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This paper is devoted to studying the long time behavior of solutions to a bipolar quantum hydrodynamic in one-dimensional space
for general pressure functions.Themodel is usually applied to simulate some quantum effects in semiconductor devices.The decay
rate for time variable is obtained by the entropy functional method and semidiscrete technique.

1. Introduction

By performing relaxation time limit in the quantumhydrody-
namic equation, the semiconductor quantum drift-diffusion
model can be obtained. Usually, it is applied to simulate
the quantum effects, for example, resonant tunneling in
semiconductor devices. Formally, the model also belongs to
the field of the fourth-order parabolic equations (see [1])
including the thin film equation (see [2–4]) and the Cahn-
Hilliard equation. In the paper, we aremainly concernedwith
the following bipolar quantum drift-diffusion model in one-
dimensional space:
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with the initial-boundary conditions as follows:

𝑛 = 𝑝 = 1,
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𝑉 = 𝑉
𝐷
,

on 𝜕Ω = {0, 1} ,

𝑛 (⋅, 0) = 𝑛0,

𝑝 (⋅, 0) = 𝑝0,

in Ω,
(4)

where Ω = (0, 1), 𝑉
𝐷
is a constant, 𝑛 is the electron density,

𝑝 is the positively charged ion (or hole) density, and 𝑉 is the
electron static potential. 𝑃

𝑛
and 𝑃
𝑝
are the pressure functions

and the function 𝐶(𝑥) is the doping profile. The parameter 𝜀
is the scaled Plank constant and 𝜆 > 0 is the Debye length.

Dolbeault et al. [1] studied the existence and uniqueness
of the fourth-order parabolic equation 𝑛

𝑡
+ (𝑛(log𝑛)

𝑥𝑥
)
𝑥𝑥
= 0

with periodic boundary conditions. For the same equation,
Jüngel and Toscani [5] used the entropy functional method
and the semidiscrete technique to construct an iteration
and obtained the exponential decay results. By employing
the semidiscrete method, Jüngel and Violet obtained the
existence of weak solution and gave the quasineutral limit in
[6] to the bipolar quantum drift-diffusion model.

Generally, the bipolar model is more meaningful in
physics and we will treat the case with a general pressure
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function. By applying the entropy method (see [7]) and iter-
ation procedure which have already been used successfully
in [5], we will get the long time exponential decay rate to
the quantum drift-diffusion model (1)–(4). It is a key to deal
with the coupling relationship in the Poisson equation (3).
Moreover, since the maximum principle does not hold again
for the high order partial differential equations, we need to
overcome this difficulty for the purpose of getting uniform
energy estimates.

As [6] has shown, by letting 𝜏 = 𝑇/𝑛, 𝑛
𝑘
= 𝑛(𝑥, 𝑘ℎ), 𝑝

𝑘
=

𝑝(𝑥, 𝑘ℎ), and 𝑘 = 1, 2, . . . , 𝑛, we still borrow the semidiscrete
system. Consider
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For the problem (1)–(4) and the semidiscrete system (5)–(8),
we list some results (Theorems 1–3) which had been proved
in [6].
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weak solution (𝑛, 𝑝, 𝑉) to (1)–(4) such that
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Theorem 2. Under the assumptions of Theorem 1, there exists
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By defining the approximate solutions
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for 𝑥 ∈ Ω, 𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏], [6] gave the following
convergence results.

Theorem 3. Under the assumptions of Theorem 1, there exists
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for all 𝜙 ∈ 𝐶∞0 (𝑄𝑇), where 𝑠 = min{7/2𝑞, 14/11} > 1 and ⟨⋅, ⋅⟩
is the duality product between𝐻−3(Ω) and𝐻3

0 (Ω).

Themain result of the paper is as follows.

Theorem4. Under the assumptions ofTheorem 1, let𝐶(𝑥) ≡ 0
and let (𝑛, 𝑝, 𝑉) be the weak solution to (1)–(4). Then
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(14)

for 𝑡 ≥ 0, where the constants 𝐶1 and 𝐶2 > 0 only depend on
Ω, 𝑛0, and 𝑝0.

Here, we need the condition 𝐶(𝑥) ≡ 0 for the purpose of
integration by parts and nonpositivity for some terms.

The paper is arranged as follows. We will prove some
auxiliary lemmas at first in Section 2. The exponential decay
rate will be established in Section 3.

2. Semidiscrete Solutions

Introduce some discrete entropies
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Lemma 6. Assume 𝑞
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𝑘
)

𝑛
2
𝑘𝑥

𝑛
2
𝑘

𝑑𝑥

+∫

Ω

𝑉
𝑘𝑥
(log 𝑛

𝑘
)
𝑥
𝑑𝑥 ≤ ∫

Ω

𝑉
𝑘𝑥
(log 𝑛

𝑘
)
𝑥
𝑑𝑥,

(24)

1
𝜏

∫

Ω

(𝑝
𝑘
−𝑝
𝑘−1 − 1+

𝑝
𝑘−1
𝑝
𝑘

)𝑑𝑥+

𝜀
2

2
∫

Ω

(log𝑝
𝑘
)
2
𝑥𝑥
𝑑𝑥

≤ −∫

Ω

𝑉
𝑘𝑥
(log𝑝

𝑘
)
𝑥
𝑑𝑥.

