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A system of differential set-valued variational inequalities is introduced and studied in finite dimensional Euclidean spaces. An
existence theorem of weak solutions for the system of differential set-valued variational inequalities in the sense of Carathéodory
is proved under some suitable conditions. Furthermore, a convergence result on Euler time-dependent procedure for solving the
system of differential set-valued variational inequalities is also given.

1. Introduction

For a set-valued mapping F : R" = R” and a nonempty
closed convex set K in R”, the VI(K, F), is to find u € K
and u* € F(u) such that (u*,u’ —u) > 0forall u’ € K.
Let SOL(K, F) denote the solution set of this problem. We
write x := dx/dt for the time-derivative of a function x(t).
In this paper, we consider the following system of differential
set-valued variational inequalities:

x)=ftx@)+B, tx@®)u()+B,(t,x()v(t),

(G, (t,x () +F (u(®),u' —u(®)) 20, Yu' €K,
(1
(G, (tx)+E(V ®),v -v@®) 20, W €K,

x(0) = xq,

where Q = [0,T]xR"™, f: Q — R",B;: Q — R™",
G;: Q — R"andF, : R" = R" (i = 1, 2) are given mappings.

In [1], Pang and Stewart introduced a class of differen-
tial variational inequalities in finite dimensional Euclidean
spaces. For some related results, we refer to [2-17]. Recently,
the differential variational inequalities have been used in
cellular biology (see [18]). In [18], the authors needed two
or more variational inequalities to formulate the switching

between the metabolic models. Sometimes it is convenient to
apply the differential vector variational inequalities in [19] to
show the fermentation dynamics. However, when we study
the fermentation model (20) in [18], we find that the system
(1) in this paper can help us a lot.

In this paper, we establish an existence theorem of weak
solutions for the system (1) in the sense of Carathéodory
under some suitable conditions. Furthermore, we give a
convergence result on Euler time-dependent procedure for
solving the system (1).

2. Preliminaries

In this section, we will introduce some basic notations and
preliminary results.

In the rest of this paper, we will use the following
assumptions (A) and (B).

(A) f, By, B,, Gy, and G, are Lipschitz continuous func-
tions on Q with Lipschitz constants L (, Ly , L , L ,
. f Bl BZ Gl
and L , respectively.

(B) B, is bounded on Q with op, = sup(t)x)mIIB1 (9]
00; B, is bounded on Q with oy
SUp, el B2 (£, x)| < co.
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Definition 1. A set-valued map F : R" = R" is said to be

(i) monotone on a convex set K ¢ R" if for each pair of
points x, y € K, and for all x* € F(x) and y* € F(y),
(x* =", x—y) 20

(ii) pseudo monotone on a convex set K ¢ R” if for each
pair of points x, y € K, and forall x* € F(x)and y* €
F(y), (y*,x — y) = 0 implies that (x*, x— y) > 0.

Definition 2. A function f: Q — R" (resp.,B: Q — R™™)
is said to be Lipschitz continuous if there exists a constant
Ly>0 (resp., Ly > 0) such that, for any (t,, x), (t,,y) € Q,

If (t,%) = f (5, )] < Ly (t; = ta] + lx = »[)

(resp., "B (t,x) - B (tz’y)" <Lg (Itl - t2| + Hx - )’“))
(2)

Definition 3. Let X, Y be topological spaces and let F
X =Y be a set-valued mapping with nonempty values. One
says that F is upper semicontinuous at x, € X if and only
if, for any neighborhood /4 (F(x,)) of F(x,), there exists a
neighborhood /#(x,) of x, such that

F(x) c /(F(x)), VxeN(xg). (3)

Lemma 4 (see [1]). Let F : Q = R™ be an upper semi-
continuous set-valued map with nonempty closed convex
values. Suppose that there exists a scalar py > 0 satisfying

sup{|ly| : y e F(t6, )} < pr A+ IIxl), VYV (t,x) € Q.

(4)

For every x° € R", the DI : x € F(t, x), x(0) = x° has a weak
solution in the sense of Carathéodory.

