𝜌
𝐺
1

𝜌
𝑥
)

+ (𝜌
1
𝜌
𝐺
1

+ ℎ𝜌
1
𝜌
𝐺
1

𝜌
𝑥
)

𝑥
ℎ,𝑖

+ ℎ𝜌
1
𝜌
𝐺
1

𝜌
𝑥


𝑢
ℎ,𝑖+1


+ ℎ𝜌
1
𝜌
𝐺
1

𝜌
𝑥


Vℎ,𝑖+1

,


Vℎ,𝑖+1


≤ 𝜌
2
(1 +

𝐺
2
(𝑡
ℎ,𝑖+1
, 𝑥
ℎ,𝑖+1

)

)

≤ 𝜌
2
(1 + 𝜌

𝐺
2

(1 +

𝑥
ℎ,𝑖+1

))

≤ 𝜌
2
[1 + 𝜌

𝐺
2

{1 +

𝑥
ℎ,𝑖

+ ℎ𝜌
𝑥

× (1 +

𝑥
ℎ,𝑖

+

𝑢
ℎ,𝑖+1

+

Vℎ,𝑖+1

)}]

≤ (𝜌
2
+ 𝜌
2
𝜌
𝐺
2

+ ℎ𝜌
2
𝜌
𝐺
2

𝜌
𝑥
)

+ (𝜌
2
𝜌
𝐺
2

+ ℎ𝜌
2
𝜌
𝐺
2

𝜌
𝑥
)

𝑥
ℎ,𝑖

+ ℎ𝜌
2
𝜌
𝐺
2

𝜌
𝑥


𝑢
ℎ,𝑖+1


+ ℎ𝜌
2
𝜌
𝐺
2

𝜌
𝑥


Vℎ,𝑖+1

.

(32)

Let

𝑀
1
= 𝜌
1
+ 𝜌
1
𝜌
𝐺
1

+ ℎ𝜌
1
𝜌
𝐺
1

𝜌
𝑥
, 𝑁

1
= 𝜌
1
𝜌
𝐺
1

𝜌
𝑥
,

𝑀
2
= 𝜌
2
+ 𝜌
2
𝜌
𝐺
2

+ ℎ𝜌
2
𝜌
𝐺
2

𝜌
𝑥
, 𝑁

2
= 𝜌
2
𝜌
𝐺
2

𝜌
𝑥
.

(33)

Then, we have

(1 − ℎ𝑁
1
)

𝑢
ℎ,𝑖+1

≤ 𝑀(1 +


𝑥
ℎ,𝑖

) + ℎ𝑁

1


Vℎ,𝑖+1

,

(1 − ℎ𝑁
2
)

Vℎ,𝑖+1

≤ 𝑀(1 +


𝑥
ℎ,𝑖

) + ℎ𝑁

2


𝑢
ℎ,𝑖+1

.

(34)



Journal of Function Spaces 5

Letting 0 < ℎ < min{1/𝑁
1
, 1/𝑁
2
}, one has


𝑢
ℎ,𝑖+1

≤

1

1 − ℎ𝑁
1

× [𝑀(1 +

𝑥
ℎ,𝑖

) + ℎ𝑁

1

×(
1

1 − ℎ𝑁
2

(𝑀(1 +

𝑥
ℎ,𝑖

)+ℎ𝑁

2


𝑢
ℎ,𝑖+1

))] .

(35)

When ℎ is sufficiently small, there exists 𝜌
𝑀
1

> 0 such that

𝑢
ℎ,𝑖+1

≤ 𝜌
𝑀
1

(1 +

𝑥
ℎ,𝑖

) . (36)

In a similar way, we can prove that there exists 𝜌
𝑀
2

> 0 such
that


Vℎ,𝑖+1

≤ 𝜌
𝑀
2

(1 +

𝑥
ℎ,𝑖

) . (37)

It follows from (31) that

𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖


≤ ℎ𝜌
𝑥
(1 +

𝑥
ℎ,𝑖

+ 𝜌
𝑀
1

(1 +

𝑥
ℎ,𝑖

) + 𝜌
𝑀
2

(1 +

𝑥
ℎ,𝑖

))

= (ℎ𝜌
𝑥
+ ℎ𝜌
𝑥
𝜌
𝑀
1

+ ℎ𝜌
𝑥
𝜌
𝑀
2

) (1 +

𝑥
ℎ,𝑖

) .

