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We consider the existence of solutions of variational inequality form. Find 𝑢 ∈ 𝐷(𝐽) : ⟨A(𝑢), V−𝑢⟩+ ⟨𝐹(𝑢), V−𝑢⟩+𝐽(V) − 𝐽(𝑢) ≥ 0,
∀V ∈ 𝑊1

𝐿
𝑀
(Ω), whose principal part is having a growth not necessarily of polynomial type, where A is a second-order elliptic

operator of Leray-Lions type, 𝐹 is a multivalued lower order term, and 𝐽 is a convex functional. We use subsupersolution methods
to study the existence and enclosure of solutions in Orlicz-Sobolev spaces.

1. Introduction

Let Ω be a bounded domain in R𝑁
(𝑁 ≥ 1) with Lipschitz

boundary, and let A(𝑢) = − div𝐴(𝑥,𝐷𝑢) be a Leray-Lions
operator defined on𝑊1,𝑝

(Ω), 𝑝 ∈ (1, +∞).
Le [1] used subsupersolution methods to study the exis-

tence and enclosure of solutions of the variational inequality
of the following form.

(P
0
) Find 𝑢 ∈ 𝐷(𝐽) such that

⟨A (𝑢) , V − 𝑢⟩ + ⟨𝐹 (𝑢) , V − 𝑢⟩

+ 𝐽 (V) − 𝐽 (𝑢) ≥ 0, ∀V ∈ 𝑊1,𝑝
(Ω) ,

(1)

where 𝐹 is a multivalued lower order term and 𝐽 is a convex
functional. Accordingly the function 𝐴 is supposed to satisfy
polynomial growth conditions with respect to𝐷𝑢, where𝐷𝑢
is the derivative of 𝑢.

When trying to weaken this restriction on𝐴, one is led to
replace𝑊1,𝑝

(Ω) by a Sobolev space𝑊1
𝐿
𝑀
(Ω) built from an

Orlicz space𝐿
𝑀
(Ω) instead of𝐿𝑝(Ω). Here the𝑁-function𝑀

which defines 𝐿
𝑀
(Ω) is related to the growth of the function

𝐴.

It is well known that, in the study of differential equations,
different classes of differential equations correspond to dif-
ferent function space settings.The classical Sobolev space is a
special case of Orlicz-Sobolev spaces.

In this paper, it is our purpose to study the existence and
enclosure of solutions to the problem (P

0
) in the setting of the

Orlicz-Sobolev spaces.
The paper is organized as follows: Section 2 contains

some preliminaries and some technical lemmas which will
be needed in Section 3. In Section 3, we first establish some
basic properties of the operator A in Orlicz-Sobolev spaces;
next, following Le [1] in which a subsupersolutionmethod for
variational inequality of the form (P

0
) in Sobolev spaces was

established, we prove the existence and enclosure of solutions
of the problem (P

0
) in Orlicz-Sobolev spaces.

We refer to some results of a subsupersolutionmethod for
variational inequalities studied in variable exponent Sobolev
spaces (cf., e.g., [2–4]) and partial differential equations
in Musielak-Orlicz-Sobolev spaces (cf., e.g., [5]). For some
classical results we also refer to [6–12].

2. Preliminaries

2.1. 𝑁-Function. Let𝑀 : R+
→ R+ be an𝑁-function; that

is, 𝑀 is continuous and convex, with 𝑀(𝑢) > 0 for 𝑢 > 0,
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𝑀(𝑢)/𝑢 → 0 as 𝑢 → 0, and𝑀(𝑢)/𝑢 → +∞ as 𝑢 → +∞.
Equivalently,𝑀 admits the representation𝑀(𝑢) = ∫𝑢

0
𝑝(𝑡)𝑑𝑡,

where 𝑝 : R+
→ R+ is a nondecreasing, right continuous

function, with 𝑝(0) = 0, 𝑝(𝑡) > 0 for 𝑡 > 0, and 𝑝(𝑡) → +∞

as 𝑡 → +∞.
The𝑁-function𝑀 conjugated to𝑀 is defined by𝑀(V) =

∫

V
0
𝑞(𝑠)𝑑𝑠, where 𝑞 : R+

→ R+ is given by 𝑞(𝑠) = sup{𝑡 :
𝑝(𝑡) ≤ 𝑠}.

𝑝, 𝑞 are called the right-hand derivatives of𝑀,𝑀, respec-
tively.

The𝑁-function𝑀 is said to satisfy theΔ
2
condition near

infinity (𝑀 ∈ Δ
2
, for short), if for some 𝑘 > 1 and 𝑢 > 0,

𝑀(2𝑢) ≤ 𝑘𝑀(𝑢), ∀𝑢 ≥ 𝑢. It is readily seen that this will be
the case if and only if for every 𝑙 > 1 there exists a positive
constant 𝑘 = 𝑘(𝑙) and �̃� > 0, such that 𝑀(𝑙𝑢) ≤ 𝑘𝑀(𝑢),
∀𝑢 ≥ �̃�, and equivalently, there exists 𝑘

0
> 0 and 𝑢

0
> 0,

such that

𝑝 (2𝑢) ≤ 𝑘
0
𝑝 (𝑢) , ∀𝑢 ≥ 𝑢

0
, (2)

(cf., e.g., [13]).
Moreover, one has the following Young inequality: 𝑢V ≤

𝑀(𝑢) +𝑀(V), ∀𝑢, V ≥ 0.
We will extend these𝑁-functions into even functions on

all R.
Let 𝑃,𝑄 be two 𝑁-functions; we say that 𝑃 grows

essentially less rapidly than 𝑄 near infinity, denoted as 𝑃 ≪
𝑄, if for every 𝜀 > 0, 𝑃(𝑡)/𝑄(𝜀𝑡) → 0 as 𝑡 → +∞. This is
the case if and only if lim

𝑡→+∞
𝑄

−1
(𝑡)/𝑃

−1
(𝑡) = 0 (cf., e.g.,

[14, 15]).
For a measurable function 𝑢 onΩ, its modular is defined

by 𝜌
𝑀
(𝑢) = ∫

Ω
𝑀(|𝑢(𝑥)|)𝑑𝑥 (cf., e.g., [16]).

