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We will obtain the strong type and weak type estimates for vector-valued analogues of intrinsic square functions in the weighted
Morrey spaces 𝐿𝑝,𝜅(𝑤) when 1 ≤ 𝑝 < ∞, 0 < 𝜅 < 1, and in the generalized Morrey spaces 𝐿𝑝,Φ for 1 ≤ 𝑝 < ∞, whereΦ is a growth
function on (0,∞) satisfying the doubling condition.

1. Introduction and Main Results

The intrinsic square functions were first introduced by
Wilson in [1, 2]; they are defined as follows. For 0 < 𝛼 ≤ 1,
letC𝛼 be the family of functions 𝜑 defined onR𝑛 such that 𝜑
has support containing in {𝑥 ∈ R𝑛 : |𝑥| ≤ 1}, ∫

R𝑛
𝜑(𝑥)𝑑𝑥 = 0,

and, for all 𝑥, 𝑥 ∈ R𝑛,


𝜑 (𝑥) − 𝜑 (𝑥


)

≤

𝑥 − 𝑥


𝛼

. (1)

For (𝑦, 𝑡) ∈ R𝑛+1
+

= R𝑛 × (0,∞) and 𝑓 ∈ 𝐿
1

loc(R
𝑛
), we set

𝐴𝛼 (𝑓) (𝑦, 𝑡) = sup
𝜑∈C
𝛼

𝑓 ∗ 𝜑𝑡 (𝑦)


= sup
𝜑∈C
𝛼


∫
R𝑛

𝜑𝑡 (𝑦 − 𝑧) 𝑓 (𝑧) 𝑑𝑧


.

(2)

Then we define the intrinsic square function of 𝑓 (of order 𝛼)
by

S𝛼 (𝑓) (𝑥) = (∬
Γ(𝑥)

(𝐴𝛼 (𝑓) (𝑦, 𝑡))
2 𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1/2

, (3)

where Γ(𝑥) denotes the usual cone of aperture one:

Γ (𝑥) = {(𝑦, 𝑡) ∈ R
𝑛+1

+
:
𝑥 − 𝑦

 < 𝑡} . (4)

Let ⃗𝑓 = (𝑓1, 𝑓2, . . .) be a sequence of locally integrable
functions on R𝑛. For any 𝑥 ∈ R𝑛, Wilson [2] also defined
the vector-valued intrinsic square functions of ⃗𝑓 by

S𝛼 (
⃗𝑓) (𝑥) = (

∞

∑

𝑗=1


S𝛼 (𝑓𝑗) (𝑥)



2

)

1/2

. (5)

In [2],Wilson has established the following two theorems.

TheoremA (see [2]). Let 0 < 𝛼 ≤ 1, 1 < 𝑝 < ∞, and𝑤 ∈ 𝐴𝑝

(Muckenhoupt weight class).Then there exists a constant𝐶 > 0

independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such that


(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝐿
𝑝

𝑤

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿
𝑝

𝑤

. (6)

Theorem B (see [2]). Let 0 < 𝛼 ≤ 1 and 𝑝 = 1. Then, for
any given weight function 𝑤 and 𝜆 > 0, there exists a constant
𝐶 > 0 independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) and 𝜆 such that

𝑤(

{

{

{

𝑥 ∈ R
𝑛
: (∑

𝑗


S𝛼 (𝑓𝑗) (𝑥)



2

)

1/2

> 𝜆

}

}

}

)

≤
𝐶

𝜆
∫
R𝑛

(∑

𝑗


𝑓𝑗 (𝑥)



2

)

1/2

𝑀𝑤(𝑥) 𝑑𝑥,

(7)
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where 𝑀 denotes the standard Hardy-Littlewood maximal
operator.

If we take 𝑤 ∈ 𝐴1, then 𝑀(𝑤)(𝑥) ≤ 𝐶 ⋅ 𝑤(𝑥) for a.e.
𝑥 ∈ R𝑛 by the definition of𝐴1 weights (see Section 2). Hence,
as a straightforward consequence ofTheoremB,we obtain the
following.

Theorem B. Let 0 < 𝛼 ≤ 1, 𝑝 = 1, and 𝑤 ∈ 𝐴1. Then there
exists a constant 𝐶 > 0 independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such
that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝑊𝐿1
𝑤

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1
𝑤

. (8)

In particular, if we take 𝑤 to be a constant function, then
we immediately get the following.

