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We give a complete characterization of bounded invertible weighted composition operators on the Fock space of C𝑁.

1. Introduction

It seems that there are simple forms for the weighted compo-
sition operators on the Fock space as implied in [1], where
bounded and compact weighted composition operators on
the Fock space of complex planeC are characterized. Follow-
ing the ideas in [1], in this paper a complete characterization
of bounded invertible weighted composition operators on
Fock space of C𝑁 is given.

Recall that the Fock space F2 is the space of analytic
functions 𝑓 on C𝑁 for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
=

1
(2𝜋)𝑁

∫
C𝑁

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

2
𝑒
−|𝑧|

2
/2
𝑑𝑚2𝑁 (𝑧) , (1)

where 𝑑𝑚2𝑁 is the usual Lebesgue measure on C𝑁 and |𝑧|

denotes the norm for 𝑧 ∈ C𝑁. F2 is a reproducing kernel
Hilbert space with inner product

⟨𝑓, 𝑔⟩ =
1

(2𝜋)𝑁
∫
C𝑁

𝑓 (𝑧) 𝑔 (𝑧)𝑒
−|𝑧|

2
/2
𝑑𝑚2𝑁 (𝑧) ,

𝑓, 𝑔 ∈ F
2

(2)

and reproducing kernel function

𝐾
𝑤 (𝑧) = exp(⟨𝑧, 𝑤⟩

2
) , 𝑤, 𝑧 ∈ C

𝑁
, (3)

where ⟨𝑧, 𝑤⟩ denotes the inner product for 𝑧, 𝑤 ∈ C𝑁 and
|𝑧|

2
= ⟨𝑧, 𝑧⟩. Note that it is unnecessary to distinguish the

symbols of inner product inF2 and inner product in C𝑁.

Let 𝑘
𝑤
be the normalization of𝐾

𝑤
; then

𝑘
𝑤 (𝑧) = exp(⟨𝑧, 𝑤⟩

2
−
|𝑤|

2

4
) . (4)

For analytic function 𝜓 on C𝑁 and analytic self-mapping
𝜑 on C𝑁, the weighted composition operator 𝐶

𝜓,𝜑
on F2 is

defined as

𝐶
𝜓,𝜑

𝑓 = 𝜓 (𝑓 ∘ 𝜑) , 𝑓 ∈ F
2
. (5)

For an operator 𝐴 on C𝑁, denote by |𝐴| the norm of 𝐴.
We have the following main result.

Theorem 1. Let 𝜓 be an analytic function on C𝑁 and let 𝜑 be
an analytic self-mapping onC𝑁.Then𝐶

𝜓,𝜑
is a bounded invert-

ible operator onF2 if and only if

𝜑 (𝑧) = 𝐴𝑧+ 𝑏 (6)

for some invertible operator 𝐴 on C𝑁 with |𝐴| = 1, 𝑏 ∈ C𝑁,
and there exist positive constants𝑀,𝐿 such that

𝐿 ≤
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≤ 𝑀, 𝑧 ∈ C

𝑁
. (7)

Weighted composition operators on various function
spaces have been studied intensively and extensively, which
reflects the perfect combination of operator theory and func-
tion theory. For related topic of (weighted) composition oper-
ators on the Fock space, see [2–9] and so forth.
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2. Proof of the Main Results

In this section, we present the proof of the main results. First,
we list some known results.

Lemma 2. Let 𝜓1, . . . , 𝜓𝑛 be analytic functions on C𝑁 and let
𝜑1, . . . , 𝜑𝑛 be analytic self-mapping onC𝑁. If 𝐶

𝜓1 ,𝜑1
, . . . , 𝐶

𝜓𝑛 ,𝜑𝑛

are bounded operators onF2, then

𝐶
𝜓1 ,𝜑1

𝐶
𝜓2 ,𝜑2

⋅ ⋅ ⋅ 𝐶
𝜓𝑛 ,𝜑𝑛

= 𝐶
𝜓1(𝜓2∘𝜑1)⋅⋅⋅(𝜓𝑛∘𝜑𝑛−1∘⋅⋅⋅∘𝜑1),𝜑𝑛∘𝜑𝑛−1∘⋅⋅⋅∘𝜑1

.