Lemma 5 (see [1]). Leth : Q x R™ — R”" be a continuous
function and let U : Q = R™ be a closed set-valued map such
that, for some constant 1; > 0,

sup |lull < #7y (1+11x]),

Y (t,x) € Q.
u€eU(t,x) (5)

Letv:[0,T] — R"beameasurable function and let x : [0, T]
— R" be a continuous function satisfying v(t) € h(t, x(t),
U(t, x(t))) for almost all t € [0,T]. There exists a measurable
function u : [0,T] — R" such that u(t) € U(t,x(t)) and
v(t) = h(t, x(t), u(t)) for almost all t € [0, T].

Lemma 6 (see [20]). Let m denote the Lebesgue measure on
R"andlet f : R* — R™ be a measurable function. Let L be
a measurable set in R" with (L) < co. Then, for any ¢ > 0,
there exists a compact set K € L with m(L \ K) < & such that
the restriction of f to K is continuous.

Definition 7 (see [21]). An acyclic set is a set whose homology
is the same as the homology of the space consisting of just one
point. An acyclic map is an upper semicontinuous set-valued
map which has compact acyclic values.

In [21], we can find that every homeomorphic image of a
compact convex set is an acyclic set.
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Lemma 8 (see [1]). Every acyclic set-valued map F : X — X
on a compact convex set X has a fixed point: x € F(x) for some
x e X.

3. Main Results

In this section, we obtain existence theorem for weak solu-
tions of the differential set-valued variational inequality in
the sense of Carathéodory. Furthermore, we establish a con-
vergence result for solving differential set-valued variational
inequality.

Theorem 9. Assume that (f, B, B,, Gy, G,) satisfy conditions
(A) and (B) and F;, : R* = R'(i = 1,2) are upper
semicontinuous with nonempty and compact values such that
g; + F; (i = 1,2) are pseudo monotone on R" for each q; €
G;(Q) (i = 1,2). If K is a bounded, closed, and convex subset
of R", then initial-value system (1) has a weak solution.

Proof. From the proofs of Lemmas 3.2, 3.3, and 3.4 and
Theorem 3.1 in [19], it is easy to see that the assumption “F
is pseudo monotone on R™ in there should be replaced by
the assumption “q + F is pseudo monotone on R" for each
q € G(Q)” Since K is a bounded, closed, and convex subset
of R, it follows from Lemma 3.3 in [19] that SOL(K,q; +
F;)) (i = 1,2) are nonempty and bounded. Let u = (u,,u,),
where u; € SOL(K, g; + F;), (i = 1,2). Then it follows that
u is bounded on R*". Moreover, Lemma 3.4 in [19] shows
that SOL(K, gq; + F;) (i = 1,2) are closed and convex for all
q; € G;(Q). Therefore, SOL(K, q, + F,) x SOL(K, g, + F,) is
closed and convex. Let

F(t,x)={f (t,x)+ B, (t,x)u, + B, (t,x) u, :

(6)
u; € SOL (K, G; (t,x) + F))} .

We can prove in a similar way as Lemma 6.3 in [1] that F
has linear growth and it is upper semicontinuous on Q. Now
it follows from Lemmas 4 and 5 that system (1) has a weak
solution. This completes the proof. O

Remark 10. If F; : R® = R" (i = 1,2) are monotone, then it
is easy to see that g; + F; (i = 1,2) are pseudo monotone on
R" for each q; € G;(Q) (i = 1,2).

Lemmall. LetG: Q x R™ — R" be a continuous function,
F: L*0,T] = L*[0,T] a set-valued function, and u(t) € K
withu € L*[0, T]. Suppose there exists u® € F(u) such that, for
any continuous function ti : [0,T] — K, one has

T
J (Gt,x () +u" (), 6 (t) —u(t))dt = 0. (7)
0

Then, for almost allt € [0,T], u(t) € SOL(K, G(t, x(t))+F(-)).