2.2. Orlicz Spaces. Let Ω be an open and bounded subset of
R𝑁 and 𝑀 an 𝑁-function. The Orlicz class K

𝑀
(Ω) (resp.,

the Orlicz space 𝐿
𝑀
(Ω)) is defined as the set of (equivalence

classes of) real valued measurable functions 𝑢 onΩ such that

𝜌
𝑀
(𝑢) < +∞(resp. 𝜌

𝑀
(

𝑢

𝜆

) < +∞ for some 𝜆 > 0) . (3)

𝐿
𝑀
(Ω) is a Banach space under the (Luxemburg) norm

‖𝑢‖(𝑀)
= inf {𝜆 > 0 : 𝜌

𝑀
(

𝑢

𝜆

) ≤ 1} , (4)

andK
𝑀
(Ω) is a convex subset of 𝐿

𝑀
(Ω) but not necessarily

a linear space.
The closure in 𝐿

𝑀
(Ω) of the set of bounded measurable

functions with compact support in Ω is denoted by 𝐸
𝑀
(Ω).

The equality 𝐸
𝑀
(Ω) = 𝐿

𝑀
(Ω) holds if and only if𝑀 ∈

Δ
2
; moreover, 𝐿

𝑀
(Ω) is separable.

𝐿
𝑀
(Ω) is reflexive if and only if𝑀 ∈ Δ

2
and𝑀 ∈ Δ

2
(cf.,

e.g., [16]).
Convergences in norm and in modular are equivalent if

and only if𝑀 ∈ Δ
2
(cf., e.g., [16]).

The dual space of 𝐸
𝑀
(Ω) can be identified with 𝐿

𝑀
(Ω)

by means of the pairing ∫
Ω
𝑢(𝑥)V(𝑥)𝑑𝑥, and the dual norm of

𝐿
𝑀
(Ω) is equivalent to ‖ ⋅ ‖

(𝑀)
(cf., e.g., [14, 16]).

2.3. Orlicz-Sobolev Spaces. We now turn to the Orlicz-
Sobolev space: 𝑊1

𝐿
𝑀
(Ω) (resp., 𝑊1

𝐸
𝑀
(Ω)) is the space

of all functions 𝑢 such that 𝑢 and its distributional partial
derivatives lie in 𝐿

𝑀
(Ω) (resp., 𝐸

𝑀
(Ω)). It is a Banach space

under the norm

‖𝑢‖Ω,𝑀
= ∑

|𝛼|≤1





𝐷

𝛼
𝑢



(𝑀)

. (5)

Denote ‖𝐷𝑢‖
(𝑀)

= ‖|𝐷𝑢|‖
(𝑀)

and ‖𝑢‖
1,𝑀

= ‖𝑢‖
(𝑀)
+‖𝐷𝑢‖

(𝑀)
.

Clearly, ‖𝑢‖
1,𝑀

is equivalent to ‖𝑢‖
Ω,𝑀

.
Thus 𝑊1

𝐿
𝑀
(Ω) and 𝑊1

𝐸
𝑀
(Ω) can be identified with

subspaces of the product of𝑁+1 copies of 𝐿
𝑀
(Ω). Denoting

this product by Π𝐿
𝑀
, we will use the weak topologies

𝜎(Π𝐿
𝑀
, Π𝐸

𝑀
) and 𝜎(Π𝐿

𝑀
, Π𝐿

𝑀
) (cf. [15]).

If 𝑀 ∈ Δ
2
, then 𝑊1

𝐿
𝑀
(Ω) = 𝑊

1
𝐸
𝑀
(Ω). If 𝑀 ∈ Δ

2

and 𝑀 ∈ Δ
2
, then 𝑊1

𝐿
𝑀
(Ω) = 𝑊

1
𝐸
𝑀
(Ω) are reflexive

(cf., e.g., [14]); thus the weak topologies 𝜎(Π𝐿
𝑀
, Π𝐸

𝑀
) and

𝜎(Π𝐿
𝑀
, Π𝐿

𝑀
) are equivalent.

We recall the following notations and lemmas which will
be used later.

Definition 1 (cf., e.g., [17, Definition 32.1]). Let 𝑋,𝑌 be
nonempty sets, and 𝑇 : 𝑋 → 2

𝑌 a multivalued mapping;
that is, 𝑇 assigns to each point 𝑢 ∈ 𝑋 a subset 𝑇(𝑢) of 𝑌.

(i) The set 𝐷(𝑇) = {𝑢 ∈ 𝑋 : 𝑇(𝑢) ̸= 0} is called the
effective domain of 𝑇.

(ii) The set 𝑅(𝑇) = ⋃
𝑢∈𝑋

𝑇(𝑢) is called the range of 𝑇.
(iii) The set 𝐺(𝑇) = {(𝑢, V) ∈ 𝑋 × 𝑌 : 𝑢 ∈ 𝐷(𝑇), V ∈ 𝑇(𝑢)}

is called the graph of 𝑇.

Definition 2 (cf., e.g., [18, Definition 2.112]). Let 𝑋,𝑌 be
Banach spaces. The multivalued operator 𝑇 : 𝑋 → 2

𝑌 is
called upper semicontinuous at 𝑢

0
∈ 𝑋, if for every open

subset 𝑉 ⊂ 𝑌 with 𝑇(𝑢
0
) ⊂ 𝑉, a neighborhood 𝑈(𝑢

0
) exists

such that 𝑇(𝑈(𝑢
0
)) ⊂ 𝑉. 𝑇 is called upper semicontinuous in

𝑋, if 𝑇 is upper semicontinuous at every 𝑢
0
∈ 𝑋.

The following definition can be referred to [19, Page 41],
[18, Definition 2.120], [20, Definition 1], or [3, Definition
2.1(b)].

Definition 3. Let 𝑋 be a real reflexive Banach space. The
operator 𝑇 : 𝑋 → 2

𝑋
∗

is called pseudomonotone if the
following conditions hold.

(i) The set 𝑇(𝑢) is nonempty, bounded, closed, and
convex for all 𝑢 ∈ 𝑋.

(ii) 𝑇 is upper semicontinuous from each finite-
dimensional subspace 𝑉 of 𝑋 to the weak topology
on𝑋∗.