(8)

Lemma 3. Let 𝜓 be an analytic function on C𝑁 and let 𝜑 be
an analytic self-mapping on C𝑁. If 𝐶

𝜓,𝜑
is a bounded operator

onF2, then, for 𝑧 ∈ C𝑁,

𝐶
∗

𝜓,𝜑
𝐾
𝑧
= 𝜓 (𝑧)𝐾𝜑(𝑧). (9)

For 𝑝 ∈ C𝑁, denote 𝜑
𝑝
(𝑧) = 𝑧 − 𝑝, 𝑈

𝑝
= 𝐶
𝑘𝑝 ,𝜑𝑝

.

Lemma 4 (see [8, Proposition 2.3]). 𝑈
𝑝
is a unitary operator

onF2 and 𝑈
−1
𝑝

= 𝑈
−𝑝
.

The following lemma is a modification of Proposition 2.1
in [1] since the reproducing kernel function in this paper is a
little different from the reproducing kernel function in [1].

Lemma 5. Let 𝜓, 𝜑 be entire functions on C with 𝜓 ̸= 0. If
there exists a positive constant𝑀 such that

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑢)

󵄨󵄨󵄨󵄨

2
− |𝑢|

2

2
) ≤ 𝑀, 𝑢 ∈ C, (10)

then

𝜑 (𝑢) = 𝑎𝑢 + 𝑏 (11)

for some constants 𝑎, 𝑏 with |𝑎| ≤ 1. If |𝑎| = 1, then 𝜓(𝑢) =

𝑠𝑘
𝑐
(𝑢) for some nonzero constant 𝑠 and 𝑐 = −𝑎𝑏.

Let 𝑓 be an analytic function onC𝑁; for any 𝜉 ∈ S = {𝑧 ∈

C𝑁, |𝑧| = 1}, denote

𝑓
𝜉 (𝑢) = 𝑓 (𝑢𝜉) , 𝑢 ∈ C, (12)

where 𝑓
𝜉
is called the slice function of 𝑓 in 𝜉 and 𝑓

𝜉
is an

analytic function on C.
Now, we extend Lemma 5 to the case ofC𝑁 in some sense.

Lemma 6. Let 𝜓 be an analytic function onC𝑁 with 𝜓(0) ̸= 0
and let 𝜑 be an analytic self-mapping on C𝑁. If there exists a
positive constant𝑀 such that

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≤ 𝑀, 𝑧 ∈ C

𝑁
, (13)

then

𝜑 (𝑧) = 𝐴𝑧+ 𝑏, (14)

where 𝐴 is an operator on C𝑁 with |𝐴| ≤ 1 and 𝑏 ∈ C𝑁.

Moreover, there exists a constant 𝑠 ∈ C such that

𝜓
𝜉 (𝑢) = 𝑠 exp(−

𝑢 ⟨𝐴𝜉, 𝑏⟩

2
−
|𝑏|

2

4
) , 𝑢 ∈ C (15)

whenever |𝐴𝜉| = |𝜉| for 𝜉 ∈ C𝑁.
In particular, when 𝐴 is a unitary operator on C𝑁, then

there exists a constant 𝑠 ∈ C such that

𝜓 (𝑧) = 𝑠𝑘
𝑐 (𝑧) , (16)

with 𝑐 = −𝐴
∗
𝑏.

Proof. Since 𝜑 : C𝑁 → C𝑁 is an analytic mapping, assume

𝜑 (𝑧) = (𝜑1 (𝑧) , . . . , 𝜑𝑁 (𝑧)) , 𝑧 ∈ C
𝑁
, (17)

where 𝜑
𝑗
, 1 ≤ 𝑗 ≤ 𝑁, are analytic functions on C𝑁.

By formula (13), for any 𝜉 ∈ S,

󵄨󵄨󵄨󵄨󵄨
𝜓
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
exp(

󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨𝜉𝑢

󵄨󵄨󵄨󵄨

2

2
) ≤ 𝑀, 𝑢 ∈ C, (18)

where 𝜑
𝜉
(𝑢) = (𝜑1,𝜉(𝑢), . . . , 𝜑𝑁,𝜉(𝑢)).

