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The Boussinesq equations describe the three-dimensional incompressible fluid moving under the gravity and the earth rotation
which come from atmospheric or oceanographic turbulence where rotation and stratification play an important role. In this paper,
we investigate the Cauchy problem of the three-dimensional incompressible Boussinesq equations. By commutator estimate, some
interpolation inequality, and embedding theorem, we establish a blow-up criterion of weak solutions in terms of the pressure 𝑝 in
the homogeneous Besov space 𝐵̇

0

∞,∞
.

1. Introduction

This paper is devoted to establish a blow-up criterion of
weak solutions to the Cauchy problem for 3-dimensional
Boussinesq equations:

𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 − 𝜂Δ𝑢 + ∇𝑝 = 𝜃𝑒

3
, (1)

𝜃
𝑡
+ 𝑢 ⋅ ∇𝜃 − ]Δ𝜃 = 0, (2)

∇ ⋅ 𝑢 = 0, (3)

𝑡 = 0 : 𝑢 = 𝑢
0
(𝑥) , 𝜃 = 𝜃

0
(𝑥) , (4)

where 𝑢 is the velocity, 𝑝 is the pressure, and 𝜃 is the small
temperature deviations which depends on the density. 𝜂 ≥ 0

is the viscosity, ] ≥ 0 is called the molecular diffusivity, and
𝑒
3

= (0, 0, 1)
𝑇. The above systems describe the evolution of

the velocity field 𝑢 for a three-dimensional incompressible
fluid moving under the gravity and the earth rotation which
come from atmospheric or oceanographic turbulence where
rotation and stratification play an important role.

When the initial density 𝜃
0
is identically zero (or con-

stant) and 𝜂 = 0, then (1)–(4) reduces to the classical incom-
pressible Euler equation:

𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 + ∇𝑝 = 0,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 𝑡)|𝑡=0 = 𝑢
0
(𝑥) .

(5)

From the investigation of (5), we cannot expect to have a
better theory for the Boussinesq system than that of the Euler
equation. For the Euler equation, a well-known criterion for
the existence of global smooth solutions is the Beale-Kato-
Majda criterion [1]. It states that the control of the vorticity
of the fluid 𝜔 = curl 𝑢 in 𝐿

1
(0, 𝑇; 𝐿

∞
) is sufficient to get the

global well posedness.
The Boussinesq equations (1)–(4) are of relevance to

study a number of models coming from atmospheric or
oceanographic turbulence where rotation and stratification
play an important role.The scalar function 𝜃may for instance
represent temperature variation in a gravity field and 𝜃𝑒
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the buoyancy force. For the regularity criteria of the Navier-
Stokes equations, we can refer to Zhou et al. [2–9], Fan and
Ozawa [10], He [11], Zhang and Chen [12], and Escauriaza et
al. [13].

From the mathematical point of view, the global well
posedness for two-dimensional Boussinesq equations which
has recently drawn much attention seems to be in a satis-
factory state. More precisely, global well posedness has been
shown in various function spaces and for different viscosities;
we refer, for example, to [14–19]. In contrast, in the case
when 𝜂 = ] = 0, the Boussinesq system exhibits vorticity
intensification and the global well-posedness issue remains
an unsolved challenging open problem (except if 𝜃

0
is a

constant, of course) which may be formally compared to
the similar problem for the three-dimensional axisymmetric
Euler equations with swirl.

In the three-dimensional case, there are only few results
(see [20–24]). Hmidi andRousset [23] proved the global well-
posedness for the three-dimensional Euler-Boussinesq equa-
tions with axisymmetric initial data without swirl. Danchin
and Paicu [20] obtained a global existence and uniqueness
result for small data in Lorentz space.

Our purpose of this paper is to obtain a blow-up criterion
of weak solutions in terms of Besov space.

Now, we state our result as follows.