Theorem C. Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞. Then there exists
a constant 𝐶 > 0 independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝐿𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝

. (9)

Theorem D. Let 0 < 𝛼 ≤ 1 and 𝑝 = 1. Then there exists a
constant 𝐶 > 0 independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝑊𝐿1

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1

. (10)

On the other hand, the classical Morrey spaces L𝑝,𝜆

were originally introduced by Morrey in [3] to study the
local behavior of solutions to second order elliptic partial
differential equations. Since then, these spaces play an impor-
tant role in studying the regularity of solutions to partial
differential equations. For the boundedness of the Hardy-
Littlewood maximal operator, the fractional integral opera-
tor, and the Calderón-Zygmund singular integral operator on
these spaces, we refer the reader to [4–6]. In [7], Mizuhara
introduced the generalized Morrey spaces 𝐿

𝑝,Φ which was
later extended and studied by many authors (see [8–12]). In
[13], Komori and Shirai defined the weighted Morrey spaces
𝐿
𝑝,𝜅

(𝑤) which could be viewed as an extension of weighted
Lebesgue spaces and then discussed the boundedness of
the above classical operators in harmonic analysis on these
weighted spaces. Recently, in [14–16], we have established
the strong type and weak type estimates for intrinsic square
functions on 𝐿

𝑝,Φ and 𝐿
𝑝,𝜅

(𝑤).
For the boundedness of vector-valued intrinsic square

functions in the weighted Morrey spaces 𝐿𝑝,𝜅(𝑤) for all 1 ≤

𝑝 < ∞ and 0 < 𝜅 < 1, we will prove the following.

Theorem 1. Let 0 < 𝛼 ≤ 1, 1 < 𝑝 < ∞, 0 < 𝜅 < 1, and
𝑤 ∈ 𝐴𝑝. Then there is a constant 𝐶 > 0 independent of ⃗𝑓 =

(𝑓1, 𝑓2, . . .) such that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝐿𝑝,𝜅(𝑤)

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

. (11)

Theorem 2. Let 0 < 𝛼 ≤ 1, 𝑝 = 1, 0 < 𝜅 < 1, and 𝑤 ∈ 𝐴1.
Then there is a constant 𝐶 > 0 independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .)

such that


(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝑊𝐿1,𝜅(𝑤)

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

.

(12)

For the continuity properties of S𝛼( ⃗𝑓) in 𝐿
𝑝,Φ for all 1 ≤

𝑝 < ∞, we will show the following.

Theorem 3. Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞. Assume that Φ
satisfies (15) and 1 ≤ 𝐷(Φ) < 2

𝑛; then there is a constant𝐶 > 0

independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝐿𝑝,Φ

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

. (13)

Theorem 4. Let 0 < 𝛼 ≤ 1 and 𝑝 = 1. Assume thatΦ satisfies
(15) and 1 ≤ 𝐷(Φ) < 2

𝑛; then there is a constant 𝐶 > 0

independent of ⃗𝑓 = (𝑓1, 𝑓2, . . .) such that



(∑

𝑗


S𝛼 (𝑓𝑗)



2

)

1/2𝑊𝐿1,Φ

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

. (14)

2. Notations and Definitions

2.1. Generalized Morrey Spaces. Let Φ = Φ(𝑟), 𝑟 > 0, be
a growth function, that is, a positive increasing function in
(0,∞), and satisfy the following doubling condition:

Φ (2𝑟) ≤ 𝐷 ⋅ Φ (𝑟) , ∀𝑟 > 0, (15)

where 𝐷 = 𝐷(Φ) ≥ 1 is a doubling constant independent of
𝑟.