(25)

Using log𝑛
𝑘
− log𝑝

𝑘
as a test function in (7) and applying

the inequality (𝑥1 − 𝑥2)(log𝑥1 − log𝑥2) ≥ 0 for all 𝑥1, 𝑥2 > 0,
we have

𝜆
2
∫

Ω

𝑉
𝑘𝑥
(log 𝑛

𝑘
− log𝑝

𝑘
)
𝑥
𝑑𝑥

= −∫

Ω

(𝑛
𝑘
−𝑝
𝑘
) (log 𝑛

𝑘
− log𝑝

𝑘
) 𝑑𝑥 ≤ 0.

(26)

The inequality 𝑥 − 1 ≥ log𝑥 for 𝑥 > 0 yields

∫

Ω

(𝑛
𝑘
− 𝑛
𝑘−1 − 1+

𝑛
𝑘−1
𝑛
𝑘

)𝑑𝑥

= 𝑞
𝑘
− 𝑞
𝑘−1 +∫

Ω

(−log
𝑛
𝑘−1
𝑛
𝑘

+

𝑛
𝑘−1
𝑛
𝑘

− 1)𝑑𝑥

≥ 𝑞
𝑘
− 𝑞
𝑘−1

(27)

and similarly ∫
Ω
(𝑝
𝑘
− 𝑝
𝑘−1 − 1 + 𝑝𝑘−1/𝑝𝑘)𝑑𝑥 ≥ 𝜁𝑘 − 𝜁𝑘−1. By

(24)–(27), we obtain

1
𝜏

(𝑞
𝑘
− 𝑞
𝑘−1) +

𝜀
2

2
∫

Ω

(log 𝑛
𝑘
)
2
𝑥𝑥
𝑑𝑥+

1
𝜏

(𝜁
𝑘
− 𝜁
𝑘−1)

+

𝜀
2

2
∫

Ω

(log𝑝
𝑘
)
2
𝑥𝑥
𝑑𝑥

≤ ∫

Ω

𝑉
𝑘𝑥
(log 𝑛

𝑘
− log𝑝

𝑘
)
𝑥
𝑑𝑥 ≤ 0.

(28)

Hence, (23) has been proved.

Lemma 7. Assume 𝑞0 + 𝜁0 < ∞. Then

0 < 𝑒−(𝑞0+𝜁0) ≤ ∫
Ω

(𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥 ≤ 2 (𝑞0 + 𝜁0) < ∞. (29)

Proof. The inequality 𝑥 − log𝑥 ≥ 𝑥/2 for 𝑥 > 0 gives

∫

Ω

(𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥 ≤ 2 (𝑞

𝑘
+ 𝜁
𝑘
) ≤ 2 (𝑞0 + 𝜁0) (30)

and Jensen’s inequality yields

− log∫
Ω

(𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥 ≤ −∫

Ω

log (𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥

+∫

Ω

(𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥

≤

1
2
∫

Ω

(𝑛
𝑘
+𝑝
𝑘
) 𝑑𝑥 ≤ 𝑞0 + 𝜁0

< ∞.

(31)

The assertion finishes the proof of the lemma.

3. Exponential Decay

In order to proveTheorem 4, we list some known results (see
[5]) at first.

Lemma 8. Assume the function 𝑢 ∈ 𝐻2
(Ω), 𝑢 > 0, in Ω and

𝑢 = 1, 𝑢
𝑥
= 0, on 𝜕Ω. Then

∫

Ω

𝑢 (log 𝑢)2
𝑥𝑥
𝑑𝑥 ≥ 8 


√𝑢− 1



2
𝐿
∞
(Ω)
. (32)

Lemma 9. Assume the function 𝑢 ∈ 𝐿∞(Ω), 𝑢 > 0, inΩ.Then

∫

Ω

(𝑢 (log 𝑢− 1) + 1) 𝑑𝑥

≤ (∫

Ω

𝑢 𝑑𝑥+ 2) 

√𝑢− 1



2
𝐿
∞
(Ω)
.

(33)

Lemma 10 (Criszar-Kullback-type inequality). Assume the
function 0 < 𝑢 ∈ 𝐿1(Ω) and 𝑞 = ∫

Ω
(𝑢 − log𝑢)𝑑𝑥 < ∞. Then

∫

Ω

(𝑢 (log 𝑢− 1) + 1) 𝑑𝑥

≥

1
(1 + √2𝑞)2

(∫

Ω

|𝑢 − 1| 𝑑𝑥)
2
.