(iii) If {𝑢
𝑛
} ⊂ 𝑋with 𝑢

𝑛
⇀ 𝑢 and if 𝑢∗

𝑛
∈ 𝑇(𝑢

𝑛
) is such that

lim sup
𝑛→∞

⟨𝑢
∗

𝑛
, 𝑢

𝑛
− 𝑢⟩ ≤ 0, then, to each element

V ∈ 𝑋, 𝑢∗(V) ∈ 𝑇(𝑢) exists with

lim inf
𝑛→∞

⟨𝑢
∗

𝑛
, 𝑢

𝑛
− V⟩ ≥ ⟨𝑢∗ (V) , 𝑢 − V⟩ . (6)
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Lemma 4 (see [21, Lemma 2.1]). If 𝑢 ∈ 𝑊
1
𝐿
𝑀
(Ω), then

𝑢
+
, 𝑢

−
∈ 𝑊

1
𝐿
𝑀
(Ω) and

𝐷𝑢
+
= {

𝐷𝑢, 𝑖𝑓 𝑢 > 0,

0, 𝑖𝑓 𝑢 ≤ 0,

𝐷𝑢
−
= {

0, 𝑖𝑓 𝑢 ≥ 0,

−𝐷𝑢, 𝑖𝑓 𝑢 < 0.

(7)

Here 𝑢+ = max{𝑢, 0}, 𝑢− = −min{𝑢, 0}.
The following lemma can be referred to [18, Theorem

2.127] or [19, Theorem 2.11]. The proof of the lemma can be
found in [19].

Lemma 5. Let 𝑋 be a real reflexive Banach space, Φ :

𝑋 → 2
𝑋
∗

a maximal monotone operator, and 𝑢
0
∈ 𝐷(Φ).

Let 𝑇 : 𝑋 → 2
𝑋
∗

be a pseudomonotone operator, and
assume that either 𝑇(𝑢

0
) is quasibounded or Φ(𝑢

0
) is strongly

quasibounded. Assume further that 𝑇 : 𝑋 → 2
𝑋
∗

is 𝑢
0
-

coercive; that is, a real-valued function 𝑐 : R+
→ R exists with

𝑐(𝑟) → +∞ as 𝑟 → +∞ such that, for all (𝑢, 𝑢∗) ∈ 𝐺𝑟(𝑇),
we have ⟨𝑢∗, 𝑢 − 𝑢

0
⟩ ≥ 𝑐(‖𝑢‖

𝑋
)‖𝑢‖

𝑋
. Then 𝑇 +Φ is surjective;

that is, 𝑟𝑎𝑛𝑔𝑒(𝑇 + Φ) = 𝑋∗.

3. Main Results

Let Ω be a bounded domain in R𝑁
(𝑁 ≥ 1) with Lipschitz

boundary, 𝑀 an 𝑁-function, and 𝑀 the complementary
function of𝑀. We say that𝑀 satisfies (𝑀

0
), if both𝑀 and

𝑀 satisfy the Δ
2
condition near infinity, and𝑀 satisfies the

following coerciveness condition.
There exists a function 𝑔 : (0, +∞) → R such that

𝑔(𝑠) → +∞ as 𝑠 → +∞ and
𝑀(𝑠𝑢) ≥ 𝑠𝑔 (𝑠)𝑀 (𝑢) , for 𝑢 ∈ R, 𝑠 > 0. (8)

Let 𝑃 be an𝑁-function such that 𝑃 ≪ 𝑀
∗
, where𝑀

∗
is the

Sobolev conjugate of𝑀. Assume that 𝑃 and 𝑃 satisfy the Δ
2

condition near infinity.
In what follows we denote by 𝐿0(Ω) the set of all

(equivalence classes of) Lebesgue measurable functions from
Ω to R.

We consider the following variational inequality.
(P) Find 𝑢 ∈ 𝐷(𝐽) such that

⟨A (𝑢) , V − 𝑢⟩ + ⟨𝐹 (𝑢) , V − 𝑢⟩

+ 𝐽 (V) − 𝐽 (𝑢) ≥ 0, ∀V ∈ 𝑊1
𝐿
𝑀
(Ω) .

(9)

Detailed assumptions on A, 𝐹, 𝐽 together with a precise
formulation of this inequality are presented in the following
subsection.

3.1. Assumptions and Problem Settings. Let 𝐴 : Ω × R𝑁
→

R𝑁 be a Carathéodory function satisfying the following
conditions:
(A1) For a.e. 𝑥 ∈ Ω and all 𝜉 ∈ R𝑁





𝐴 (𝑥, 𝜉)





≤ 𝑏

1
𝑀

−1

𝑀(




𝜉




) + 𝑎

1
(𝑥) , (10)

𝐴 (𝑥, 𝜉) 𝜉 ≥ 𝑏
2
𝑀(





𝜉




) − 𝑎

2
(𝑥) , (11)

where 𝑏
1
, 𝑏

2
> 0, 𝑎

1
∈ 𝐿

𝑀
(Ω), and 𝑎

2
∈ 𝐿

1
(Ω).

(A2) 𝐴 is monotone in the following sense:

[𝐴 (𝑥, 𝜉
1
) − 𝐴 (𝑥, 𝜉

2
)] (𝜉

1
− 𝜉

2
) ≥ 0, (12)

for a.e. 𝑥 ∈ Ω and all 𝜉
1
, 𝜉

2
∈ R𝑁.

DefineA : 𝑊
1
𝐿
𝑀
(Ω) → [𝑊

1
𝐿
𝑀
(Ω)]

∗ by

⟨A (𝑢) , V⟩ = ∫
Ω

𝐴 (𝑥,𝐷𝑢 (𝑥)) ∇V (𝑥) 𝑑𝑥,

𝑢, V ∈ 𝑊1
𝐿
𝑀
(Ω) .

(13)

Example 6. (1) Let𝑀(𝑢) = |𝑢|𝑝 log(1 + |𝑢|) for 𝑢 ∈ R, where
𝑝 > 1. Then it can be verified that𝑀 and𝑀 are𝑁-functions
satisfying Δ

2
condition near infinity and𝑀 satisfies (8).

(2) Put 𝐴(𝑥, 𝜉) = (𝑀(|𝜉|)/|𝜉|2)𝜉, ∀𝑥 ∈ Ω, 𝜉 ∈ R𝑁
\ {0}.

Then 𝐴 satisfies (A1)-(A2).

Remark 7. By (2), we have 𝑝(𝑢) ≤ 𝑘
0
(𝑀(𝑢)/𝑢) ≤

𝑘
0
𝑀

−1

(𝑀(𝑢)), ∀𝑢 ≥ 𝑢
0
, for some 𝑘

0
> 0 and 𝑢

0
> 0.

Moreover, we have the following lemma.

Lemma 8. (1) Let𝑀 ∈ Δ
2
and let 𝐴 satisfy (A1)-(A2). Then

the operatorA is well-defined, bounded, and monotone.
(2) Let 𝑀 ∈ Δ

2
and 𝑀 ∈ Δ

2
and let 𝐴 satisfy (A1)-

(A2). Then the operator A is continuous. Moreover, A is
pseudomonotone.