Definition 5 (see [7]). Let 1 ≤ 𝑝 < ∞. We denote by
𝐿
𝑝,Φ

= 𝐿
𝑝,Φ

(R𝑛) the space of all locally integrable functions
𝑓 defined on R𝑛, such that for every 𝑥0 ∈ R𝑛 and all 𝑟 > 0

∫
𝐵(𝑥
0
,𝑟)

𝑓 (𝑥)


𝑝
𝑑𝑥 ≤ 𝐶

𝑝
Φ (𝑟) , (16)

where 𝐵(𝑥0, 𝑟) = {𝑥 ∈ R𝑛 : |𝑥 − 𝑥0| < 𝑟} is the ball
centered at 𝑥0 and with radius 𝑟 > 0. Then we let ‖𝑓‖

𝐿𝑝,Φ

be the smallest constant 𝐶 > 0 satisfying (16) and 𝐿
𝑝,Φ

(R𝑛)

becomes a Banach space with norm ‖ ⋅ ‖𝐿𝑝,Φ .
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Obviously, when Φ(𝑟) = 𝑟
𝜆 with 0 < 𝜆 < 𝑛, 𝐿𝑝,Φ is just

the classical Morrey spaces introduced in [3]. We also denote
by 𝑊𝐿

1,Φ
= 𝑊𝐿

1,Φ
(R𝑛) the generalized weak Morrey spaces

of all measurable functions 𝑓 for which

sup
𝜆>0

𝜆 ⋅
{𝑥 ∈ 𝐵 (𝑥0, 𝑟) :

𝑓 (𝑥)
 > 𝜆}

 ≤ 𝐶Φ (𝑟) , (17)

for every 𝑥0 ∈ R𝑛 and all 𝑟 > 0. The smallest constant 𝐶 > 0

satisfying (17) is also denoted by ‖𝑓‖
𝑊𝐿1,Φ

.

2.2. WeightedMorrey Spaces. Aweight𝑤 is a positive, locally
integrable function on R𝑛; 𝐵 = 𝐵(𝑥0, 𝑟𝐵) denotes the ball
with the center 𝑥0 and radius 𝑟𝐵. Given a ball 𝐵 and 𝜆 > 0,
𝜆𝐵 denotes the ball with the same center as 𝐵 whose radius
is 𝜆 times that of 𝐵. For a given weight function 𝑤 and a
measurable set 𝐸, we also denote the Lebesgue measure of
𝐸 by |𝐸| and the weighted measure of 𝐸 by 𝑤(𝐸), where
𝑤(𝐸) = ∫

𝐸
𝑤(𝑥)𝑑𝑥. For 1 < 𝑝 < ∞, a weight function 𝑤

is said to belong to 𝐴𝑝, if there is a constant 𝐶 > 0 such that,
for every ball 𝐵 ⊆ R𝑛,

(
1

|𝐵|
∫
𝐵

𝑤 (𝑥) 𝑑𝑥)(
1

|𝐵|
∫
𝐵

𝑤(𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

≤ 𝐶. (18)

For the case 𝑝 = 1, 𝑤 ∈ 𝐴1, if there is a constant 𝐶 > 0 such
that, for every ball 𝐵 ⊆ R𝑛,

1

|𝐵|
∫
𝐵

𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 ⋅ ess inf
𝑥∈𝐵

𝑤 (𝑥) . (19)

A weight function 𝑤 ∈ 𝐴∞ if it satisfies the 𝐴𝑝 condition
for some 1 ≤ 𝑝 < ∞. It is well known that if 𝑤 ∈ 𝐴𝑝 with
1 ≤ 𝑝 < ∞, then, for any ball 𝐵, there exists an absolute
constant 𝐶 > 0 such that

𝑤 (2𝐵) ≤ 𝐶𝑤 (𝐵) . (20)

Moreover, if 𝑤 ∈ 𝐴∞, then, for all balls 𝐵 and all measurable
subsets 𝐸 of 𝐵, there exists a number 𝛿 > 0 independent of 𝐸
and 𝐵 such that

𝑤 (𝐸)

𝑤 (𝐵)
≤ 𝐶(

|𝐸|

|𝐵|
)

𝛿

. (21)

Given a weight function 𝑤 on R𝑛, for 1 ≤ 𝑝 < ∞, the
weighted Lebesgue space 𝐿

𝑝

𝑤
(R𝑛) is defined as the set of all

functions 𝑓 such that

𝑓
𝐿
𝑝

𝑤

= (∫
R𝑛

𝑓 (𝑥)


𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

< ∞. (22)

We also denote by 𝑊𝐿
1

𝑤
(R𝑛) the weighted weak space

consisting of all measurable functions 𝑓 such that
𝑓

𝑊𝐿1
𝑤

= sup
𝜆>0

𝜆 ⋅ 𝑤 ({𝑥 ∈ R
𝑛
:
𝑓 (𝑥)

 > 𝜆}) < ∞. (23)

In particular, when 𝑤 equals to a constant function, we
will denote 𝐿

𝑝

𝑤
(R𝑛) and 𝑊𝐿

1

𝑤
(R𝑛) simply by 𝐿

𝑝
(R𝑛) and

𝑊𝐿
1
(R𝑛).