Proof. We assume that the contrary holds. Then there exists
aset E c [0,T] with m(E) > 0 (where m(E) denotes the
Lebesgue measure of E such that, for all t € E, u(t) ¢
SOL(K, G(t, x(t)) + F(-)). By Lemma 6, we know that there
exists a closed subset E, of E with #1(E;) > 0 such that u(t)
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and u* (t) are continuous on E,, where u*(¢) € F(u(t)). Then
there exists a closed subset E, of E; with #(E,) > 0 and
v € K such that

(Gt,x (@) +u" (£),vyg —u(t)) <0, (8)

and so

J (G(t,x(t)+u" (t), vy —u(t))dt <O. 9)

2

Let

t € E,,

t € [0,T] \ E,. (10)

_ Vo
to (1) = {u(t),

We know that u,(t) € K is an integrable function on [0, T'].
Since the space of continuous functions C([0, T]; R™) is dense
in L' ([0, T]; R™), we can approximate u,(t) € L'([0,T]; R™)
by continuous functions %(¢) € K and obtain that there exists
a continuous function #(t) such that

T
| ex@nsu ®.a0-uwyd<o
0

which contradicts (7). This completes the proof. O

Remark 12. If u(t) is an integrable function satisfying, for
almostall t € [0,T],

u(t) € SOL(K,G(t,x(t),) + F (), (12)
then the integral inequality (7) must hold for any continuous
u:[0,T] —» K.

Now we begin to design a computational method for
solving DVI (1). With x™° := x°, we compute

{xh,l’xh,z’ o ,xh,NhH} cR",

{uh’l,uh’z, ... ,uh’Nh“} cK, (13)
hl  h2 1, Nj+1

{v VLY h+}CK,

by the recursion, fori =0, 1,..., Ny, where N;, = (T'/h) - 1,

i g [f (th,,-H,Oxh’i +(1-6) xh,i+1)
+B; (th,i) xh’i) WPy B, (th,p xh’i) vh’”l] ,
4 e SOL (K,G1 (th,i+1) xh,m) + F1>,

V" €SOL (K, G, (ti01 X ) + B,
(14)

that is,
xh,i+1 — xh,i + h [f (th)i+1, exh,i + (1 _ 6) xh,i+1)

hii h,i+1 hi\  hi+l
+B; (th,,-,x )u + B, (th)i, x ) 4 ] ,
i+l Gty i+1 !
<G1 (th,,-ﬂ,xh’Jr )+F1(uh’Jr ),u —uM" >20, Yu €K,

<G2 (th)iﬂ,xh,iﬂ) +F (vh,i+1) ,V’ _ Vh’i+1> >0, v € K.
(15)

Lemma 13. Let (f, B,, B,, G, G,) satisfy conditions (A) and
(B). Then there exists an hy, > 0 such that, for any h €
(0. h), (X", u,v) € R™™™ with 0 € [0,1] and t, t,,; in
[0, T], there exists a unique vector x,,, satisfying

x-x=h [f (t, 0x™ +(1-6) xw) +B, (t,ef,xref) u

+B, (tref, xref) v] :

(16)
Moreover, for any u,v,u',v' € R™, one has
ho - + ho o
s = 20 < — ”LI —: 1'1 - e)BZL[V ! ||
(17)

pr (1+[x|) + o5, lull + o, IV

_ ref
[ = ¢ 1-h(1-6)p;

<

Proof. It suffices to choose h, satisfying

1 1
u—mp/u—mw}' o)

The right-hand side is taken to be co if 6 = 1. Under this
choice, consider any tuple (1, x™, u, v, 1, t,.;) as specified. Let

0<h0<min{

F (x) = hf (£,0x"" + (1= ) x) + B, (. x™") 1

(19)
+hB, (tref, xref) v+ x™,

Then
|5 (1) = 7 ()|
= |f (£:6x™ + (1 - 60) x,) = hf (1,65 + (1 - ) x, )|

| b

Sth(l—O)"xl—x2

(20)

with 0 < th(l — 0) < 1. This shows that the map F is
contractive and so there exists a unique vector x,,, such that

x,, - X =h [f (t, 0x™ + (1-0) xw) + B, (tref, xref) u

uv

+B, (tref, xref) v] .
(21

It implies that, for any (u;,v;), (uy,v,) € R™, there exist

x,,,, and x,, ,, such that

X~ % =h [ (.65 + (1-0)x,.,. ) +B, (1 x) 1)