Theorem 1. Assume that (𝑢
0
, 𝜃
0
) ∈ 𝐻

3
(𝑅
3
) with div 𝑢

0
= 0 in

𝑅
3. Assume that the pressure 𝑝 satisfies the condition

∫

𝑇

0

󵄩󵄩󵄩󵄩∇𝑝(𝑡)
󵄩󵄩󵄩󵄩
2/3

𝐵̇
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝 (𝑡)

󵄩󵄩󵄩󵄩𝐵̇0
∞,∞

))
2/3

𝑑𝑡 < +∞; (6)

then the solution (𝑢, 𝜃) can be extended smoothly only up to 𝑇.

The paper is organized as follows. We first state some
important inequalities in Section 2. We will proveTheorem 1
in Section 3.

2. Preliminaries

Throughout this paper, we use the following usual notations.
𝐿
𝑝
(𝑅
3
) denotes the Lebesgue space and 𝐻

𝑚
(𝑅
3
) denotes the

standard Sobolev space. BMO denotes the space of bounded
mean oscillations. 𝐵̇

0

𝑚,𝑛
is the homogeneous Besov space,

where 0 ≤ 𝑚, 𝑛 ≤ +∞.

Lemma 2. There exists a uniform positive constant 𝐶, such
that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐿
4 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑀𝑂 ,

(7)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇0
∞,2

≤ 𝐶(1 +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵̇0
∞,∞

ln1/2 (𝑒 +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑠−1)) (8)

hold for all vectors 𝑓 ∈ 𝐻
𝑠−1

(𝑅
3
) with 𝑠 > 5/2.

Proof. See, for example, [19] or [25].

Lemma 3. From (1), one has

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶 (‖𝑢 ⋅ ∇𝑢‖𝐿2 + ‖𝜃‖𝐿2) ,

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2 ≤ 𝐶 (‖𝑢 ⋅ ∇𝑢‖

1/2

𝐿
2 + ‖𝜃‖

1/2

𝐿
2 ) .

(9)

Lemma 4. Assume thatΛ = (−Δ)
1/2; one has the commutator

estimate due to Kato and Ponce [24]:

󵄩󵄩󵄩󵄩Λ
𝑠
(𝑓𝑔) − 𝑓Λ

𝑠
𝑔
󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑠−1

𝑔
󵄩󵄩󵄩󵄩󵄩𝐿𝑞1

+
󵄩󵄩󵄩󵄩Λ
𝑠
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞2 ) ,

(10)

with 𝑠 > 0, 1/𝑝 = 1/𝑝
1
+ 1/𝑞
1
= 1/𝑝

2
+ 1/𝑞
2
.

Lemma 5 (the Gagliardo-Nirenberg inequality). Consider

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩𝐿4 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1/5

𝐿
4

󵄩󵄩󵄩󵄩Δ𝑓
󵄩󵄩󵄩󵄩
4/5

𝐿
2 , (11)

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩𝐿3 ≤ 𝐶

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑓
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

, (12)

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿3

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑓
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

. (13)

3. Proof of Theorem 1

Proof of Theorem 1. Multiplying (1) by 𝑢, using (3), and inte-
grating in 𝑅

3, we derive

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

𝐿
2 + 𝜂 ‖∇𝑢‖

2

𝐿
2

= ∫
𝑅
3

𝜃𝑒
3
⋅ 𝑢 𝑑𝑥 ≤ ‖𝜃‖𝐿2 ‖𝑢‖𝐿2

≤
1

2
‖𝜃‖
2

𝐿
2 +

1

2
‖𝑢‖
2

𝐿
2 .

(14)

Multiplying (2) by 𝜃, using (3), and integrating in 𝑅
3, we

obtain

1

2

𝑑

𝑑𝑡
‖𝜃‖
2

𝐿
2 + ] ‖∇𝜃‖𝐿2 = 0. (15)

Combining (14) and (15), using the Gronwall inequality,
we deduce that

‖𝑢‖𝐿∞(0,𝑇;𝐿2) + ‖𝑢‖𝐿2(0,𝑇;𝐻1) ≤ 𝐶,

‖𝜃‖𝐿∞(0,𝑇;𝐿2) + ‖𝜃‖𝐿2(0,𝑇;𝐻1) ≤ 𝐶.