Proof. (1) For every 𝑢 ∈ 𝑊1
𝐿
𝑀
(Ω), by (10) and the convexity

of𝑀, we have

𝜌
𝑀
(

1

𝛽

|𝐴 (𝑥,𝐷𝑢)|) ≤

1

2

∫

Ω

𝑀(𝑀

−1

(𝑀 (|𝐷𝑢|))) 𝑑𝑥

+

1

2

∫

Ω

𝑀(𝑎
1
(𝑥)) 𝑑𝑥

=

1

2

∫

Ω

𝑀(|𝐷𝑢|) 𝑑𝑥

+

1

2

∫

Ω

𝑀(𝑎
1
(𝑥)) 𝑑𝑥 < ∞,

(14)

for some 𝐾 > 0, where 𝛽 = max{2𝑏
1
, 2}. Therefore,

𝐴(𝑥,𝐷𝑢) ∈ 𝐿
𝑀
(Ω). ThenA is well-defined.

From (14), one has that {‖𝐴(𝑥,𝐷𝑢)‖
(𝑀)

: 𝑢 ∈ 𝐸} is
bounded, for any bounded set 𝐸 ⊂ 𝑊1

𝐿
𝑀
(Ω).

The monotonicity ofA follows from (12).
(2) To prove the continuity ofA, let

𝑢
𝑛
→ 𝑢 in 𝑊1

𝐿
𝑀
(Ω) . (15)

We will prove thatA(𝑢
𝑛
) → A(𝑢) in [𝑊1

𝐿
𝑀
(Ω)]

∗, which is
equivalent to that ‖𝐴(𝑥,𝐷𝑢

𝑛
) − 𝐴(𝑥,𝐷𝑢)‖

(𝑀)
→ 0, or

∫

Ω

𝑀(




𝐴 (𝑥,𝐷𝑢

𝑛
) − 𝐴 (𝑥,𝐷𝑢)





) 𝑑𝑥 → 0. (16)
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Assume that there exists 𝜀
0
> 0 such that

∫

Ω

𝑀(




𝐴 (𝑥,𝐷𝑢

𝑛
) − 𝐴 (𝑥,𝐷𝑢)





) 𝑑𝑥 ≥ 𝜀

0
, ∀𝑛. (17)

In view of (15) and by [22, Chapter IV, Section 3, Theorem 3]
there exists a subsequence of {𝑢

𝑛
} still denoted by {𝑢

𝑛
} and

𝑔 ∈ 𝐿
1
(Ω) such that 𝐷𝑢

𝑛
(𝑥) → 𝐷𝑢(𝑥) and 𝑀(|𝐷𝑢

𝑛
(𝑥) −

𝐷𝑢(𝑥)|) ≤ 𝑔(𝑥) for a.e. 𝑥 ∈ Ω. Since 𝐴 is a Carathéodory
function,

𝑀(




𝐴 (𝑥,𝐷𝑢

𝑛
(𝑥)) − 𝐴 (𝑥,𝐷𝑢 (𝑥))





) → 0 for a.e. 𝑥 ∈ Ω.

(18)

By (10) and the convexity and Δ
2
-property of 𝑀, we

obtain that 𝑀(|𝐷𝑢
𝑛
(𝑥)|) ≤ (𝐾/2)𝑀(|𝐷𝑢

𝑛
(𝑥) − 𝐷𝑢(𝑥)|) +

(𝐾/2)𝑀(|𝐷𝑢(𝑥)|) ≤ (𝐾/2)𝑔(𝑥)+(𝐾/2)𝑀(|𝐷𝑢(𝑥)|), for some
𝐾 > 0. Therefore,

𝑀(




𝐴 (𝑥,𝐷𝑢

𝑛
(𝑥)) − 𝐴 (𝑥,𝐷𝑢 (𝑥))





)

≤

1

2

𝑀(2




𝐴 (𝑥,𝐷𝑢

𝑛
(𝑥))





)

+

1

2

𝑀 (2 |𝐴 (𝑥,𝐷𝑢 (𝑥))|)

≤ 𝐶 [𝑀(




𝐷𝑢

𝑛
(𝑥)




) + 𝑀 (|𝐷𝑢 (𝑥)|) + 𝑀 (𝑎

1
(𝑥))]

≤ 𝐶 [𝑔 (𝑥) +𝑀 (|𝐷𝑢 (𝑥)|) + 𝑀 (𝑎
1
(𝑥))] ,

(19)

where 𝐶 > 0 is a constant. By Lebesgue’s dominated
convergence theorem, we get

∫

Ω

𝑀(




𝐴 (𝑥,𝐷𝑢

𝑛
) − 𝐴 (𝑥,𝐷𝑢)





) 𝑑𝑥 → 0. (20)

This is a contradiction. Hence (16) holds. This shows that A
is continuous.

Since A is monotone, hemicontinuous (in fact, continu-
ous), and bounded on𝑊1

𝐿
𝑀
(Ω), it is pseudomonotone.

Let 𝐽 : 𝑊1
𝐿
𝑀
(Ω) → R ∪ {+∞} be a convex, proper (cf.

[19]), lower semicontinuous function. The effective domain
of 𝐽 is𝐷(𝐽) = {V ∈ 𝑊1

𝐿
𝑀
(Ω) : 𝐽(V) < +∞}, and let 𝜕𝐽 be the

subdifferential of 𝐽.
For any topological vector space 𝑍, we use the notation

K(𝑍) = {𝐸 ⊂ 𝑍 : 𝐸 ̸= 0, 𝐸 is closed and convex}. Let 𝑓 be a
function fromΩ ×R toK(R) such that

(F1) 𝑓 is superpositionally measurable (cf. [1, 23] or [24]);
(F2) for a.e. 𝑥 ∈ Ω, the function 𝑓(𝑥, ⋅) : R → K(R) is

upper semicontinuous.

The lower order term 𝐹(𝑢) is defined by the (multivalued)
integral

⟨𝐹 (𝑢) , V⟩ = ∫
Ω

̃
𝑓 (𝑢) V 𝑑𝑥, for 𝑢, V ∈ 𝑊1

𝐿
𝑀
(Ω) . (21)

For a precise definition of 𝐹 and an interpretation of this
integral, we need some further notations. For any 𝑢 ∈ 𝐿0(Ω),
let ̃𝑓(𝑢) be the set of all measurable selections of𝑓(⋅, 𝑢(⋅)). We
know that ̃𝑓(𝑢) ̸= 0 since 𝑓(⋅, 𝑢(⋅)) is measurable.