(38)

Let

𝜓
𝑥
= 𝜌
𝑥
+ 𝜌
𝑥
𝜌
𝑀
1

+ 𝜌
𝑥
𝜌
𝑀
2

. (39)

Then

𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖

≤ ℎ𝜓
𝑥
(1 +

𝑥
ℎ,𝑖

) . (40)

It follows from Lemma 7.2 in [1] that there exist positive
scalars 𝐶

0𝑥
, 𝐶
1𝑥
, 𝐶
0𝑢
, 𝐶
1𝑢
, 𝐶
0V, 𝐶1V, and ℎ1 such that, for any

ℎ ∈ (0, ℎ
1
] and 𝑖 = 0, 1, . . . , 𝑁

ℎ
,


𝑥
ℎ,𝑖+1

≤ 𝐶
0𝑥
+ 𝐶
1𝑥


𝑥
0

,


𝑢
ℎ,𝑖+1

≤ 𝐶
0𝑢
+ 𝐶
1𝑢


𝑥
0

,


Vℎ,𝑖+1

≤ 𝐶
0V + 𝐶1V


𝑥
0

.

(41)

This completes the proof.

Lemma 15. Let𝐾 ⊂ 𝑅𝑛 be a nonempty, closed, and convex set
and let (𝑓, 𝐵

1
, 𝐵
2
, 𝐺
1
, 𝐺
2
) satisfy conditions (A) and (B). Sup-

pose that the set-valued maps 𝐹
1
, 𝐹
2
are upper semicontinuous

with nonempty compact values such that 𝑞
𝑖
+ 𝐹
𝑖
(𝑖 = 1, 2) are

pseudo monotone on 𝑅𝑛 for each 𝑞
𝑖
∈ 𝐺
𝑖
(Ω) (𝑖 = 1, 2). For

some constant 𝜌 > 0, SOL(𝐾, 𝑞
1
+ 𝐹
1
) and SOL(𝐾, 𝑞

2
+ 𝐹
2
)

satisfy the linear growth properties

sup {‖𝑢‖ : 𝑢 ∈ SOL (𝐾, 𝑞
1
+ 𝐹
1
)} ≤ 𝜌 (1 +

𝑞1
) ,

∀𝑞
1
∈ 𝐺
1
(Ω) ,

(42)

sup {‖𝑢‖ : 𝑢 ∈ SOL (𝐾, 𝑞
2
+ 𝐹
2
)} ≤ 𝜌 (1 +

𝑞2
) ,

∀𝑞
2
∈ 𝐺
2
(Ω) .

(43)

Then there exists a scalar ℎ
𝑅
> 0 such that, for any ℎ ∈ (0, ℎ

𝑅
]

with 𝜃 ∈ [0, 1] and 𝑥0 ∈ 𝑅, there exists (𝑥ℎ,𝑖+1, 𝑢ℎ,𝑖+1, Vℎ,𝑖+1)
satisfying (15) for every 𝑖 = 0, 1, . . . , 𝑁

ℎ
.

Proof. Assume that𝜓
𝑥
is defined by (39). For any scalar ℎ > 0

sufficiently small, we define the scalars 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑁
ℎ
+1

by

𝜌
𝑖+1
≡ (1 + ℎ𝜓

𝑥
) 𝜌
𝑖
+ ℎ𝜓
𝑥
, 𝑖 = 0, 1, . . . , 𝑁

ℎ
, (44)

where 𝜌
0
is arbitrary. By the proof of Lemma 7.2 in [1], we can

show that

𝜌
𝑖
≤ 𝑒
𝑇𝜓
𝑥𝜌
0
+ 𝑒
𝑇𝜓
𝑥 − 1, ∀𝑖 = 0, 1, . . . , 𝑁

𝑖
+ 1. (45)

Let 𝛼 denote the quantity on the right-hand side, which
depends on 𝜌

0
but is independent of ℎ. Let 0 < ℎ

𝑅
<

min{ℎ
0
, ℎ
1
} satisfy

ℎ
𝑅

𝜌
𝑓
(1 + 𝛼) + (𝜎

𝐵
1

+ 𝜎
𝐵
2

) 𝜌𝜌
𝐺
1
(1 + 2𝛼)