For any 𝑗, 1 ≤ 𝑗 ≤ 𝑁, we have

󵄨󵄨󵄨󵄨󵄨
𝜓
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
exp(

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗,𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
− |𝑢|

2

2
) ≤ 𝑀, 𝑢 ∈ C, (19)

since
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗,𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
≤
󵄨󵄨󵄨󵄨󵄨
𝜑1,𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑁,𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
=
󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
. (20)

Since 𝜓
𝜉
(0) = 𝜓(0) ̸= 0, it follows from Lemma 5 that

there exist constants 𝐴
𝑗
(𝜉), 𝑏
𝑗
(𝜉) ∈ C such that

𝜑
𝑗,𝜉 (𝑢) = 𝐴

𝑗 (𝜉) 𝑢 + 𝑏
𝑗 (𝜉) , 𝑢 ∈ C. (21)

Let 𝑢 = 0 in the formula above; then

𝑏
𝑗 (𝜉) = 𝜑

𝑗,𝜉 (0) = 𝜑
𝑗 (0) , (22)

which implies that 𝑏
𝑗
(𝜉) is a constant. Assume

𝑏
𝑗
= 𝑏
𝑗 (𝜉) = 𝜑

𝑗 (0) ; (23)

then

𝜑
𝑗,𝜉 (𝑢) = 𝐴

𝑗 (𝜉) 𝑢 + 𝑏
𝑗
, 𝑢 ∈ C. (24)

Let 𝜑
𝑗
(𝑧) = ∑

∞

𝑛=0 𝜑𝑗,𝑛(𝑧), 𝑧 ∈ C𝑁, be the homogeneous
expansion of 𝜑

𝑗
, where 𝜑

𝑗,𝑛
is homogeneous of degree 𝑛; then

𝜑
𝑗,𝜉 (𝑢) = 𝜑

𝑗 (𝑢𝜉) =

∞

∑

𝑛=0
𝜑
𝑗,𝑛 (𝑢𝜉) =

∞

∑

𝑛=0
𝑢
𝑛
𝜑
𝑗,𝑛 (𝜉) ,

𝑢 ∈ C.

(25)
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Comparing formulas (24) and (25), it follows from the
arbitrary of 𝑢 that

𝜑
𝑗,0 (𝜉) = 𝑏

𝑗
,

𝐴
𝑗 (𝜉) = 𝜑

𝑗,1 (𝜉) ,

𝜑
𝑗,𝑛 (𝜉) = 0, 𝑛 ≥ 2.

(26)

By the arbitrary of 𝜉 and homogeneity of 𝜑
𝑗,𝑛
, 0 ≤ 𝑛 < ∞, we

have
𝜑
𝑗,0 = 𝑏

𝑗
,

𝜑
𝑗,𝑛

= 0, 𝑛 ≥ 2.
(27)

Since 𝜑
𝑗,1 is homogeneous of degree 1, assume

𝜑
𝑗,1 (𝑧) = 𝑎

𝑗,1𝑧1 + ⋅ ⋅ ⋅ + 𝑎
𝑗,𝑁

𝑧
𝑁
,

𝑧 = (𝑧1, . . . , 𝑧𝑁) ∈ C
𝑁
, 𝑎
𝑗,𝑚

∈ C, 1 ≤ 𝑚 ≤ 𝑁;

(28)

then
𝜑
𝑗 (𝑧) = 𝑎

𝑗,1𝑧1 + ⋅ ⋅ ⋅ + 𝑎
𝑗,𝑁

𝑧
𝑁
+ 𝑏
𝑗
,

𝑧 = (𝑧1, . . . , 𝑧𝑁) ∈ C
𝑁
.

(29)

Let 𝐴 = (𝑎
𝑗,𝑚

)1≤𝑗,𝑚≤𝑁, 𝑏 = (𝑏1, . . . , 𝑏𝑁); then

𝜑 (𝑧) = 𝐴𝑧+ 𝑏, 𝑧 ∈ C
𝑁
. (30)

The following reasoning is similar as Proposition 2.1 in
[1].

Taking logarithms in both sides of formula (18), we have

4 log 󵄨󵄨󵄨󵄨󵄨𝜓𝜉 (𝑢)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
− |𝑢|

2
≤ 2 log𝑀, 𝑢 ∈ C. (31)

Put 𝑢 = 𝑟𝑒
𝑖𝜃 and, integrating with respect to 𝜃 on [−𝜋, 𝜋], we

obtain

∫

𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉
(𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2 𝑑𝜃

2𝜋
− 𝑟

2
+ 4∫
𝜋

−𝜋

log 󵄨󵄨󵄨󵄨󵄨𝜓𝜉 (𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

𝑑𝜃

2𝜋

≤ 2 log𝑀.