3.2. A Subsupersolution Method. For 𝑢, V ∈ 𝐿0(Ω), we use the
standard notation 𝑢 ∧ V = min{𝑢, V}, 𝑢 ∨ V = max{𝑢, V}, 𝑢+ :=
𝑢 ∨ 0, 𝑢

−
:= −𝑢 ∧ 0.

By Lemma 4,𝑊1
𝐿
𝑀
(Ω) is closed under ∨ and ∧. In fact,

since 𝑢∨ V = V+(𝑢− V)+ and 𝑢∧ V = V−(𝑢− V)−, 𝑢∨ V, 𝑢∧ V ∈
𝑊

1
𝐿
𝑀
(Ω), for any 𝑢, V ∈ 𝑊1

𝐿
𝑀
(Ω).

Let Γ = Γ(𝑊1
𝐿
𝑀
(Ω)) := {𝜙 : 𝑊

1
𝐿
𝑀
(Ω) → R ∪ {∞} :

𝐷(𝜙) = {V ∈ 𝑊1
𝐿
𝑀
(Ω) : 𝜙(V) ̸= ∞} ̸= 0} be the set of all

proper (not necessarily convex) functionals from𝑊
1
𝐿
𝑀
(Ω)

to R ∪ {∞}.
We introduce the following definitions as in [1].

Definition 9. Let 𝜙, 𝜓 ∈ Γ. We say that 𝜙 ⪯ 𝜓 (or equivalently
𝜓 ⪰ 𝜙) if and only if 𝜙(𝑢 ∧ V) + 𝜓(𝑢 ∨ V) ≤ 𝜙(𝑢) + 𝜓(V),
∀𝑢, V ∈ 𝑊1

𝐿
𝑀
(Ω).

From Definition 9, if 𝜙 ⪯ 𝜓, then 𝐷(𝜙) ⪯ 𝐷(𝜓) (cf. e.g.
[1]).

Definition 10. (1) 𝑢 ∈ 𝑊1
𝐿
𝑀
(Ω) is called a solution of (9) if

𝑢 ∈ 𝐷(𝐽) and there exists 𝑃 ≪ 𝑀
∗
and 𝜂 ∈ 𝐿

𝑃
(Ω) such that

𝜂(𝑥) ∈ 𝑓(𝑥, 𝑢(𝑥)), for a.e. 𝑥 ∈ Ω, and

∫

Ω

𝐴 (𝑥,𝐷𝑢) (∇V − 𝐷𝑢) 𝑑𝑥

+ ∫

Ω

𝜂 (V − 𝑢) 𝑑𝑥 + 𝐽 (V) − 𝐽 (𝑢) ≥ 0,

∀V ∈ 𝑊1
𝐿
𝑀
(Ω) .

(22)

(2) 𝑢 ∈ 𝑊1
𝐿
𝑀
(Ω) is called a subsolution of (9) if there

exist𝑃 ≪ 𝑀
∗
, 𝜂 ∈ 𝐿

𝑃
(Ω), and 𝐽 ∈ Γ such that 𝐽 ⪯ 𝐽,𝑢 ∈ 𝐷(𝐽),

𝜂(𝑥) ∈ 𝑓(𝑥, 𝑢(𝑥)), for a.e. 𝑥 ∈ Ω, and

∫

Ω

𝐴 (𝑥, ∇𝑢) (∇V − ∇𝑢) 𝑑𝑥

+ ∫

Ω

𝜂 (V − 𝑢) 𝑑𝑥 + 𝐽 (V) − 𝐽 (𝑢) ≥ 0,
(23)

for all V ∈ 𝑢 ∧ 𝐷(𝐽).
(3) 𝑢 ∈ 𝑊1

𝐿
𝑀
(Ω) is called a supersolution of (9) if there

exists 𝑃 ≪ 𝑀
∗
, 𝜂 ∈ 𝐿

𝑃
(Ω), and 𝐽 ∈ Γ such that 𝐽 ⪰ 𝐽,

𝑢 ∈ 𝐷(𝐽), 𝜂(𝑥) ∈ 𝑓(𝑥, 𝑢(𝑥)), for a.e. 𝑥 ∈ Ω, and

∫

Ω

𝐴 (𝑥, ∇𝑢) (∇V − ∇𝑢) 𝑑𝑥

+ ∫

Ω

𝜂 (V − 𝑢) 𝑑𝑥 + 𝐽 (V) − 𝐽 (𝑢) ≥ 0,
(24)

for all V ∈ 𝑢 ∨ 𝐷(𝐽).

FromDefinition 10, we see that 𝑢 is a solution of (9) if and
only if 𝑢 is a solution of the following inclusion: find 𝑢 ∈ 𝐷(𝐽)
such that

A (𝑢) + 𝐹 (𝑢) + 𝜕𝐽 (𝑢) ∋ 0. (25)

We will study the existence and some properties of
solutions of (9). The proof of the following theorem is based
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on the ideas and arguments in the proof of Proposition 2.2 in
[4],Theorem 2.11 in [1], andTheorem 4.2 in [2] and is divided
into several steps. Le [1] points that if 𝑓 is graph measurable
then 𝑓 is superpositionally measurable. It is only needed in
our proof 𝑓 is superpositionally measurable as [1]. However,
we do not need the condition (F3) in [1].

Theorem 11. Let 𝑀, 𝐴, and 𝑓 satisfy (𝑀
0
), (A1)-(A2), and

(F1)-(F2), respectively. Assume that there are subsolutions
𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑘
and supersolutions 𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑚
of (9) such that

𝑢 := 𝑢
1
∨ 𝑢

2
∨ ⋅ ⋅ ⋅ ∨ 𝑢

𝑘
≤ 𝑢 := 𝑢

1
∧ 𝑢

2
∧ ⋅ ⋅ ⋅ ∧ 𝑢

𝑚
, (26)

and there exists ℎ ∈ 𝐿
𝑃
(Ω) such that

sup {

𝜉




: 𝜉 ∈ 𝑓 (𝑥, 𝑢)} ≤ ℎ (𝑥) , (27)

for a.e. 𝑥 ∈ Ω, all 𝑢 ∈ [𝑢(𝑥), 𝑢(𝑥)].
Then, there exists a solution of (9) such that

𝑢 ≤ 𝑢 ≤ 𝑢 a.e. in Ω. (28)