(16)
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Multiplying (1) by |𝑢|
2
𝑢, using (3) and (7), and integrating

in 𝑅
3, we derive

∫ [|𝑢|
2
⋅ 𝑢 (𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 − 𝜂Δ𝑢 + ∇𝑝)]

=
1

4

𝑑

𝑑𝑡
∫ |𝑢|
4
𝑑𝑥 + ∫ |𝑢|

2
⋅ 𝑢
2
⋅ ∇𝑢 𝑑𝑥

+
𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝑝) |𝑢|

2
𝑑𝑥

= ∫ |𝑢|
2
⋅ 𝑢 ⋅ 𝜃𝑒

3
𝑑𝑥

≤ 𝐶∫ (|𝑢|
4
+ |𝜃|
4
) 𝑑𝑥;

(17)

that is,

1

4

𝑑

𝑑𝑡
∫ |𝑢|
4
𝑑𝑥 +

𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥 + 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥

≤ −∫ (𝑢 ⋅ ∇𝑝) |𝑢|
2
𝑑𝑥 + 𝐶∫ |𝑢|

4
+ |𝜃|
4
𝑑𝑥

≤ ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩𝐿4 + 𝐶 ‖𝑢‖

4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 𝐶 ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO + 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4 .

(18)

Multiplying (2) by |𝜃|
2
𝜃, using (3), and integrating in 𝑅

3,
we arrive at

∫(|𝜃|
2
⋅ 𝜃 ⋅ 𝜃
𝑡
+ |𝜃|
2
𝜃 ⋅ 𝑢 ⋅ ∇𝜃 − ] |𝜃|

2
⋅ 𝜃 ⋅ Δ𝜃) 𝑑𝑥

=
1

4

𝑑

𝑑𝑡
∫ |𝜃|
4
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+
]
2
∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥.

(19)

Combining (18) and (19), using (9) and (16), we derive that

1

4

𝑑

𝑑𝑡
∫ (|𝜃|

4
+ |𝑢|
4
) 𝑑𝑥 +

𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+
]
2
∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥,

≤ 𝐶 ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO + 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 𝐶 ‖𝑢‖
3

𝐿
4 (‖𝑢 ⋅ ∇𝑢‖

1/2

𝐿
2 + ‖𝜃‖

1/2

𝐿
2 )

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO

+ 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 2𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

BMO +
𝜂

2
‖|𝑢| ∇𝑢‖

2

𝐿
2

+ 𝐶 ‖𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4 ,

(20)

which implies

𝑑

𝑑𝑡
∫ (|𝜃|

4
+ |𝑢|
4
) 𝑑𝑥 + 𝜂∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+ ]∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

BMO + 4𝐶 ‖𝜃‖
2

𝐿
2

+ 4𝐶 ‖𝑢‖
4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

𝐵̇
0

∞,∞

ln1/3 (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩𝐻2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

𝐵̇
0

∞,∞

× ln1/3 (1 + ‖∇Δ𝑢‖𝐿2 + ‖Δ𝜃‖𝐿2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

𝐵̇
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩𝐵̇0
∞,∞

))
2/3

× ln (1 + ‖∇Δ𝑢‖𝐿2 + ‖Δ𝜃‖𝐿2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4 .