Definition 6 (see [13]). Let 1 ≤ 𝑝 < ∞, 0 < 𝜅 < 1, and 𝑤 be
a weight function on R𝑛. Then the weighted Morrey space is
defined by

𝐿
𝑝,𝜅

(𝑤) = {𝑓 ∈ 𝐿
𝑝

loc (𝑤) :
𝑓

𝐿𝑝,𝜅(𝑤)
< ∞} , (24)

where

𝑓
𝐿𝑝,𝜅(𝑤)

= sup
𝐵

(
1

𝑤(𝐵)
𝜅 ∫
𝐵

𝑓 (𝑥)


𝑝
𝑤(𝑥)𝑑𝑥)

1/𝑝

(25)

and the supremum is taken over all balls 𝐵 in R𝑛.

For 𝑝 = 1 and 0 < 𝜅 < 1, we also denote by𝑊𝐿
1,𝜅

(𝑤) the
weighted weak Morrey spaces of all measurable functions 𝑓
satisfying

𝑓
𝑊𝐿1,𝜅(𝑤)

= sup
𝐵

sup
𝜆>0

1

𝑤(𝐵)
𝜅 𝜆

⋅ 𝑤 ({𝑥 ∈ 𝐵 :
𝑓 (𝑥)

 > 𝜆}) < ∞.

(26)

Throughout this paper, the letter 𝐶 always denotes a pos-
itive constant independent of the main parameters involved,
but it may be different from line to line.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let (∑𝑗 |𝑓𝑗|
2
)
1/2

∈ 𝐿
𝑝,𝜅

(𝑤) with 1 < 𝑝 <

∞ and 0 < 𝜅 < 1. Fix a ball 𝐵 = 𝐵(𝑥0, 𝑟𝐵) ⊆ R𝑛 and
decompose𝑓𝑗 = 𝑓

0

𝑗
+𝑓
∞

𝑗
, where𝑓0

𝑗
= 𝑓𝑗 ⋅𝜒2𝐵 and𝜒2𝐵 denotes

the characteristic function of 2𝐵 = 𝐵(𝑥0, 2𝑟𝐵), 𝑗 = 1, 2, . . ..
Then we write

1

𝑤(𝐵)
𝜅/𝑝

(∫
𝐵

(∑

𝑗


S𝛼 (𝑓𝑗) (𝑥)



2

)

𝑝/2

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤
1

𝑤(𝐵)
𝜅/𝑝

(∫
𝐵

(∑

𝑗


S𝛼 (𝑓

0

𝑗
) (𝑥)



2

)

𝑝/2

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

+
1

𝑤(𝐵)
𝜅/𝑝

(∫
𝐵

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

𝑝/2

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

= 𝐼1 + 𝐼2.

(27)
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UsingTheorem A and inequality (20), we have

𝐼1 ≤
1

𝑤(𝐵)
𝜅/𝑝



(∑

𝑗


S𝛼 (𝑓

0

𝑗
)


2

)

1/2𝐿
𝑝

𝑤

≤ 𝐶 ⋅
1

𝑤(𝐵)
𝜅/𝑝

(∫
2𝐵

(∑

𝑗


𝑓𝑗 (𝑥)



2

)

𝑝/2

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

⋅
𝑤(2𝐵)

𝜅/𝑝

𝑤(𝐵)
𝜅/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

.