1 − ℎ
𝑅
(1 − 𝜃) 𝜌

𝑓

< 𝛼, (46)

where ℎ
0
and ℎ

1
are as described in Lemmas 13 and 14,

respectively.
Next we show that, for any fixed ℎ ∈ (0, ℎ

𝑅
], there exists

a triple (𝑥ℎ,𝑖+1, 𝑢ℎ,𝑖+1, Vℎ,𝑖+1) satisfying (15) with ‖𝑥ℎ,𝑖+1‖ ≤ 𝜌
𝑖+1

for all 𝑖 = 0, 1, . . . , 𝑁
ℎ
. Let 𝐵

𝛼
denote the Euclidean ball in 𝑅𝑛

with center at the origin and radius 2𝛼. For any 𝑥 ∈ 𝐵
𝛼
, let

𝑆
𝑗
(𝑡, 𝑥) denote the nonempty set SOL(𝐾, 𝐺

𝑗
(𝑡, 𝑥) + 𝐹

𝑗
). Since

𝐺
𝑗
is Lipschitz continuous onΩ, we know that𝐺

𝑗
have linear

growth onΩ in 𝑥; that is, for some positive constants 𝜌
𝐺
𝑗

and
for all (𝑡, 𝑥) ∈ Ω,


𝐺
𝑗
(𝑡, 𝑥)

≤ 𝜌
𝐺
𝑗
(1 + ‖𝑥‖) . (47)

By the linear growth assumption, for any 𝑥 ∈ 𝐵
𝛼
, we have

sup {‖𝑢‖ : 𝑢 ∈ 𝑆
𝑗
(𝑡, 𝑥)} ≤ 𝜌 (1 +


𝐺
𝑗
(𝑡, 𝑥)

)

≤ 𝜌 (1 + 𝜌
𝐺
𝑗
(1 + ‖𝑥‖))

≤ 𝜌 (1 + 𝜌
𝐺
𝑗

) (1 + 2𝛼) , 𝑗 = 1, 2.

(48)

Definemappings 𝑆𝑖 from𝐵
𝛼
to subset of 𝐵

𝛼
as follows: for any

𝑥 ∈ 𝐵
𝛼
,

𝑆
𝑖

(𝑥) ≡ (𝐼 − ℎ𝑓 (𝑡
ℎ,𝑖+1
, 𝜃𝑥
ℎ,𝑖

+ (1 − 𝜃) 𝑥))
−1

× [𝑥
ℎ,𝑖

+ ℎ𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥)

+ℎ𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑆
2
(𝑡
ℎ,𝑖+1
, 𝑥)] .

(49)

Since 𝐹
1
and 𝐹

2
are upper semicontinuous with nonempty

compact values such that 𝑞
𝑖
+ 𝐹
𝑖
(𝑖 = 1, 2) are pseudo

monotone on 𝑅𝑛 for each 𝑞
𝑖
∈ 𝐺
𝑖
(Ω) (𝑖 = 1, 2), it follows

from Lemmas 3.3 and 3.4 in [19] that SOL(𝐾, 𝐺
1
(𝑡, 𝑥) +

𝐹
1
) and SOL(𝐾, 𝐺

2
(𝑡, 𝑥) + 𝐹

2
) are nonempty, closed, and

convex sets. By (48), we obtain that SOL(𝐾, 𝐺
1
(𝑡, 𝑥)+𝐹

1
) and
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SOL(𝐾, 𝐺
2
(𝑡, 𝑥) + 𝐹

2
) are compact and convex. Consider the

map

(𝑥, 𝑦) → 𝑥
ℎ,𝑖

+ ℎ𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑥 + ℎ𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑦. (50)

It is easy to see that this map is continuous. Therefore, by the
Tychonoff theorem,we know that 𝑆

1
(𝑡, 𝑥)×𝑆

2
(𝑡, 𝑥) is compact

and so

𝑥
ℎ,𝑖

+ ℎ𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥) + ℎ𝐵

2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑆
2
(𝑡
ℎ,𝑖+1
, 𝑥)