(21)

Choosing 𝑡 ∈ [𝑇
∗
, 𝑇] and setting

𝑦 (𝑡) = sup
𝑡∈[𝑇∗ ,𝑇]

(‖∇ ⋅ Δ𝑢 (𝑡)‖𝐿2 + ‖Δ𝜃‖𝐿2) , (22)

we have

sup
𝑡∈[𝑇∗ ,𝑇]

(‖𝑢‖𝐿4 + ‖𝜃‖𝐿4) ≤ 𝐶
∗
(1 + 𝑦 (𝑡))

𝐶𝜀
, (23)

where 𝜀 is a small enough constant, such that

∫

𝑇

𝑇∗

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

𝐵̇
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩𝐵̇0
∞,∞

))
2/3

𝑑𝑡 < 𝜀. (24)

Next, we want to estimate the 𝐿
2-norm of ∇𝑢 and ∇𝜃.

Multiplying (1) by −Δ𝑢, integrating in 𝑅
3, and using (3)

and (11), we derive that

∫𝑢
𝑡
⋅ (−Δ𝑢) 𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝑢) (−Δ𝑢) 𝑑𝑥

+ 𝜂 ‖Δ𝑢‖
2

𝐿
2 + ∫∇𝑝 ⋅ (−Δ𝑢) 𝑑𝑥

= −∫𝜃𝑒
3
⋅ Δ𝑢 𝑑𝑥;

(25)
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that is,

1

2

𝑑

𝑑𝑡
∫ |∇𝑢|

2
𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥

= ∫ (𝑢 ⋅ ∇𝑢) Δ𝑢 𝑑𝑥 − ∫𝜃𝑒
3
Δ𝑢𝑑𝑥

≤ ‖𝑢‖𝐿4 ‖∇𝑢‖𝐿4 ‖Δ𝑢‖𝐿2 + ‖Δ𝑢‖𝐿2 ‖𝜃‖𝐿2

≤ 𝐶 ‖𝑢‖𝐿4 ‖𝑢‖
1/5

𝐿
4 ‖Δ𝑢‖

4/5

𝐿
2 ‖Δ𝑢‖𝐿2 +

𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2

≤
𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖𝐿2 ‖Δ𝜃‖𝐿2

≤
𝜂

2
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2 .

(26)

Multiplying (2) by −Δ𝜃, integrating in 𝑅
3, and using (3)

and (11), we derive that

∫𝜃
𝑡
⋅ (−Δ𝜃) 𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝜃) (−Δ𝜃) 𝑑𝑥 + ] ‖Δ𝜃‖

2

𝐿
2 = 0; (27)

that is,

1

2

𝑑

𝑑𝑡
∫ |∇𝜃|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

= ∫ (𝑢 ⋅ ∇𝜃) Δ𝜃 +
𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2 𝑑𝑥

≤ ‖𝑢‖𝐿4 ‖∇𝜃‖𝐿4 ‖Δ𝜃‖𝐿2

≤ 𝐶 ‖𝑢‖𝐿4 ‖𝜃‖
1/5

𝐿
4 ‖Δ𝜃‖

4/5

𝐿
2 ‖Δ𝜃‖𝐿2

≤
]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4 .

(28)

Combining (26) and (28), using (16), we deduce

1

2

𝑑

𝑑𝑡
∫ (|∇𝑢|

2
+ |∇𝜃|

2
) 𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

≤
𝜂

2
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2

+
]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4

=
𝜂

2
‖Δ𝑢‖
2

𝐿
2 +

]
2
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 + 𝐶 ‖𝜃‖

2

𝐿
2

+ 𝐶 ‖𝑢‖
10

𝐿
4 ‖𝜃‖
2

𝐿
4 ;

(29)

that is,

𝑑

𝑑𝑡
∫ (|∇𝑢|

2
+ |∇𝜃|

2
) 𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

≤ 2𝐶 ‖𝑢‖
12

𝐿
4 + 2𝐶 ‖𝜃‖

2

𝐿
2 + 2𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4 ,

(30)

which implies that

‖∇𝑢 (𝑡, ⋅)‖
2

𝐿
2 + ‖∇𝜃 (𝑡, ⋅)‖

2

𝐿
2 ≤ 𝐶 (1 + 𝑦 (𝑡))