(28)

Let us now turn to estimate the other term 𝐼2. For any𝜑 ∈ C𝛼,
0 < 𝛼 ≤ 1, 𝑗 = 1, 2, . . ., and (𝑦, 𝑡) ∈ Γ(𝑥), we have


𝑓
∞

𝑗
∗ 𝜑𝑡 (𝑦)


=



∫
(2𝐵)
𝑐

𝜑𝑡 (𝑦 − 𝑧) 𝑓𝑗 (𝑧) 𝑑𝑧



≤ 𝐶 ⋅ 𝑡
−𝑛

∫
(2𝐵)
𝑐

∩{𝑧:|𝑦−𝑧|≤𝑡}


𝑓𝑗 (𝑧)


𝑑𝑧

≤ 𝐶 ⋅ 𝑡
−𝑛
∞

∑

ℓ=1

∫
(2ℓ+1𝐵\2ℓ𝐵)∩{𝑧:|𝑦−𝑧|≤𝑡}


𝑓𝑗 (𝑧)


𝑑𝑧.

(29)

For any 𝑥 ∈ 𝐵, (𝑦, 𝑡) ∈ Γ(𝑥), and 𝑧 ∈ (2
ℓ+1

𝐵 \ 2
ℓ
𝐵) ∩ 𝐵(𝑦, 𝑡),

then, by a direct computation, we can easily see that

2𝑡 ≥
𝑥 − 𝑦

 +
𝑦 − 𝑧

 ≥ |𝑥 − 𝑧|

≥
𝑧 − 𝑥0

 −
𝑥 − 𝑥0

 ≥ 2
ℓ−1

𝑟𝐵.

(30)

Thus, by using the above inequalities (29) and (30), together
with Minkowski’s inequality for integrals, we deduce


S𝛼 (𝑓

∞

𝑗
) (𝑥)



= (∬
Γ(𝑥)

sup
𝜑∈C
𝛼


𝑓
∞

𝑗
∗ 𝜑𝑡 (𝑦)



2 𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1/2

≤ 𝐶(∫

∞

2ℓ−2𝑟
𝐵

∫
|𝑥−𝑦|<𝑡



𝑡
−𝑛
∞

∑

ℓ=1

∫
2ℓ+1𝐵\2ℓ𝐵


𝑓𝑗 (𝑧)


𝑑𝑧



2

𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1/2

≤ 𝐶(

∞

∑

ℓ=1

∫
2ℓ+1𝐵\2ℓ𝐵


𝑓𝑗 (𝑧)


𝑑𝑧)(∫

∞

2ℓ−2𝑟
𝐵

𝑑𝑡

𝑡2𝑛+1
)

1/2

≤ 𝐶

∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵\2ℓ𝐵


𝑓𝑗 (𝑧)


𝑑𝑧.

(31)

Then, by duality and Cauchy-Schwarz inequality, we get

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶(∑

𝑗



∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵\2ℓ𝐵


𝑓𝑗 (𝑧)


𝑑𝑧



2

)

1/2

≤ 𝐶 sup
(∑
𝑗
|𝜁
𝑗
|2)
1/2

≤1

∑

𝑗

(

∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵


𝑓𝑗 (𝑧)


𝑑𝑧 ⋅ 𝜁𝑗)

≤ 𝐶

∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵

sup
(∑
𝑗
|𝜁
𝑗
|2)
1/2

≤1

(∑

𝑗


𝑓𝑗 (𝑧)


⋅ 𝜁𝑗)𝑑𝑧

≤ 𝐶

∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑑𝑧.

(32)

Furthermore, it follows fromHölder’s inequality, (32), and the
𝐴𝑝 condition that

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶

∞

∑

ℓ=1

1

2
ℓ+1𝐵



(∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

𝑝/2

𝑤 (𝑧) 𝑑𝑧)

1/𝑝

× (∫
2ℓ+1𝐵

𝑤(𝑧)
−𝑝


/𝑝
𝑑𝑧)

1/𝑝


≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

⋅

∞

∑

ℓ=1

𝑤(2
ℓ+1

𝐵)
(𝜅−1)/𝑝

,

(33)

where we denote the conjugate exponent of 𝑝 > 1 by 𝑝

=

𝑝/(𝑝− 1). Note that𝑤 ∈ 𝐴𝑝 ⊂ 𝐴∞ for all 1 < 𝑝 < ∞. Hence,
we apply inequality (21) to obtain

𝐼2 ≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

⋅

∞

∑

ℓ=1

𝑤(𝐵)
(1−𝜅)/𝑝

𝑤(2ℓ+1𝐵)
(1−𝜅)/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

⋅

∞

∑

ℓ=1

(
|𝐵|

2
ℓ+1𝐵



)

𝛿⋅(1−𝜅)/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,𝜅(𝑤)