(51)

is compact. Since themapping (𝐼−ℎ𝑓(𝑡
ℎ,𝑖+1
, 𝜃𝑥
ℎ,𝑖

+(1−𝜃)⋅))
−1

is a homeomorphism for all ℎ > 0 sufficiently small, it follows
that 𝑆𝑖(𝑥) is a compact acyclic set. We need to show that 𝑆𝑖(𝑥)
is a subset of 𝐵

𝛼
. Let 𝑥 be an arbitrary element in 𝑆𝑖(𝑥) and let

𝑢 ∈ 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥), V ∈ 𝑆

2
(𝑡
ℎ,𝑖+1
, 𝑥) be such that

𝑥 = 𝑥
ℎ,𝑖

+ ℎ [𝑓 (𝑡
ℎ,𝑖+1
, 𝜃𝑥
𝑖

+ (1 − 𝜃) 𝑥) + 𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑢

+𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) V] .
(52)

From Lemma 13, we have


𝑥 − 𝑥
ℎ,𝑖

≤ ℎ

𝜌
𝑓
(1 +

𝑥
ℎ,𝑖

) + 𝜎
𝐵
1
‖𝑢‖ + 𝜎

𝐵
2
‖V‖

1 − ℎ (1 − 𝜃) 𝜌
𝑓

. (53)

By induction hypothesis and ‖𝑥ℎ,𝑖‖ ≤ 𝜌
𝑖
≤ 𝛼, one has

‖𝑥‖ ≤ 𝜌
𝑖
+ ℎ

𝜌
𝑓
(1 + 𝜌

𝑖
) + (𝜎

𝐵
1

+ 𝜎
𝐵
2

) 𝜌𝜌
𝐺
1
(1 + 2𝛼)

1 − ℎ (1 − 𝜃) 𝜌
𝑓

< 2𝛼.

(54)

Now we need to prove that the solution mapping 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥)

is upper semicontinuous. To prove the upper semicontinuity
of 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥), it suffices to show that 𝑆

1
(𝑡
ℎ,𝑖+1
, 𝑥) is closed.

Suppose that {𝑥
𝑛
} ⊂ 𝑅

𝑛 is a sequence converging to 𝑥
0
∈ 𝑅
𝑛

and 𝑢
𝑛
∈ 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥
𝑛
). Then the linear growth condition

implies that {𝑢
𝑛
} is bounded and so it has a convergent

subsequence with a limit 𝑢
0
. Since 𝑢

𝑛
∈ 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥
𝑛
), there

exists 𝑢
𝑛
∈ 𝐹
1
(𝑢
𝑛
) such that

⟨𝐺
1
(𝑡
ℎ,𝑖+1
, 𝑥
𝑛
) + 𝑢


𝑛
, 𝑢


− 𝑢
𝑛
⟩ , ∀𝑢



∈ 𝐾. (55)

Since 𝐹
1
is upper semicontinuous on 𝑅𝑛 with compact values,

it follows that there exists a subsequence of {𝑢
𝑛
}, denoted

again by {𝑢
𝑛
}, such that 𝑢

𝑛
→ 𝑢


0
∈ 𝐹
1
(𝑢
0
). Letting 𝑛 → ∞,

we have

⟨𝐺
1
(𝑡
ℎ,𝑖+1
, 𝑥
0
) + 𝑢


0
, 𝑢


− 𝑢
0
⟩ ≥ 0, ∀𝑢



∈ 𝐾 (56)

and so 𝑢
0
∈ 𝑆
1
(𝑡
ℎ,𝑖+1
, 𝑥
0
). It follows that 𝑆

1
(𝑡
ℎ,𝑖+1
, 𝑥) is closed

and so upper semicontinuous. In a similar way, we can prove
that 𝑆

2
(𝑡
ℎ,𝑖+1
, 𝑥) is upper semicontinuous. Thus, we know

that 𝑆𝑖 : 𝐵
𝛼
→ 𝐵

𝛼
is a closed set-valued mapping with

compact acyclic values. By Lemma 8, 𝑆𝑖 has a fixed point and
so there exists a triple (𝑥ℎ,𝑖+1, 𝑢ℎ,𝑖+1, Vℎ,𝑖+1) satisfying (15). Now

we show that ‖𝑥ℎ,𝑖+1‖ ≤ 𝜌
𝑖+1

. In fact, by (40) and Lemma 7.2
in [1], one has


𝑥
ℎ,𝑖+1

≤ 𝑒
𝑇𝜓
𝑥

𝑥
0

+ 𝑒
𝑇𝜓
𝑥 − 1. (57)

The definition of 𝜌
𝑖+1

implies that ‖𝑥ℎ,𝑖+1‖ ≤ 𝜌
𝑖+1

. This
completes the proof.