Proof. Denote 𝑋 = 𝑊
1
𝐿
𝑀
(Ω). Since 𝑃 ≪ 𝑀

∗
, 𝑋 → 𝐿

𝑃
(Ω)

is compact ([25, Theorem 2.2]). By Proposition 2.1 in [25],
𝑀 ≪ 𝑀

∗
. Hence, 𝑋 → 𝐿

𝑀
(Ω) is compact. We will use 𝑖

𝑃

and 𝑖
𝑀

for the embeddings from 𝑋 into 𝐿
𝑃
(Ω) and 𝐿

𝑀
(Ω),

respectively. Let 𝑖∗
𝑃
: 𝐿

𝑃
(Ω) = (𝐿

𝑃
(Ω))

∗
→ 𝑋

∗ and 𝑖∗
𝑀
:

𝐿
𝑀
(Ω) = (𝐿

𝑀
(Ω))

∗
→ 𝑋

∗ be the adjoints of 𝑖
𝑃
and 𝑖

𝑀
,

respectively. Thus 𝑖
𝑃
, 𝑖

𝑀
, 𝑖∗

𝑃
, and 𝑖∗

𝑀
are compact. Note that 𝑖

𝑃

is the usual identity embedding, 𝑖
𝑃
(𝑢) = 𝑢 for 𝑢 ∈ 𝑋; that

is, 𝑖
𝑃
(𝑢)(𝑥) = 𝑢(𝑥) for a.e. 𝑥 ∈ Ω. Similarly, for 𝜂 ∈ 𝐿

𝑃
(Ω),

𝑖
∗

𝑃
(𝜂) = 𝜂|

𝑋
∗ .

Step 1. Let 𝑢
𝑖
, 𝜂

𝑖
(1 ≤ 𝑖 ≤ 𝑘) and 𝑢

𝑗
, 𝜂

𝑗
(1 ≤ 𝑗 ≤ 𝑚) satisfy the

conditions as in Definition 10 of sub- and supersolutions. Let
Ω

1
= {𝑥 ∈ Ω : 𝑢(𝑥) = 𝑢

1
(𝑥)}, and

Ω
𝑖
= {𝑥 ∈ Ω \

𝑖−1

⋃

𝑙=1

Ω
𝑙
: 𝑢 (𝑥) = 𝑢

𝑖
(𝑥)} , (29)

for 𝑖 = 2, . . . , 𝑘. Similarly, let Ω1
= {𝑥 ∈ Ω : 𝑢(𝑥) = 𝑢

1
(𝑥)},

and

Ω
𝑗
= {𝑥 ∈ Ω \

𝑗−1

⋃

𝑙=1

Ω
𝑙
: 𝑢 (𝑥) = 𝑢

𝑗
(𝑥)} , (30)

for 𝑗 = 2, . . . , 𝑚. Then Ω = ⋃
𝑘

𝑖=1
Ω

𝑖
= ⋃

𝑚

𝑗=1
Ω

𝑗. Define
𝜂 = ∑

𝑘

𝑖=1
𝜂
𝑖
𝜒
Ω
𝑖

and 𝜂 = ∑𝑚

𝑗=1
𝜂
𝑗
𝜒
Ω
𝑗 , where 𝜒

𝐸
(𝐸 ⊂ Ω) is the

characteristic function of 𝐸. It is clear that 𝜂, 𝜂 ∈ 𝐿
𝑃
(Ω) and

𝜂(𝑥) ∈ 𝑓(𝑥, 𝑢(𝑥)), 𝜂(𝑥) ∈ 𝑓(𝑥, 𝑢(𝑥)) for a.e. 𝑥 ∈ Ω.
For 𝑥 ∈ Ω, 𝑢 ∈ R, put

𝑓
0
(𝑥, 𝑢) =

{
{
{
{

{
{
{
{

{

{𝜂 (𝑥)} , if 𝑢 < 𝑢 (𝑥) ,

𝑓 (𝑥, 𝑢) , if 𝑢 (𝑥) ≤ 𝑢 ≤ 𝑢 (𝑥) ,

{𝜂 (𝑥)} , if 𝑢 > 𝑢 (𝑥) .

(31)

Then, as in [1, 26], we can check that𝑓
0
satisfies (F1) and (F2).

From (31) and (27), we see that

sup {

𝜉




: 𝜉 ∈ 𝑓

0
(𝑥, 𝑢)} ≤ ℎ (𝑥) , a.e. 𝑥 ∈ Ω, ∀𝑢 ∈ R.

(32)

We define 𝑏 : Ω ×R → R given by

𝑏 (𝑥, 𝑢) =

{
{
{
{

{
{
{
{

{

𝑀

−1

𝑀(𝑢 − 𝑢 (𝑥)) , if 𝑢 > 𝑢 (𝑥) ,

0, if 𝑢 (𝑥) ≤ 𝑢 ≤ 𝑢 (𝑥) ,

−𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢) , if 𝑢 < 𝑢 (𝑥) ,
(33)

for 𝑥 ∈ Ω, 𝑢 ∈ R. Then 𝑏 is a Carathéodory function and

|𝑏 (𝑥, 𝑢)| ≤ 𝑎3 (
𝑥) + 𝑀

−1

𝑀(2 |𝑢|) , (34)

with 𝑎
3
(𝑥) = 𝑀

−1

𝑀(2|𝑢(𝑥)|) + 𝑀

−1

𝑀(2|𝑢(𝑥)|) ∈ 𝐿
𝑀
(Ω).

By Young inequality and the convexity of𝑀, the operatorB :

𝐿
𝑀
(Ω) → 𝐿

𝑀
(Ω) defined by

⟨B (𝑢) , V⟩𝐿
𝑀
(Ω),𝐿

𝑀
(Ω)
= ∫

Ω

𝑏 (𝑥, 𝑢) V 𝑑𝑥,

∀𝑢, V ∈ 𝐿
𝑀
(Ω) ,

(35)

is well defined. From (34), we see that B is a bounded
operator. Moreover, the mapping 𝑢 → 𝑏(⋅, 𝑢) is continuous
from 𝐿

𝑀
(Ω) to 𝐿

𝑀
(Ω). In fact, let 𝑢

𝑛
→ 𝑢 in 𝐿

𝑀
(Ω),

as 𝑛 → ∞. If 𝑢 → 𝑏(⋅, 𝑢) is not continuous, then there
exists 𝜀

0
> 0 such that ∫

Ω
𝑀(|𝑏(𝑥, 𝑢

𝑛
(𝑥)) − 𝑏(𝑥, 𝑢(𝑥))|)𝑑𝑥 ≥

𝜀
0
, ∀𝑛 ∈ N. By passing to a subsequence, if necessary, we

have 𝑢
𝑛
(𝑥) → 𝑢(𝑥) a.e. 𝑥 ∈ Ω and there is 𝑔

1
∈ 𝐿

1
(Ω)

such that 𝑀(|𝑢
𝑛
(𝑥) − 𝑢(𝑥)|) ≤ 𝑔

1
(𝑥) for a.e. 𝑥 ∈ Ω. Then

𝑀(|𝑏(𝑥, 𝑢
𝑛
(𝑥)) − 𝑏(𝑥, 𝑢(𝑥))|) → 0 a.e. 𝑥 ∈ Ω, as 𝑛 → ∞.