𝐶𝜀
. (31)

Last, wewill estimate the𝐻3-normand𝐻
4-normof𝑢 and

𝜃 and use the operator Λ to derive our goal.
Applying Λ

3
= (−Δ)

3/2 to (1) and then multiplying (1)
with Λ

3
𝑢, we deduce

∫Λ
3
𝑢
𝑡
⋅ Λ
3
𝑢 𝑑𝑥 + ∫Λ

3
(𝑢 ⋅ ∇𝑢) ⋅ Λ

3
𝑢 𝑑𝑥

− 𝜂∫Λ
3
Δ𝑢 ⋅ Λ

3
𝑢 𝑑𝑥 + ∫Λ

3
∇𝑝 (Λ

3
𝑢) 𝑑𝑥

= ∫Λ
3
𝜃𝑒
3
⋅ Λ
3
𝑢 𝑑𝑥;

(32)

that is,
1

2

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −∫ [Λ
3
(𝑢 ⋅ ∇𝑢) − 𝑢 ⋅ ∇Λ

3
𝑢] ⋅ Λ

3
𝑢 𝑑𝑥 + ∫Λ

3
𝜃𝑒
3
Λ
3
𝑢 𝑑𝑥

≤ 𝐶(‖∇𝑢‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
3
+

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

) +
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

‖𝜃‖𝐿2

≤ 𝐶 ‖∇𝑢‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

‖∇𝑢‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

‖𝜃‖𝐿2 + 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 ‖∇𝑢‖
13/12

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 + 𝐶

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤
𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

+ 𝐶 ‖∇𝑢‖
13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 +

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 ‖∇𝑢‖
13/12

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖𝜃‖𝐿2 + 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

8

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

=
𝜂

4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖∇𝑢‖

13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 .

(33)

Similarly, applying Λ
3 to (2) and multiplying (2) by Λ

3
𝜃,

we derive

∫Λ
3
𝜃
𝑡
(Λ
3
𝜃) 𝑑𝑥 + ∫Λ

3
(𝑢 ⋅ ∇𝜃) Λ

3
𝜃 𝑑𝑥

− ]∫Λ
3
Δ𝜃 ⋅ Λ

3
𝜃 𝑑𝑥 = 0;

(34)
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that is,

1

2

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −∫Λ
3
(𝑢 ⋅ ∇𝜃) Λ

3
𝜃 𝑑𝑥

= 𝐶 ‖∇𝑢‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
3
+

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿3

‖∇𝜃‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩𝐿3

≤ 𝐶 ‖∇𝑢‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

‖∇𝜃‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶 ‖∇𝑢‖
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

‖∇𝜃‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

× ‖∇𝜃‖
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

≤ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶 ‖∇𝜃‖
3/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

‖∇𝜃‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

≤ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
2

𝐿
2 +

𝜂

4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝜃‖
9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
.

(35)

Combining (33) and (35), we have

1

2

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

+ 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜂

2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖∇𝑢‖

13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2

+ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
2

𝐿
2 + 𝐶 ‖∇𝜃‖

9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 ;

(36)

that is,

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

+ 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 2𝐶 ‖∇𝑢‖
13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 4𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 2𝐶 ‖𝜃‖𝐿2

+ 2𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 + 2𝐶 ‖∇𝑢‖

2

𝐿
2

+ 2𝐶 ‖∇𝜃‖
9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 .

(37)

Choosing 𝜀 small enough, using (16), (23), and (24), we
conclude that

‖𝑢‖𝐿∞(0,𝑇;𝐻3) + ‖𝑢‖𝐿2(0,𝑇;𝐻4) ≤ 𝐶,

‖𝜃‖𝐿∞(0,𝑇;𝐻3) + ‖𝜃‖𝐿2(0,𝑇;𝐻4) ≤ 𝐶.

(38)

We complete the proof.
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