Let 𝑥ℎ(⋅) be the continuous piecewise linear interpolant
of the family {𝑥ℎ,𝑖+1}, �̂�ℎ(⋅) the constant piecewise interpolant
of the family {𝑢ℎ,𝑖+1}, and V̂ℎ(⋅) the constant piecewise inter-
polant of the family {Vℎ,𝑖+1}; that is,

𝑥
ℎ

(𝑡) = 𝑥
ℎ,𝑖

+
𝑡 − 𝑡
𝑖

ℎ
(𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖

) , ∀𝑡 ∈ [𝑡
ℎ,𝑖
, 𝑡
ℎ,𝑖+1
] ,

�̂�
ℎ

(𝑡) = 𝑢
ℎ,𝑖+1

, ∀𝑡 ∈ ( 𝑡
𝑖
, 𝑡
𝑖+1
] ,

V̂ℎ (𝑡) = Vℎ,𝑖+1, ∀𝑡 ∈ ( 𝑡
𝑖
, 𝑡
𝑖+1
] ,

(58)

for 𝑖 = 0, 1, . . . , 𝑁
ℎ
.

Theorem 16. Let (𝑓, 𝐵
1
, 𝐵
2
, 𝐺
1
, 𝐺
2
) satisfy conditions (A) and

(B) and let 𝐾 ⊂ 𝑅𝑛 be a nonempty, closed, and convex set.
Suppose that SOL(𝐾, 𝑞

1
+ 𝐹
1
) and SOL(𝐾, 𝑞

2
+ 𝐹
2
) satisfy the

linear growth properties. Then there exists a sequence {ℎ
𝑛
} ↓ 0

such that 𝑥ℎ𝑛 → 𝑥 uniformly on [0, 𝑇] and �̂�ℎ𝑛 → �̂� weakly
in 𝐿2[0, 𝑇] with V̂ℎ𝑛 → V̂ weakly in 𝐿2[0, 𝑇]. Furthermore,
assume that 𝐹

1
(𝑢) = 𝜓

1
(𝐸
1
𝑢), 𝐹
2
(V) = 𝜓

2
(𝐸
2
V), 𝐸
𝑗
∈

𝑅
𝑚×𝑚

, 𝑗 = 1, 2 and

𝜓
𝑗
: 𝐿
2

([0, 𝑇] , 𝑅
𝑚

)  𝐿
2

([0, 𝑇] , 𝑅
𝑚

) , 𝑗 = 1, 2 (59)

are upper semicontinuous set-valued mappings with nonempty
compact values and there exist constants 𝐶

1
, 𝐶
2
such that, for

any ℎ sufficiently small,

𝐸
1
𝑢
ℎ,𝑖+1

− 𝐸
1
𝑢
ℎ,𝑖

≤ ℎ𝐶
1
,


𝐸
2
Vℎ,𝑖+1 − 𝐸

2
Vℎ,𝑖

≤ ℎ𝐶
2
.

(60)

Then the limit (𝑥, �̂�, V̂) is a weak solution of the system (1).

Proof. By (31) and Lemma 14, we deduce that, for ℎ >
0 sufficiently small, there exists an 𝐿

𝑥
0

> 0, which is
independent of ℎ, such that


𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖

≤ 𝐿
𝑥
0

ℎ, 𝑖 = 0, 1, . . . , 𝑁
ℎ
. (61)

It follows from (58) that 𝑥ℎ is also Lipschitz continuous on
[0, 𝑇] and the Lipschitz constant is independent of ℎ. Thus,
there exists an ℎ

0
> 0 such that the family of functions

{𝑥
ℎ

} (ℎ ∈ (0, ℎ
0
]) is an equicontinuous family of functions.