+B, (tref, xref) vl] ,

x, , —x=h [f (t, 0x™ + (1 - 6) xuz,V2)+ B, (tref, xref) u,

Uy,Vo

+B, (tref, xref) vz] )
(22)
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By (22), we have

”x“ﬂ/l - x”z"’z

<hL;(1-6)|x

+hog, [y —wy|  (23)

uvy, xuz,vz
+ hoy, i = va|
and so

ho, [y = ua|| + ho, [[v, = v

|« 1-hL,(1-6)

(24)

Now the Lipschitz continuity of f implies that there exists ps
satisfying
If &) < py (14 lxl) - (25)

It follows that

ref
X,y — X

=h “f (t, 0x™ + (1 - 6) xm,) +B, (tref, xref) u

+B, (tref, xmf) v“

0x" + (1-0) x,,

)+ hog, lull + hog, ||V

)

Shpf(1+|

<hp;(1+(1-0)|

ref

f
re; x

Xyy — X +

+ hog, lull + hoy, V]

(26)
and so
e b (L+||x™]) + hog, lull + hog, |Iv]
[ = x| <
1—hp(1-0)
(27)
This completes the proof. O

Lemma 14. Let (f, B,, B,,G,,G,) satisfy conditions (A) and
(B). Suppose that SOL(K, q, + F,) and SOL(K, q, + F,) satisfy
the linear growth properties

sup {[lull : u € SOL(K,q, + F,)} < p; (1 +||q4])
Vg, € G, (Q),

(28)
sup {[lull : u € SOL(K,q, + E,)} < p, (1 +||g,]) >
Vg, € G, (Q).

Then there exist positive scalars C,,.,C,,,Co,» Ci Cov» Cip
and h, such that, for any h € (0,h;] andi=0,1,..., Ny,

hji+1 0
[ = Coe + Cuc <]
hji+1 0
"] < Cou + Crs |°]» (29)

h,i+1 0
|7 < Cov+ |
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Proof. Throughout the proof below, the scalar & > 0 is taken
to be sufficiently small. Let

_ pf+UBl +0B2

Ty (30)
It follows from Lemma 13 that
< (3 o
By the linear growth of solutions to VI, we have
"]
< py (14 ]Gy (e ™))
<pi (14 pg, (1+ "))
<pi [1+pg, {1+ "] + ke,
(L[] [+ [ DH
< (p1 + P, + hpipe,px)
+(pips, + hpape,pe) || + Bpups,pe [
+ hpyp, i |V
= (”)
< pa (14 ]G (thsnns ™))
<pa (14 pg, (14 [7]))
< o[+ po, {14 [+ + oy
(1 ] ] D
< (P2 + PP, + hp2p,Px)
+(paps, + bpapa,pe) || + Bpaps,pe [
+ hpype,p. [V
Let
M, = pi+pipg, +hpipe, P Ni=pipG, P )
M, = py+ papG, + hpapc,ps - No = papG, Py
Then, we have
e BT IR

(1-hN,) "vh’i“" <M(1+ "xh’i||) +hN, "uh’”lu )
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Letting 0 < h < min{1/N,, 1/N,}, one has

i+l “ < 1

[ < 1= hN,

[ (1 )+

1 i it
(1 (1 (o [ ) |.
(35)

When h is sufficiently small, there exists py; > 0 such that

o1 < pas, (1 1) (36)

In a similar way, we can prove that there exists p, > 0 such
that

Pz (01D @)
It follows from (31) that
“xh,m B xh,i“
< hpe (U [ + o, (1+ ] + o, (1+ [4])