Since𝑀 satisfies Δ
2
condition and is convex,

𝑀(




𝑏 (𝑥, 𝑢

𝑛
(𝑥)) − 𝑏 (𝑥, 𝑢 (𝑥))





)

≤

𝐾

2

𝑀(




𝑏 (𝑥, 𝑢

𝑛
(𝑥))





)

+

𝐾

2

𝑀 (|𝑏 (𝑥, 𝑢 (𝑥))|)

≤ 𝐶 [𝑀 (|𝑢 (𝑥)|) + 𝑀 (




𝑢
𝑛
(𝑥)




) + 𝑀 (𝑎

3
(𝑥))]

≤ 𝐶 [𝑀 (|𝑢 (𝑥)|) + 𝑔
1
(𝑥) + 𝑀(𝑎

3
(𝑥))] ,

(36)

where 𝐶 > 0 and the function in the right-hand side belongs
to 𝐿1(Ω). Using Lebesgue’s dominated convergence theorem,
∫
Ω
𝑀(|𝑏(𝑥, 𝑢

𝑛
(𝑥)) − 𝑏(𝑥, 𝑢(𝑥))|)𝑑𝑥 → 0, as 𝑛 → ∞. This

is a contradiction. Due to the compact embedding 𝑋 →

𝐿
𝑀
(Ω), 𝑖∗

𝑀
B𝑖

𝑀
is weakly-strongly continuous from 𝑋 into

its dual space 𝑋∗. It follows that 𝑖∗
𝑀
B𝑖

𝑀
is a (single-valued)

pseudomonotone operator from𝑋 into𝑋∗.
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For𝑥 ∈ Ω and 𝑢 ∈ R, define𝑇
𝑖
(𝑥, 𝑢) = |𝜂

𝑖
(𝑥)−𝜂(𝑥)|𝜎((𝑢−

𝑢
𝑖
(𝑥))/(𝑢(𝑥) − 𝑢

𝑖
(𝑥))) (1 ≤ 𝑖 ≤ 𝑘) and 𝑇𝑗

(𝑥, 𝑢) = |𝜂
𝑗
(𝑥) −

𝜂(𝑥)|[1 − 𝜎((𝑢 − 𝑢(𝑥))/(𝑢
𝑗
(𝑥) − 𝑢(𝑥)))] (1 ≤ 𝑗 ≤ 𝑚), where

𝜎 (𝑠) =

{
{
{
{

{
{
{
{

{

1, 𝑠 < 0,

1 − 𝑠, 0 ≤ 𝑠 ≤ 1,

0, 𝑠 > 1.

(37)

Since 𝑋 → 𝐿
𝑃
(Ω) is compact, the mapping 𝑖

∗

𝑃
T

𝑖
𝑖
𝑃

and mapping 𝑖∗
𝑃
T𝑗
𝑖
𝑃
are weakly-strongly continuous and

bounded. Consequently, 𝑖∗
𝑃
T

𝑖
𝑖
𝑃

and 𝑖
∗

𝑃
T𝑗
𝑖
𝑃

are (single-
valued) pseudomonotone operators from𝑋 into𝑋∗.

Next, we will find 𝑢 ∈ 𝐷(𝐽) and 𝜂 ∈ (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢) such that

⟨A (𝑢) + 𝜂 + (𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) −

𝑘

∑

𝑖=1

(𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢)

+

𝑚

∑

𝑗=1

(𝑖
∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , V − 𝑢⟩ + 𝐽 (V) − 𝐽 (𝑢) ≥ 0,

∀V ∈ 𝑋.

(38)

Step 2. We will prove that 𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
is a pseudomonotone and

bounded mapping from𝑋 toK(𝑋∗
).

(i) We prove that (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢) is a nonempty, bounded,

closed, and convex subset of 𝑋∗ for all 𝑢 ∈ 𝑋. Moreover,
𝑖
∗

𝑃

̃
𝑓
0
𝑖
𝑃
is a bounded mapping from𝑋 toK(𝑋∗

).
Clearly, for any 𝑢 ∈ 𝐿

𝑃
(Ω), ̃𝑓

0
(𝑢) is a nonempty, bounded,

closed, and convex subset of 𝐿
𝑃
(Ω); in particular, ̃𝑓

0
(𝑢) ∈

K(𝐿
𝑃
(Ω)). Moreover, ̃𝑓

0
is a bounded operator from 𝐿

𝑃
(Ω)

toK(𝐿
𝑃
(Ω)).

For any 𝑢 ∈ 𝑋, from the boundedness of 𝑖∗
𝑃
and the above

arguments, we get that (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢) = 𝑖

∗

𝑃

̃
𝑓
0
(𝑢) is a nonempty,

bounded, closed, and convex subset of 𝑋∗. Moreover, since
‖𝑖
∗

𝑃
𝜂‖

𝑋
∗ ≤ 𝐶‖𝜂‖

𝐿
𝑃
(Ω)

, ∀𝜂 ∈ 𝐿
𝑃
(Ω) for some constant 𝐶 >

0, it follows from the boundedness of ̃𝑓
0
that 𝑖∗

𝑃

̃
𝑓
0
𝑖
𝑃
is also a

bounded mapping. Next, we prove that (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢) is closed

in 𝑋∗. In fact, assume {𝜂
𝑛
} ⊂ (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢), 𝜂

𝑛
= 𝑖

∗

𝑃
𝜂
𝑛
with 𝜂

𝑛
∈

̃
𝑓
0
(𝑖
𝑃
(𝑢)) =

̃
𝑓
0
(𝑢), ∀𝑛 ∈ N, and

𝜂
𝑛
→ 𝜂 in 𝑋∗

. (39)

Because {𝜂
𝑛
: 𝑛 ∈ N} ⊂ ̃

𝑓
0
(𝑢), {𝜂

𝑛
} is a bounded sequence

in 𝐿
𝑃
(Ω). By passing to a subsequence if necessary, we can

assume without loss of generality that

𝜂
𝑛
⇀ 𝜂

0
weakly- ∗ in 𝐿

𝑃
(Ω) for 𝜎 (𝐿

𝑃
(Ω) , 𝐿

𝑃
(Ω)) .