Let

𝑥
ℎ
𝐿∞
= sup
𝑡∈[0,𝑇]


𝑥
ℎ

(𝑡)

. (62)

From (58) and Lemma 14, we deduce that {𝑥ℎ} is uniformly
bounded. By using the Arzelá-Ascoli theorem, there exists a
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sequence {ℎ
𝑛
} with ℎ

𝑛
↓ 0 such that {𝑥ℎ𝑛} converges in the

supremum norm to a Lipschitz function 𝑥 on [0, 𝑇]. Since
SOL(𝐾, 𝑞

1
+𝐹
1
) and SOL(𝐾, 𝑞

2
+𝐹
2
) satisfy the linear growth

properties, it follows fromLemma 14 that {𝑢ℎ,𝑖+1} is uniformly
bounded in the 𝐿∞ norm on [0, 𝑇]. From (58), we know that
{�̂�
ℎ

} is uniformly bounded in the 𝐿∞ norm on [0, 𝑇], which
means that there exists a scalar 𝛾 > 0 such that


�̂�
ℎ
𝐿∞
≤ 𝛾. (63)

Since 𝐿2[0, 𝑇] is a reflective Banach space, every bounded
sequence has a weakly convergent subsequence and so there
is a sequence {ℎ

𝑛
} ↓ 0 such that �̂�ℎ𝑛 → �̂� weakly in 𝐿2[0, 𝑇].

In a similar way, we obtain that V̂ℎ𝑛 → V̂ weakly in 𝐿2[0, 𝑇].
Next, we show that (𝑥, �̂�, V̂) is a weak solution of the

system (1). By Lemma 11, it is sufficient to prove the following
three assertions:

(i) for any 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇

𝑥 (𝑡) − 𝑥 (𝑠)

= ∫

𝑡

𝑠

[𝑓 (𝜏, 𝑥 (𝜏)) + 𝐵
1
(𝜏, 𝑥 (𝜏)) �̂� (𝜏)

+𝐵
2
(𝜏, 𝑥 (𝜏)) V̂ (𝜏)] 𝑑𝜏;

(64)

(ii) there exist 𝑢∗
0
∈ 𝐹
1
(�̂�) and V∗

0
∈ 𝐹
2
(V̂) such that, for all

continuous functions: 𝑢 : [0, 𝑇] → 𝐾,

∫

𝑇

0

⟨𝐺
1
(𝑡, 𝑥 (𝑡)) + 𝑢

∗

0
(𝑡) , 𝑢 (𝑡) − �̂� (𝑡)⟩ 𝑑𝑡 ≥ 0,

∫

𝑇

0

⟨𝐺
2
(𝑡, 𝑥 (𝑡)) + 𝑢

∗

0
(𝑡) , 𝑢 (𝑡) − V̂ (𝑡)⟩ 𝑑𝑡 ≥ 0;

(65)

(iii) the initial condition 𝑥(0) = 𝑥
0
.

Since

𝑥
ℎ,𝑖+1

− 𝑥
ℎ,𝑖

= ℎ [𝑓 (𝑡
ℎ,𝑖+1
, 𝜃𝑥
ℎ,𝑖

+ (1 − 𝜃) 𝑥
ℎ,𝑖+1

)

+𝐵
1
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) 𝑢
ℎ,𝑖+1

+ 𝐵
2
(𝑡
ℎ,𝑖
, 𝑥
ℎ,𝑖

) Vℎ,𝑖+1]

= ∫

𝑡
ℎ,𝑖+1

𝑡
ℎ,𝑖

[𝑓 (𝜏, 𝑥
ℎ

(𝜏)) + 𝐵
1
(𝜏, 𝑥
ℎ

(𝜏)) 𝑢
ℎ,𝑖+1

+𝐵
2
(𝜏, 𝑥
ℎ

(𝜏)) Vℎ,𝑖+1] 𝑑𝜏 + ℎ2𝜉,
(66)

where
𝜉
 ≤ 𝐿𝑓 + 𝐿𝑓𝐿𝑥 + 𝐿𝐵1

𝜓
𝑢
+ 𝐿
𝐵
2

𝜓
𝑢
, (67)