= (hp, + hpupr, + hpupr, ) (1+ ) -

(38)
Let
Yx = Px + PxPum, T PxPm,- (39)
Then
[t = ) <y (14 |])). (40)

It follows from Lemma 72 in [1] that there exist positive
scalars C,,., C,,, Co,» Ciu» Co,» C1,» and by such that, for any
he(0,h]andi=0,1,...,N,,

hji+1 0
"] = Coc + o]

hji+1 0
|| < Cou + Crs |°]» (41)

1 < o ).
This completes the proof. O

Lemma15. Let K C R” be a nonempty, closed, and convex set
and let (f, By, B,, Gy, G,) satisfy conditions (A) and (B). Sup-
pose that the set-valued maps F,, F, are upper semicontinuous
with nonempty compact values such that q; + F; (i = 1,2) are
pseudo monotone on R" for each q; € G;(Q) (i = 1,2). For
some constant p > 0, SOL(K, q, + F,) and SOL(K,q, + F,)
satisfy the linear growth properties

sup {llull : u € SOL(K,q, + Fy)} < p(1+ 1)
Vg, € G, (Q),
sup {llull : u € SOL(K,q, + F,)} < p(1+ |g2])
Vg, € G, (Q).

Then there exists a scalar hy > 0 such that, for any h € (0, hg]
with 6 € [0,1] and x° € R, there exists (x"*1, u*1, 1)
satisfying (15) for everyi = 0,1,...,Nj,.

Proof. Assume that y, is defined by (39). For any scalar h > 0
sufficiently small, we define the scalars p;, p,, ..., py, 41 by

pn = +hy)p+hy, i=0,1,...,N, (44)
where p, is arbitrary. By the proof of Lemma 7.2 in [1], we can
show that

p<eVip e -1, Vi=0,1,...,N;+1.  (45)

Let o denote the quantity on the right-hand side, which
depends on p, but is independent of h. Let 0 < hyp <
min{hy, h,} satisfy

" pr(l+a)+ (ch1 +c732)ppG1 (1+2a) .

R 1-hg (1-6) py (46)

>

where h; and h; are as described in Lemmas 13 and 14,
respectively.

Next we show that, for any fixed i € (0, hg], there exists
a triple (a1, /1 V1 satisfying (15) with [|x™*| < p;,,
foralli =0,1,..., N, Let B, denote the Euclidean ball in R"
with center at the origin and radius 2«. For any x € B,, let
Sj(t, x) denote the nonempty set SOL(K, Gj(t, x) + Fj). Since
G i is Lipschitz continuous on Q, we know that G j have linear
growth on Q in x; that is, for some positive constants PG, and

for all (£, x) € Q,
|G, .20 < p, (1 + Ix1). (47)
By the linear growth assumption, for any x € B,, we have
sup {llull s u € S; (t,x)} < p(1+G; (5, %))
<p(1+p5, (1 +IxI))

<p(1+p)(1+20), j=12
(48)

Define mappings S’ from B, to subset of B, as follows: for any
x € By,

8 (%) = (1= hf (B0, 05" + (1 - 0)x))
X [Xh’i +hB, (th,i,xh’i) S (tniv1>X) (49)

+hB, (th,i’ xh’i) S (tnis> x)] .

Since F, and F, are upper semicontinuous with nonempty
compact values such that ¢; + F, (i = 1,2) are pseudo
monotone on R" for each q; € G;(Q) (i = 1,2), it follows
from Lemmas 3.3 and 3.4 in [19] that SOL(K,G,(t,x) +
F,) and SOL(K, G,(t,x) + F,) are nonempty, closed, and
convex sets. By (48), we obtain that SOL(K, G, (¢, x) + F;) and



SOL(K, G,(t, x) + F,) are compact and convex. Consider the
map

(X, y) — Xh’i + hBl (th,i’ xh’i) X+ hBZ (th,i’ 'xh)i) Y- (50)