(32)

Since log |𝜓
𝜉
| is subharmonic,

log 󵄨󵄨󵄨󵄨𝜓 (0)󵄨󵄨󵄨󵄨 = log 󵄨󵄨󵄨󵄨󵄨𝜓𝜉 (0)
󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝜋

−𝜋

log 󵄨󵄨󵄨󵄨󵄨𝜓𝜉 (𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

𝑑𝜃

2𝜋
. (33)

So

∫

𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉
(𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2 𝑑𝜃

2𝜋
− 𝑟

2
+ 4 log 󵄨󵄨󵄨󵄨𝜓 (0)󵄨󵄨󵄨󵄨 ≤ 2 log𝑀. (34)

Since
󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉
(𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2
=
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑟𝑒
𝑖𝜃
𝜉)
󵄨󵄨󵄨󵄨󵄨

2
=
󵄨󵄨󵄨󵄨󵄨
𝐴 (𝑟𝑒
𝑖𝜃
𝜉) + 𝑏

󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
𝑟𝑒
𝑖𝜃
(𝐴𝜉) + 𝑏

󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
𝑟𝑒
𝑖𝜃
(𝑎1,1𝜉1 + ⋅ ⋅ ⋅ + 𝑎1,𝑁𝜉𝑁) + 𝑏1

󵄨󵄨󵄨󵄨󵄨

2
+ ⋅ ⋅ ⋅

+
󵄨󵄨󵄨󵄨󵄨
𝑟𝑒
𝑖𝜃
(𝑎
𝑁,1𝜉1 + ⋅ ⋅ ⋅ + 𝑎

𝑁,𝑁
𝜉
𝑁
) + 𝑏
𝑁

󵄨󵄨󵄨󵄨󵄨

2
,

(35)

where 𝜉 = (𝜉1, . . . , 𝜉𝑁) ∈ S, we have

∫

𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨
𝜑
𝜉
(𝑟𝑒
𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2 𝑑𝜃

2𝜋

= 𝑟
2 󵄨󵄨󵄨󵄨𝑎1,1𝜉1 + ⋅ ⋅ ⋅ + 𝑎1,𝑁𝜉𝑁

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨

2
+ ⋅ ⋅ ⋅ + 𝑟

2 󵄨󵄨󵄨󵄨𝑎𝑁,1𝜉1 + ⋅ ⋅ ⋅ + 𝑎
𝑁,𝑁

𝜉
𝑁

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑏𝑁

󵄨󵄨󵄨󵄨

2
= 𝑟

2 󵄨󵄨󵄨󵄨𝐴𝜉
󵄨󵄨󵄨󵄨

2
+ |𝑏|

2
.

(36)

By formula (34) again, we get

(
󵄨󵄨󵄨󵄨𝐴𝜉

󵄨󵄨󵄨󵄨

2
− 1) 𝑟2 + |𝑏|

2
+ 4 log 󵄨󵄨󵄨󵄨𝜓 (0)󵄨󵄨󵄨󵄨 ≤ 2 log𝑀. (37)

Since 𝜓(0) ̸= 0, it follows from the arbitrary of 𝑟 that

󵄨󵄨󵄨󵄨𝐴𝜉
󵄨󵄨󵄨󵄨

2
− 1 ≤ 0 (38)

for all 𝜉 ∈ S, which implies that

|𝐴| ≤ 1. (39)

When |𝐴𝜉| = |𝜉| for some 𝜉 ∈ C𝑁, without loss of gener-
ality, assume that 𝜉 ∈ S; then |𝐴𝜉| = |𝜉| = 1 and

exp(
󵄨󵄨󵄨󵄨𝐴 (𝑢𝜉) + 𝑏

󵄨󵄨󵄨󵄨

2
− |𝑢|

2

2
)

= exp(
⟨𝑢𝐴𝜉, 𝑏⟩ + ⟨𝑏, 𝑢𝐴𝜉⟩

2
+
|𝑏|

2

2
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

exp(
𝑢 ⟨𝐴𝜉, 𝑏⟩

2
+
|𝑏|

2

4
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(40)

It follows from (18) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝜉 (𝑢) exp(

𝑢 ⟨𝐴𝜉, 𝑏⟩

2
+
|𝑏|

2

4
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
𝜓
𝜉 (𝑢)