𝐿
𝑥
and 𝜓

𝑢
are the same as described in Theorem 7.1 in [1]; it

follows that, for any 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

𝑥
ℎ

(𝑡) − 𝑥
ℎ

(𝑠) = ∫

𝑡

𝑠

[𝑓 (𝜏, 𝑥
ℎ

(𝜏)) + 𝐵
1
(𝜏, 𝑥
ℎ

(𝜏)) �̂�
ℎ

(𝜏)

+𝐵
2
(𝜏, 𝑥
ℎ

(𝜏)) V̂ℎ (𝜏)] 𝑑𝜏 + 𝑂 (ℎ) .
(68)

By a similar proof to that inTheorem 7.1 of [1], we can obtain
that

lim
ℎ→0

∫

𝑡

𝑠

𝑓 (𝜏, 𝑥
ℎ

(𝜏)) 𝑑𝜏 = ∫

𝑡

𝑠

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏;

lim
ℎ→0

∫

𝑡

𝑠

𝐵
1
(𝜏, 𝑥
ℎ

(𝜏)) �̂�
ℎ

(𝜏) 𝑑𝜏 = ∫

𝑡

𝑠

𝐵
1
(𝜏, 𝑥 (𝜏)) �̂� (𝜏) 𝑑𝜏;

lim
ℎ→0

∫

𝑡

𝑠

𝐵
2
(𝜏, 𝑥
ℎ

(𝜏)) V̂ℎ (𝜏) 𝑑𝜏 = ∫
𝑡

𝑠

𝐵
2
(𝜏, 𝑥 (𝜏)) V̂ (𝜏) 𝑑𝜏.

(69)

Noting the proof ofTheorem 7.1 in [1], we have 𝑥ℎ𝑛 → 𝑥 and
𝐸
1
�̂�
ℎ
𝑛 → 𝐸

1
�̂� as 𝑛 → ∞. Let 𝑢∗

𝑛
∈ 𝜓
1
(𝐸
1
�̂�
ℎ
𝑛). Since 𝜓

1
is

upper semicontinuous with nonempty compact values, there
exists a subsequence of {𝑢∗

𝑛
}, denoted again by {𝑢∗

𝑛
}, such that

𝑢
∗

𝑛
→ 𝑢

∗

0
with 𝑢∗

0
∈ 𝜓
1
(𝐸
1
�̂�). This implies that, for any

continuous functions: �̃� : [0, 𝑇] → 𝐾,

lim
𝑛→∞

∫

𝑇

0

⟨𝐺
1
(𝑡, 𝑥
ℎ
𝑛
(𝑡)) + 𝑢

∗

𝑛
(𝑡) , �̃� (𝑡) − �̂�

ℎ
𝑛
(𝑡)⟩ 𝑑𝑡

= ∫

𝑇

0

⟨𝐺
1
(𝑡, 𝑥) + 𝑢

∗

0
(𝑡) , �̃� − �̂�⟩ 𝑑𝑡.

(70)

Then, in a similar way ofTheorem 7.1 in [1], we can prove that

∫

𝑇

0

⟨𝐺
1
(𝑡, 𝑥) + 𝑢

∗

0
(𝑡) , �̃� − �̂�⟩ 𝑑𝑡 ≥ 0. (71)

The proof in the case 𝑗 = 2 is similar and so we omit it here.
This completes the proof.

Remark 17. Theorem 16 generalizes Theorem 7.1 in [1] from
the differential variational inequality to the system of differ-
ential set-valued variational inequalities.
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[18] A. U. Raghunathan, J. R. Pérez-Correa, E. Agosin, and L. T.
Biegler, “Parameter estimation inmetabolic flux balancemodels
for batch fermentation-formulation and solution using differ-
ential variational inequalities,” Annals of Operations Research,
vol. 148, pp. 251–270, 2006.

[19] X. Wang and N.-J. Huang, “Differential vector variational
inequalities in finite-dimensional spaces,” Journal of Optimiza-
tion Theory and Applications, vol. 158, no. 1, pp. 109–129, 2013.

[20] W. Rudin, Real and Complex Analysis, McGraw-Hill Book, New
York, NY, USA, 2nd edition, 1974.
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