,

(34)

where the last series is convergent since 0 < 𝜅 < 1 and 𝛿 > 0.
Summarizing the above two estimates for 𝐼1 and 𝐼2 and then
taking the supremum over all balls 𝐵 ⊆ R𝑛, we complete the
proof of Theorem 1.
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Proof of Theorem 2. Let (∑𝑗 |𝑓𝑗|
2
)
1/2

∈ 𝐿
1,𝜅

(𝑤) with 0 < 𝜅 <

1. Fix a ball 𝐵 = 𝐵(𝑥0, 𝑟𝐵) ⊆ R𝑛; we set 𝑓𝑗 = 𝑓
0

𝑗
+ 𝑓
∞

𝑗
, where

𝑓
0

𝑗
= 𝑓𝑗 ⋅ 𝜒2𝐵, 𝑗 = 1, 2, . . .. Then, for any given 𝜆 > 0, one

writes

𝑤(

{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓𝑗) (𝑥)



2

)

1/2

> 𝜆

}

}

}

)

≤ 𝑤(

{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

0

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}

)

+ 𝑤(

{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}

)

= 𝐼


1
+ 𝐼


2
.

(35)

Theorem B and inequality (20) imply

𝐼


1
≤

2

𝜆
⋅



(∑

𝑗


S𝛼 (𝑓

0

𝑗
)


2

)

1/2𝑊𝐿1
𝑤

≤
𝐶

𝜆
⋅ (∫
2𝐵

(∑

𝑗


𝑓𝑗 (𝑥)



2

)

1/2

𝑤 (𝑥) 𝑑𝑥)

≤
𝐶 ⋅ 𝑤(2𝐵)

𝜅

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

≤
𝐶 ⋅ 𝑤(𝐵)

𝜅

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

.

(36)

We now turn to deal with the other term 𝐼


2
. In the proof of

Theorem 1, we have already shown that, for any 𝑥 ∈ 𝐵 (see
(32)),

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶

∞

∑

ℓ=1

1

2
ℓ+1𝐵



∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑑𝑧.

(37)

It follows directly from the 𝐴1 condition that

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶

∞

∑

ℓ=1

ess inf𝑧∈2ℓ+1𝐵𝑤 (𝑧)

𝑤 (2ℓ+1𝐵)
∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑑𝑧

≤ 𝐶

∞

∑

ℓ=1

1

𝑤 (2ℓ+1𝐵)
∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑤 (𝑧) 𝑑𝑧

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

∞

∑

ℓ=1

1

𝑤(2ℓ+1𝐵)
1−𝜅

.

(38)

In addition, since 𝑤 ∈ 𝐴1 ⊂ 𝐴∞, then, by inequality (21), we
can see that, for all 𝑥 ∈ 𝐵,

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

⋅
1

𝑤(𝐵)
1−𝜅

∞

∑

ℓ=1

𝑤(𝐵)
1−𝜅

𝑤(2ℓ+1𝐵)
1−𝜅

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

⋅
1

𝑤(𝐵)
1−𝜅

∞

∑

ℓ=1

(
|𝐵|

2
ℓ+1𝐵



)

𝛿
∗

⋅(1−𝜅)

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

⋅
1

𝑤(𝐵)
1−𝜅

,

(39)

where in the last inequality we have used the fact that 𝛿∗ ⋅ (1−
𝜅) > 0. If {𝑥 ∈ 𝐵 : (∑𝑗 |S𝛼(𝑓

∞

𝑗
)(𝑥)|
2
)
1/2

> 𝜆/2} = 0, then the
inequality

𝐼


2
≤

𝐶 ⋅ 𝑤(𝐵)
𝜅

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

(40)

holds trivially. Now if instead we suppose that

{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}

̸= 0, (41)

then, by the pointwise inequality (39), we have

𝜆 ≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

⋅
1

𝑤(𝐵)
1−𝜅

, (42)

which is equivalent to

𝑤 (𝐵) ≤
𝐶 ⋅ 𝑤(𝐵)

𝜅

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

. (43)
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Therefore

𝐼


2
≤ 𝑤 (𝐵) ≤

𝐶 ⋅ 𝑤(𝐵)
𝜅

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,𝜅(𝑤)

. (44)

Summing up the above estimates for 𝐼
1
and 𝐼


2
and then taking

the supremum over all balls 𝐵 ⊆ R𝑛 and all 𝜆 > 0, we finish
the proof of Theorem 2.