It is easy to see that this map is continuous. Therefore, by the
Tychonoft theorem, we know that S, (£, x) xS, (t, x) is compact
and so

hi hi hii
X" +hB, (th,i’x 1) Sy (ths1> %) + hB, (th,i’x l) S5 (thiv1> %)
(51)
is compact. Since the mapping (I -hf (t;;,,» Ox +(1-6)))!
is a homeomorphism for all > 0 sufficiently small, it follows
that §'(x) is a compact acyclic set. We need to show that S'(x)

is a subset of B,. Let X be an arbitrary element in S§'(x) and let
u € Sy (ty, ;11> %)s v € Sy(t), ;11> x) be such that

x=x"+h [f (th)m,exi +(1-6) 55) + B, (th,i,xh’i) u

+B, (th’,-, xh’i) v] .

(52)
From Lemma 13, we have

. 1+ [x™])) + op. lull + o IV

||5C. B xh,z" <t ( “ ") B, BV (53
By induction hypothesis and [|x™|| < p; < &, one has
1+p)+ (0 +0 (1+2x)

1%l < p, +hpf( pi) ( B, BZ)PPG1 <
(54)

Now we need to prove that the solution mapping S, (¢,,;,1, X)
is upper semicontinuous. To prove the upper semicontinuity
of 8, (ty,;,1, %), it suffices to show that S, (t;;,,, x) is closed.
Suppose that {x,} c R" is a sequence converging to x, € R"
and u, € S,(t,;,1,%,). Then the linear growth condition
implies that {u,} is bounded and so it has a convergent
subsequence with a limit u,. Since u,, € S,(t;;,,,x,), there
exists u; € F,(u,,) such that

<G1 (thirr %) + u ' - Un> , Vu' eK. (55)

Since F, is upper semicontinuous on R” with compact values,
it follows that there exists a subsequence of {u;}, denoted

again by {u;}, such that u; — ué € F,(uy). Lettingn — oo,
we have

<G1 (tnis1> Xo) +ugtt — u0> >0, Vu' eK (56)

and so 1y € S, (ty,;,1, Xg)- It follows that S, (t;,;,, x) is closed
and so upper semicontinuous. In a similar way, we can prove
that S,(t;,;,,,x) is upper semicontinuous. Thus, we know
that S : B, — B, is a closed set-valued mapping with
compact acyclic values. By Lemma 8, §' has a fixed point and

so there exists a triple (x™*!, ™!, y"*1) satisfying (15). Now
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we show that |||

in [1], one has

| < piyq- In fact, by (40) and Lemma 7.2

h,i+1 H < eTV”‘

"x x°|| vl 1, (57)

The definition of p;,, implies that [|x™*!]|

< Pit+1- ThlS
completes the proof. O

Let Eh(-) be the continuous piecewise linear interpolant
of the family {x™"*1}, #"(-) the constant piecewise interpolant
of the family {&"*'}, and 7(-) the constant piecewise inter-
polant of the family {v"**'}; that is,

—t . .
Tl (xh’yrl - xh’l)’ Vt € [ty tpinl

ah (t) _ uh,i+l,

ot
() ="+
vt € (L t,]
V() =V Ve (]

(58)

fori =0,1,...,N,.

Theorem 16. Let (f, B,, B,, G, G,) satisfy conditions (A) and
(B) and let K C R" be a nonempty, closed, and convex set.
Suppose that SOL(K, q, + F,) and SOL(K, q, + F,) satisfy the
linear growth properties. Then there exists a sequence {h,} | 0
such that X — X uniformly on [0,T] and i — @ weakly
in L*[0,T] with ?» — ¥ weakly in L*[0,T). Furthermore,
assume that Fi(u) = y(Eju), E,(v) = y,(Ew), E; €
R™™ j=1,2and

y; : L*([0,T],R") = L*([0,T],R™), j=12 (59)

are upper semicontinuous set-valued mappings with nonempty
compact values and there exist constants C,, C, such that, for
any h sufficiently small,

“Eluh,Hl _ Eluh,z " < hCl, ||E2Vh,z+1 _ Ezvh,l'

< hC,.
(60)

Then the limit (X, 4, V) is a weak solution of the system (1).