󵄨󵄨󵄨󵄨󵄨

2
exp(

󵄨󵄨󵄨󵄨𝐴 (𝑢𝜉) + 𝑏
󵄨󵄨󵄨󵄨

2
− |𝑢|

2

2
) ≤ 𝑀,

(41)

which implies that𝜓
𝜉
(𝑢)exp(𝑢⟨𝐴𝜉, 𝑏⟩/2+|𝑏|2/4) is a bounded

analytic function on C. By Liouville theorem, there exists a
constant 𝑠(𝜉) ∈ C such that

𝜓
𝜉 (𝑢) exp(

𝑢 ⟨𝐴𝜉, 𝑏⟩

2
+
|𝑏|

2

4
) = 𝑠 (𝜉) . (42)

Let 𝑢 = 0; then 𝑠(𝜉) = 𝜓
𝜉
(0)𝑒|𝑏|

2
/4

= 𝜓(0)𝑒|𝑏|
2
/4, which implies

that 𝑠(𝜉) is a constant. Assume 𝑠 = 𝑠(𝜉); then

𝜓
𝜉 (𝑢) = 𝑠 exp(−

𝑢 ⟨𝐴𝜉, 𝑏⟩

2
−
|𝑏|

2

4
) , 𝑢 ∈ C. (43)
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If 𝐴 is a unitary operator on C𝑁, then, for any 𝑧 ∈ C𝑁,
|𝐴𝑧| = |𝑧|. Taking 𝜉 ∈ S, 𝑢 ∈ C such that 𝑧 = 𝑢𝜉, then

𝜓 (𝑧) = 𝜓 (𝑢𝜉) = 𝜓
𝜉 (𝑢)

= 𝑠 exp(−
⟨𝐴 (𝑢𝜉) , 𝑏⟩

2
−
|𝑏|

2

4
)

= 𝑠 exp(
⟨𝑧, −𝐴

∗
𝑏⟩

2
−

󵄨󵄨󵄨󵄨𝐴
∗
𝑏
󵄨󵄨󵄨󵄨

2

4
) = 𝑠𝑘

−𝐴
∗
𝑏 (𝑧) .

(44)

Proposition 7. Let 𝜓 be a nonzero analytic function on C𝑁

and let 𝜑 be an analytic self-mapping onC𝑁. If 𝐶
𝜓,𝜑

is a boun-
ded operator on F2, then there exists an operator 𝐴 on C𝑁,
|𝐴| ≤ 1, 𝑏 ∈ C𝑁, such that

𝜑 (𝑧) = 𝐴𝑧+ 𝑏,

sup
𝑧∈C𝑁

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) < ∞.

(45)

In particular, when 𝐴 is invertible, condition (45) is sufficient
also.

Proof. If 𝐶
𝜓,𝜑

is a bounded operator onF2, then there exists
a positive constant𝑀 such that, for any 𝑧 ∈ C𝑁,

󵄩󵄩󵄩󵄩󵄩
𝐶
∗

𝜓,𝜑
𝐾
𝑧

󵄩󵄩󵄩󵄩󵄩

2
≤ 𝑀

󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩

2
. (46)

Since 𝐶∗
𝜓,𝜑

𝐾
𝑧
= 𝜓(𝑧)𝐾

𝜑(𝑧)
and ‖𝐾

𝑧
‖
2
= 𝑒
|𝑧|

2
/2, we have

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≤ 𝑀, 𝑧 ∈ C

𝑁
. (47)

Take𝑝 ∈ C𝑁 such that𝜓(−𝑝) ̸= 0. Since𝐶
𝜓,𝜑

is a bounded
operator on F2, so is 𝑈

𝑝
𝐶
𝜓,𝜑

. Denote 𝜓1 = 𝑘
𝑝
⋅ (𝜓 ∘ 𝜑

𝑝
),

𝜑1 = 𝜑 ∘ 𝜑
𝑝
; then

𝑈
𝑝
𝐶
𝜓,𝜑

= 𝐶
𝜓1 ,𝜑1

. (48)

Since 𝐶
𝜓1 ,𝜑1

is a bounded operator onF2 also, we obtain

sup
𝑧∈C𝑁

󵄨󵄨󵄨󵄨𝜓1 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑1 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) < ∞. (49)

Note that 𝜓1(0) = 𝑘
𝑝
(0)𝜓(−𝑝) ̸= 0. It follows from Lemma 6

that

𝜑1 (𝑧) = 𝐴𝑧+𝑑, 𝑧 ∈ C
𝑁 (50)

for some operator 𝐴 on C𝑁 with |𝐴| ≤ 1 and 𝑑 ∈ C𝑁.
Since 𝜑(𝑧) = (𝜑1 ∘ 𝜑−𝑝)(𝑧), we have

𝜑 (𝑧) = 𝐴𝑧+ 𝑏 (51)

with 𝑏 = 𝐴𝑝 + 𝑑.