4. Proofs of Theorems 3 and 4

Proof of Theorem 3. Let (∑𝑗 |𝑓𝑗|
2
)
1/2

∈ 𝐿
𝑝,Φ with 1 < 𝑝 < ∞.

For any ball 𝐵 = 𝐵(𝑥0, 𝑟) ⊆ R𝑛 with 𝑥0 ∈ R𝑛 and 𝑟 > 0, we
write 𝑓𝑗 = 𝑓

0

𝑗
+ 𝑓
∞

𝑗
, where 𝑓

0

𝑗
= 𝑓𝑗 ⋅ 𝜒2𝐵, 𝑗 = 1, 2, . . .. Then

we have

1

Φ(𝑟)
1/𝑝

(∫
𝐵(𝑥
0
,𝑟)

(∑

𝑗


S𝛼 (𝑓𝑗) (𝑥)



2

)

𝑝/2

𝑑𝑥)

1/𝑝

≤
1

Φ(𝑟)
1/𝑝

(∫
𝐵(𝑥
0
,𝑟)

(∑

𝑗


S𝛼 (𝑓

0

𝑗
) (𝑥)



2

)

𝑝/2

𝑑𝑥)

1/𝑝

+
1

Φ(𝑟)
1/𝑝

(∫
𝐵(𝑥
0
,𝑟)

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

𝑝/2

𝑑𝑥)

1/𝑝

= 𝐽1 + 𝐽2.

(45)

Applying Theorem C and the doubling condition (15), we
obtain

𝐽1 ≤
1

Φ(𝑟)
1/𝑝



(∑

𝑗


S𝛼 (𝑓

0

𝑗
)


2

)

1/2𝐿𝑝

≤ 𝐶 ⋅
1

Φ(𝑟)
1/𝑝

(∫
2𝐵

(∑

𝑗


𝑓𝑗 (𝑥)



2

)

𝑝/2

𝑑𝑥)

1/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

⋅
Φ(2𝑟)

1/𝑝

Φ(𝑟)
1/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

.

(46)

We now turn to estimate the other term 𝐽2. We first use
inequality (32) and Hölder’s inequality to obtain

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶

∞

∑

ℓ=1

1

𝐵 (𝑥0, 2
ℓ+1𝑟)



∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑑𝑧

≤ 𝐶

∞

∑

ℓ=1

1

𝐵 (𝑥0, 2
ℓ+1𝑟)



1/𝑝
(∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

𝑝/2

𝑑𝑧)

1/𝑝

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

⋅

∞

∑

ℓ=1

Φ(2
ℓ+1

𝑟)
1/𝑝

𝐵 (𝑥0, 2
ℓ+1𝑟)



1/𝑝
.

(47)

Hence

𝐽2 ≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

⋅

∞

∑

ℓ=1

𝐵 (𝑥0, 𝑟)


1/𝑝

Φ(𝑟)
1/𝑝

⋅

Φ(2
ℓ+1

𝑟)
1/𝑝

𝐵 (𝑥0, 2
ℓ+1𝑟)



1/𝑝
.

(48)

Since 1 ≤ 𝐷(Φ) < 2
𝑛, then, by using the doubling condition

(15) of Φ, we know

∞

∑

ℓ=1

𝐵 (𝑥0, 𝑟)


1/𝑝

Φ(𝑟)
1/𝑝

⋅

Φ(2
ℓ+1

𝑟)
1/𝑝

𝐵 (𝑥0, 2
ℓ+1𝑟)



1/𝑝

≤ 𝐶

∞

∑

ℓ=1

(
𝐷 (Φ)

2𝑛
)

(ℓ+1)/𝑝

≤ 𝐶.

(49)

Therefore

𝐽2 ≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿𝑝,Φ

. (50)

Combining the above estimates for 𝐽1 and 𝐽2 and then taking
the supremum over all balls 𝐵 = 𝐵(𝑥0, 𝑟) ⊆ R𝑛, we complete
the proof of Theorem 3.