Proof. By (31) and Lemma 14, we deduce that, for h >
0 sufficiently small, there exists an L, > 0, which is
independent of A, such that

“xh,m B xh,i“ <L.h i=0,1,...,N, (61)

It follows from (58) that X" is also Lipschitz continuous on
[0, T] and the Lipschitz constant is independent of . Thus,
there exists an i, > 0 such that the family of functions
{5Eh } (h € (0,h,]) is an equicontinuous family of functions.
Let

1. = s [+ 0] @

From (58) and Lemma 14, we deduce that {x"} is uniformly
bounded. By using the Arzeld-Ascoli theorem, there exists a
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sequence {h,} with h, | 0 such that {xhn} converges in the
supremum norm to a Lipschitz function X on [0,T]. Since
SOL(K, g, + F;) and SOL(K, g, + F,) satisfy the linear growth

properties, it follows from Lemma 14 that {u"**'} is uniformly
bounded in the L* norm on [0, T]. From (58), we know that
" is uniformly bounded in the L® norm on [0, T], which
means that there exists a scalar y > 0 such that

.. <. ©

Since L*[0,T] is a reflective Banach space, every bounded
sequence has a weakly convergent subsequence and so there
is a sequence {h,} | 0 such that i > @ weakly in L*[0,T].
In a similar way, we obtain that ¥ — ¥ weakly in L*[0, T].

Next, we show that (X,1,7) is a weak solution of the
system (1). By Lemma 11, it is sufficient to prove the following
three assertions:

(i) forany0 <s<t <T
X(t)—Xx(s)
[ ez @@ 69
+B, (1,X (1)) v (1)] d1;

(ii) there exist u; € F, (%) and vy € F,(¥) such that, for all
continuous functions: u : [0,T] — K,

T
J (G, (1,% (1)) + uy (), u(t) —u(t)) dt >0,
’ (65)

T
J (G, (6, % (1)) + ul (1), u(t) - ¥ (1)) dt > 0;
0

(iii) the initial condition X(0) = x,.
Since

i g [f (th,,»ﬂ,@xh’i +(1-6) xh,i+1)

i Jit1 i Jit1
+Bl (th’i’xh,t)uhw + 32 (th,i’xhl) th+ ]

- rh"'” [f (+.2" (@) + B, (+.2" (1)) ™!

hii

+B, (T, %" (T)) vh’i“] dr + W€,
(66)

where
”E” SLf+Lfo'*'I‘Blwu"'LBZ‘(//w (67)

L, and y,, are the same as described in Theorem 7.1 in [1]; it
follows that, forany 0 < s <t < T,

) - x"(s) = Jt [f (.2 @)+ B, (.2 ()" (1)

N

+B, (.%" (1)) 7" ()] dr + O (h).
(68)

By a similar proof to that in Theorem 7.1 of [1], we can obtain
that

lim [ f (n#* 0)dr = [ fmz@)dn

lim JtBl (.2 (1) " (1) dr = JtBl (1, % (7)) i1 (1) dr;

N

t

lim Jth (n? @) 0dr = | B @2
(69)

Noting the proof of Theorem 71 in [1], we have ¥ — % and
E,ii™ — Ejiasn — oo.Letu’ € y,(E, ™). Since y, is
upper semicontinuous with nonempty compact values, there
exists a subsequence of {u, }, denoted again by {u, }, such that
u, — uy with uy € y,(E,u). This implies that, for any
continuous functions: zZ : [0,T] — K,

lim IT (G (X" (1)) +u, (1), 5 () - 0" () dt
0

n— 00

. (70)
- I (G, (%) + u’ ()7 — 1) d.
0

Then, in a similar way of Theorem 7.1in [1], we can prove that
T
J (G, (%) +uy (), 5 — 1) dt 2 0. (71)
0

The proof in the case j = 2 is similar and so we omit it here.
This completes the proof. O

Remark 17. Theorem 16 generalizes Theorem 7.1 in [1] from
the differential variational inequality to the system of differ-
ential set-valued variational inequalities.
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