When 𝐴 is invertible, we have

𝜑
−1

(𝑤) = 𝐴
−1
𝑤−𝐴

−1
𝑏, 𝑤 ∈ C

𝑁
. (52)

If 𝜓, 𝜑 satisfy condition (45), then, for any 𝑓 ∈ F2,

󵄩󵄩󵄩󵄩󵄩
𝐶
𝜓,𝜑

𝑓
󵄩󵄩󵄩󵄩󵄩

2
=

1
(2𝜋)𝑁

∫
C𝑁

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑓 (𝜑 (𝑧))
󵄨󵄨󵄨󵄨

2

⋅ 𝑒
−|𝑧|

2
/2
𝑑𝑚2𝑁 (𝑧) =

1
(2𝜋)𝑁

∫
C𝑁

󵄨󵄨󵄨󵄨𝑓 (𝜑 (𝑧))
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2

⋅ 𝑒
(|𝜑(𝑧)|

2
−|𝑧|

2
)/2

𝑒
−|𝜑(𝑧)|

2
/2
𝑑𝑚2𝑁 (𝑧) ≤

1
(2𝜋)𝑁

⋅ sup
𝑧∈C𝑁

(
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2
𝑒
(|𝜑(𝑧)|

2
−|𝑧|

2
)/2

)∫
C𝑁

󵄨󵄨󵄨󵄨𝑓 (𝜑 (𝑧))
󵄨󵄨󵄨󵄨

2

⋅ 𝑒
−|𝜑(𝑧)|

2
/2
𝑑𝑚2𝑁 (𝑧) =

󵄨󵄨󵄨󵄨󵄨
det𝐴−1󵄨󵄨󵄨󵄨󵄨

2

(2𝜋)𝑁

⋅ sup
𝑧∈C𝑁

(
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2
𝑒
(|𝜑(𝑧)|

2
−|𝑧|

2
)/2

)∫
C𝑁

󵄨󵄨󵄨󵄨𝑓 (𝑤)
󵄨󵄨󵄨󵄨

2

⋅ 𝑒
−|𝑤|

2
/2
𝑑𝑚2𝑁 (𝑤) =

󵄨󵄨󵄨󵄨󵄨
det𝐴−1󵄨󵄨󵄨󵄨󵄨

2

⋅ sup
𝑧∈C𝑁

(
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2
𝑒
(|𝜑(𝑧)|

2
−|𝑧|

2
)/2

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2
,

(53)

which implies that 𝐶
𝜓,𝜑

is a bounded operator onF2 and

󵄩󵄩󵄩󵄩󵄩
𝐶
𝜓,𝜑

󵄩󵄩󵄩󵄩󵄩

2
≤
󵄨󵄨󵄨󵄨󵄨
det𝐴−1󵄨󵄨󵄨󵄨󵄨

2
sup
𝑧∈C𝑁

(
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2
𝑒
(|𝜑(𝑧)|

2
−|𝑧|

2
)/2

) . (54)

Now we restate the main result and present the proof.

Theorem 8. Let 𝜓 be an analytic function on C𝑁 and let 𝜑
be an analytic self-mapping on C𝑁. Then 𝐶

𝜓,𝜑
is a bounded

invertible operator onF2 if and only if there exist an invertible
operator𝐴 onC𝑁, with |𝐴| = 1, 𝑏 ∈ C𝑁, and positive constants
𝑀, 𝐿 such that

𝜑 (𝑧) = 𝐴𝑧+ 𝑏,

𝐿 ≤
󵄨󵄨󵄨󵄨𝜓 (𝑧)

󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≤ 𝑀,

𝑧 ∈ C
𝑁
.