Proof of Theorem 4. Let (∑𝑗 |𝑓𝑗|
2
)
1/2

∈ 𝐿
1,Φ. For each fixed

ball 𝐵 = 𝐵(𝑥0, 𝑟) ⊆ R𝑛, we again decompose 𝑓𝑗 as 𝑓𝑗 = 𝑓
0

𝑗
+
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𝑓
∞

𝑗
, where 𝑓

0

𝑗
= 𝑓𝑗 ⋅ 𝜒2𝐵, 𝑗 = 1, 2, . . .. For any given 𝜆 > 0,

then we write



{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓𝑗) (𝑥)



2

)

1/2

> 𝜆

}

}

}



≤



{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

0

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}



+



{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}



= 𝐽


1
+ 𝐽


2
.

(51)

Theorem D and the doubling condition (15) imply

𝐽


1
≤

2

𝜆
⋅



(∑

𝑗


S𝛼 (𝑓

0

𝑗
)


2

)

1/2𝑊𝐿1

≤
𝐶

𝜆
⋅ (∫
2𝐵

(∑

𝑗


𝑓𝑗 (𝑥)



2

)

1/2

𝑑𝑥)

≤
𝐶 ⋅ Φ (2𝑟)

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

≤
𝐶 ⋅ Φ (𝑟)

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

.

(52)

We turn our attention to the estimate of 𝐽


2
. Using the

preceding estimate (32), we can deduce that, for all 𝑥 ∈

𝐵(𝑥0, 𝑟),

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶

∞

∑

ℓ=1

1

𝐵 (𝑥0, 2
ℓ+1𝑟)



∫
2ℓ+1𝐵

(∑

𝑗


𝑓𝑗 (𝑧)



2

)

1/2

𝑑𝑧

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

∞

∑

ℓ=1

Φ(2
ℓ+1

𝑟)

𝐵 (𝑥0, 2
ℓ+1𝑟)



≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

⋅
Φ (𝑟)

𝐵 (𝑥0, 𝑟)


×

∞

∑

ℓ=1

𝐵 (𝑥0, 𝑟)


Φ (𝑟)
⋅

Φ (2
ℓ+1

𝑟)

𝐵 (𝑥0, 2
ℓ+1𝑟)



.

(53)

Note that 1 ≤ 𝐷(Φ) < 2
𝑛. Arguing as in the proof of (49), we

can get

∞

∑

ℓ=1

𝐵 (𝑥0, 𝑟)


Φ (𝑟)
⋅

Φ (2
ℓ+1

𝑟)

𝐵 (𝑥0, 2
ℓ+1𝑟)



≤

∞

∑

ℓ=1

(
𝐷 (Φ)

2𝑛
)

ℓ+1

≤ 𝐶.

(54)

Hence, for any 𝑥 ∈ 𝐵(𝑥0, 𝑟),

(∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

⋅
Φ (𝑟)

𝐵 (𝑥0, 𝑟)


.

(55)

If {𝑥 ∈ 𝐵 : (∑𝑗 |S𝛼(𝑓
∞

𝑗
)(𝑥)|
2
)
1/2

> 𝜆/2} = 0, then the
inequality

𝐽


2
≤

𝐶 ⋅ Φ (𝑟)

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

(56)

holds trivially. Now we may suppose that

{

{

{

𝑥 ∈ 𝐵 : (∑

𝑗


S𝛼 (𝑓

∞

𝑗
) (𝑥)



2

)

1/2

>
𝜆

2

}

}

}

̸= 0. (57)

Then, by the pointwise inequality (55), we can see

𝜆 ≤ 𝐶



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

⋅
Φ (𝑟)

𝐵 (𝑥0, 𝑟)


, (58)

which is equivalent to

𝐵 (𝑥0, 𝑟)
 ≤

𝐶 ⋅ Φ (𝑟)

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

. (59)

Therefore

𝐽


2
≤
𝐵 (𝑥0, 𝑟)

 ≤
𝐶 ⋅ Φ (𝑟)

𝜆



(∑

𝑗


𝑓𝑗



2

)

1/2𝐿1,Φ

. (60)

Summing up the above estimates for 𝐽
1
and 𝐽


2
and then taking

the supremum over all balls 𝐵 = 𝐵(𝑥0, 𝑟) ⊆ R𝑛 and all 𝜆 > 0,
we conclude the proof of Theorem 4.
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