(34)
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Proof of Theorem 4. According to Lemmas 5, 8, 9, and 7, we
get

(𝜂
𝑘
− 𝜂
𝑘−1) + (𝜉𝑘 − 𝜉𝑘−1) ≤ −

𝜏

2
𝜀
2
(∫

Ω

𝑛
𝑘
(log 𝑛

𝑘
)
2
𝑥𝑥
𝑑𝑥

+

𝜀
2

2
∫

Ω

𝑝
𝑘
(log𝑝

𝑘
)
2
𝑥𝑥
𝑑𝑥)

≤ − 4𝜏𝜀2 (

√𝑛𝑘

− 1


2
𝐿
∞
(Ω)
+




√𝑝
𝑘
− 1


2
𝐿
∞
(Ω)
)

≤ − 4𝜏𝜀2(
𝜂
𝑘

∫
Ω
𝑛
𝑘
𝑑𝑥 + 2

+

𝜉
𝑘

∫
Ω
𝑝
𝑘
𝑑𝑥 + 2

)

≤

−2𝜏𝜀2

𝑞0 + 𝜁0 + 1
(𝜂
𝑘
+ 𝜉
𝑘
)

(35)

and then, by iterating the above inequality, we deduce that

𝜂
𝑘
+ 𝜉
𝑘
≤ (1+ 2𝜏𝜀2

𝑞0 + 𝜁0 + 1
)

−1

(𝜂
𝑘−1 + 𝜉𝑘−1)

≤ (1+ 2𝜏𝜀2

𝑞0 + 𝜁0 + 1
)

−𝑘

(𝜂0 + 𝜉0) .

(36)

Moreover, for (𝑘 − 1)𝜏 < 𝑡 ≤ 𝑘𝜏, we have

𝜂
𝑘
+ 𝜉
𝑘
≤ (1+ 2𝜏𝜀2

𝑞0 + 𝜁0 + 1
)

−𝑡/𝜏

(𝜂0 + 𝜉0) . (37)

Introduce the following functions:

𝜂
(𝜏)
(𝑡) = ∫

Ω

(𝑛
(𝜏)
(𝑡) (log 𝑛(𝜏) (𝑡) − 1) + 1) 𝑑𝑥,

𝜉
(𝜏)
(𝑡) = ∫

Ω

(𝑝
(𝜏)
(𝑡) (log𝑝(𝜏) (𝑡) − 1) + 1) 𝑑𝑥.

(38)

Equation (37) implies

𝜂
(𝜏)
(𝑡) + 𝜉

(𝜏)
(𝑡) ≤ (𝜂0 + 𝜉0) (1+

2𝜏𝜀2

𝑞0 + 𝜁0 + 1
)

−𝑡/𝜏

. (39)

By applying Theorem 3, we conclude that there exists
a subsequence of (𝑛(𝜏), 𝑝(𝜏)) such that 𝑛(𝜏)(𝑡) → 𝑛 and
𝑝
(𝜏)
(𝑡) → 𝑝 a.e. in Ω. Furthermore, we have 𝑛(𝜏)log𝑛(𝜏) →

𝑛log𝑛 and 𝑝(𝜏)log𝑝(𝜏) → 𝑝log𝑝 a.e. inΩ. On the other hand,
𝜂
(𝜏)
+ 𝜉
(𝜏) is bounded uniformly in 𝜏 from (39) and then

Lebesgue’s convergence theorem yields 𝜂(𝜏) + 𝜉(𝜏) → 𝜂 + 𝜉

for 𝑡 ∈ (0, 𝑇). Therefore, we have

𝜂 (𝑡) + 𝜉 (𝑡) ≤ (𝜂0 + 𝜉0) lim
𝜏→ 0

(1+ 2𝜏𝜀2

𝑞0 + 𝜁0 + 1
)

−𝑡/𝜏

= (𝜂0 + 𝜉0) 𝑒
−(2/(𝑞0+𝜁0+1))𝑡

.

(40)

Applying Lemma 10, we have

‖𝑛 (𝑡) − 1‖
𝐿
1
(Ω)
+




𝑝 (𝑡) − 1

𝐿
1
(Ω)
≤ 𝐶1 (𝜂0 + 𝜉0) 𝑒

−𝐶2𝑡
, (41)

where𝐶1 and𝐶2 are both positive constants. Finally, multiply
(7) by 𝑉

𝑘
− 𝑉
𝐷
to get

𝜆
2
∫

Ω





(𝑉
𝑘
−𝑉
𝐷
)
𝑥






2

𝑑𝑥

= −∫

Ω

(𝑛
𝑘
−𝑝
𝑘
) (𝑉
𝑘
−𝑉
𝐷
) 𝑑𝑥

≤ ∫

Ω





𝑛
𝑘
−𝑝
𝑘





𝑑𝑥




𝑉
𝑘
−𝑉
𝐷




𝐿
∞
(Ω)

≤ 𝐶




𝑉
𝑘
−𝑉
𝐷




𝐻

1
(Ω)
∫

Ω





𝑛
𝑘
−𝑝
𝑘





𝑑𝑥

(42)

and then

𝜆
2 



𝑉
(𝜏)
−𝑉
𝐷





𝐻

1
(Ω)
≤ 𝐶∫

Ω






𝑛
(𝜏)
−𝑝
(𝜏)



𝑑𝑥. (43)

By letting 𝜏 → 0, we can get the result of the theorem.
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