(55)

Proof. Assume that 𝐶
𝜓,𝜑

is a bounded invertible operator on
F2. By the boundedness of𝐶

𝜓,𝜑
, it follows fromProposition 7

that

𝜑 (𝑧) = 𝐴𝑧+ 𝑏 (56)

for some operator 𝐴 on C𝑁 with |𝐴| ≤ 1, and there exists a
positive constant𝑀 such that

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≤ 𝑀, 𝑧 ∈ C

𝑁
. (57)
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Since 𝐶
𝜓,𝜑

is a bounded invertible operator on F2, so is
𝐶
∗

𝜓,𝜑
. Hence there exists a positive constant 𝐿 such that, for

any 𝑧 ∈ C𝑁,
󵄩󵄩󵄩󵄩󵄩
𝐶
∗

𝜓,𝜑
𝐾
𝑧

󵄩󵄩󵄩󵄩󵄩

2
≥ 𝐿

󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩

2
. (58)

It follows from 𝐶
∗

𝜓,𝜑
𝐾
𝑧
= 𝜓(𝑧)𝐾

𝜑(𝑧)
and ‖𝐾

𝑧
‖
2
= 𝑒
|𝑧|

2
/2 that

󵄨󵄨󵄨󵄨𝜓 (𝑧)
󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2
− |𝑧|

2

2
) ≥ 𝐿, 𝑧 ∈ C

𝑁
, (59)

which implies that 𝜓 has no zeroes in C𝑁.
Let 𝑧, 𝑤 ∈ C𝑁 with 𝜑(𝑧) = 𝜑(𝑤); then

𝐶
∗

𝜓,𝜑
(

𝐾
𝑧

𝜓 (𝑧)

−
𝐾
𝑤

𝜓 (𝑤)

) = 𝐾
𝜑(𝑧)

−𝐾
𝜑(𝑤)

= 0, (60)

which implies that
𝐾
𝑧

𝜓 (𝑧)

−
𝐾
𝑤

𝜓 (𝑤)

= 0. (61)

Since𝐾
𝑧
(0) = 𝐾

𝑤
(0) = 1, we have

𝜓 (𝑧) = 𝜓 (𝑤) , (62)
and hence𝐾

𝑧
= 𝐾
𝑤
. So 𝑧 = 𝑤. It follows that 𝜑 is an injective

mapping on C𝑁.
Since 𝜑(𝑧) = 𝐴𝑧 + 𝑏, 𝐴 is an injective mapping on C𝑁

also and hence a bijection, which implies that 𝐴 is invertible
on C𝑁. So

𝜑
−1

(𝑤) = 𝐴
−1
𝑤−𝐴

−1
𝑏, 𝑤 ∈ C

𝑁
. (63)

Taking 𝜑−1(𝑤) to place 𝑧 in formula (59), we have

1
󵄨󵄨󵄨󵄨𝜓 (𝜑−1 (𝑤))

󵄨󵄨󵄨󵄨

2 exp(
󵄨󵄨󵄨󵄨󵄨
𝜑
−1

(𝑤)
󵄨󵄨󵄨󵄨󵄨

2
− |𝑤|

2

2
) ≤

1
𝐿
,

𝑤 ∈ C
𝑁
.

(64)

It follows from Lemma 6 that |𝐴
−1
| ≤ 1 and from

Proposition 7 that 𝐶1/(𝜓∘𝜑−1),𝜑−1 is a bounded operator onF2.
Since |𝐴| ≤ 1, |𝐴−1| ≤ 1, and 𝐴𝐴

−1
= 𝐼, the identity

operator on C𝑁, we have

|𝐴| =
󵄨󵄨󵄨󵄨󵄨
𝐴
−1󵄨󵄨󵄨󵄨󵄨 = 1. (65)

On the other hand, if 𝜓, 𝜑 satisfy the condition stated
in the theorem, by Proposition 7, 𝐶

𝜓,𝜑
and 𝐶1/(𝜓∘𝜑−1),𝜑−1 are

bounded operators onF2. Direct computation shows that
𝐶
𝜓,𝜑

𝐶1/(𝜓∘𝜑−1),𝜑−1 = 𝐶1/(𝜓∘𝜑−1),𝜑−1𝐶𝜓,𝜑 = 𝐼, (66)

the identity operator onF2.
So 𝐶
𝜓,𝜑

is a bounded invertible operator onF2.

For 𝑁 = 1, combined with Lemma 5, [8, Corollary 1.2],
we have the following corollary.

Corollary 9. Let 𝜓, 𝜑 be entire functions on C. Then 𝐶
𝜓,𝜑

is a
bounded invertible operator onF2 of C if and only if 𝐶

𝜓,𝜑
is a

nonzero constant multiple of a unitary operator onF2.
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