(40)

Since ̃𝑓
0
(𝑢) is weakly convex and closed in 𝐿

𝑃
(Ω) and 𝐿

𝑃
(Ω)

is reflexive, 𝜂
0
∈
̃
𝑓
0
(𝑢), and thus 𝑖∗

𝑃
𝜂
0
∈ 𝑖

∗

𝑃

̃
𝑓
0
(𝑢) = (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢).

On the other hand, since 𝑖∗
𝑃
is continuous from 𝐿

𝑃
(Ω) to

𝑋
∗ with both weak topologies, we have from (40) that

𝜂
𝑛
= 𝑖

∗

𝑃
𝜂
𝑛
⇀ 𝑖

∗

𝑃
𝜂
0
in 𝑋∗ which combined with (39) yields

𝜂 = 𝑖
∗

𝑃
𝜂
0
∈ (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢). Hence, (𝑖∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢) is closed in𝑋∗.

(ii) Let 𝑉 be a finite-dimensional subspace of 𝑋. We will
show that the restriction (𝑖∗

𝑃

̃
𝑓
0
𝑖
𝑃
)|
𝑉
of 𝑖∗

𝑃

̃
𝑓
0
𝑖
𝑃
on 𝑉 is upper

semicontinuous from 𝑉 into 2𝑋
∗

with respect to the weak
topology on𝑋∗.

In fact, assume𝑢
0
∈ 𝑉. To prove the upper semicontinuity

of (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)|
𝑉
at 𝑢

0
, we assume by contradiction that there is a

weakly open neighborhood𝑈 of ̃𝑓
0
(𝑢

0
) in𝑋∗ and a sequence

{𝑢
𝑛
} ⊂ 𝑉 such that

𝑢
𝑛
→ 𝑢

0
in 𝑉, (41)

and there exists a sequence {𝜂
𝑛
} ⊂ 𝑋

∗ such that 𝜂
𝑛
∈

(𝑖
∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢

𝑛
) \ 𝑈, ∀𝑛 ∈ N. We see that �̃� = (𝑖

∗

𝑃
)
−1
(𝑈) is a

weakly open neighborhood of ̃𝑓
0
(𝑢

0
) in 𝐿

𝑃
(Ω). Moreover,

since 𝜂
𝑛
∈ (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢

𝑛
) = 𝑖

∗

𝑃

̃
𝑓
0
(𝑢

𝑛
), there exists 𝜂

𝑛
∈
̃
𝑓
0
(𝑢

𝑛
)

such that

𝜂
𝑛
= 𝑖

∗

𝑃
𝜂
𝑛
. (42)

We have 𝜂
𝑛

∉ �̃�, ∀𝑛 ∈ N. As {𝑢
𝑛
} is a bounded

sequence in 𝐿
𝑃
(Ω), it follows from (i) that {𝜂

𝑛
} is a bounded

sequence in 𝐿
𝑃
(Ω). Also, as mentioned above, by passing to

a subsequence, we can assume that

𝜂
𝑛
⇀ 𝜂

0
weakly in 𝐿

𝑃
(Ω) for 𝜎 (𝐿

𝑃
(Ω) , 𝐿

𝑃
(Ω)) , (43)

for some 𝜂
0
∈ 𝐿

𝑃
(Ω). By (41), 𝑢

𝑛
= 𝑖

𝑃
(𝑢

𝑛
) → 𝑖

𝑃
(𝑢

0
) = 𝑢

0
in

𝐿
𝑃
(Ω). Hence, by passing to a subsequence if necessary, we

can assume that

𝑢
𝑛
(𝑥) → 𝑢

0
(𝑥) for a.e. 𝑥 ∈ Ω. (44)

For a.e. 𝑥 ∈ Ω and for any 𝜀 ∈ (0, 1), denote 𝑈(𝑥) := {𝜉 ∈
𝑅 : dist(𝜉, 𝑓

0
(𝑥, 𝑢

0
(𝑥))) < 𝜀}, where dist(𝜉, 𝑓

0
(𝑥, 𝑢

0
(𝑥))) =

inf
𝑧∈𝑓
0
(𝑥,𝑢
0
(𝑥))
|𝜉 − 𝑧|. Then, 𝑈(𝑥) is open set in R and

𝑓
0
(𝑥, 𝑢

0
(𝑥)) ⊂ 𝑈(𝑥). By (F2), there exists 𝛿(𝑥) > 0 such that

if |V − 𝑢
0
(𝑥)| < 𝛿(𝑥) then 𝑓

0
(𝑥, V) ⊂ 𝑈(𝑥). In view of (44),

there exists 𝑛
0
, such that |𝑢

𝑛
(𝑥) − 𝑢

0
(𝑥)| < 𝛿(𝑥), ∀𝑛 ≥ 𝑛

0
.

Hence, 𝑓
0
(𝑥, 𝑢

𝑛
(𝑥)) ⊂ 𝑈(𝑥), ∀𝑛 ≥ 𝑛

0
. It follows that, for any

𝑧

∈ 𝑓

0
(𝑥, 𝑢

𝑛
(𝑥)), inf

𝑧∈𝑓
0
(𝑥,𝑢
0
(𝑥))
|𝑧


− 𝑧| < 𝜀, ∀𝑛 ≥ 𝑛

0
. Since

𝜂
𝑛
∈
̃
𝑓
0
(𝑢

𝑛
), 𝜂

𝑛
(𝑥) ∈ 𝑓

0
(𝑥, 𝑢

𝑛
(𝑥)) for a.e. 𝑥 ∈ Ω; thus, there is

a sequence {𝑤
𝑛
} ⊂

̃
𝑓
0
(𝑢

0
) such that |𝜂

𝑛
(𝑥) − 𝑤

𝑛
(𝑥)| → 0 as

𝑛 → ∞ for a.e. 𝑥 ∈ Ω, which implies

𝑃 (




𝜂
𝑛
(𝑥) − 𝑤

𝑛
(𝑥)




) → 0, for a.e. 𝑥 ∈ Ω, as 𝑛 → ∞.

(45)

On the other hand, since𝑃 ∈ Δ
2
, we have𝑃(|𝜂

𝑛
(𝑥)−𝑤

𝑛
(𝑥)|) ≤

(1/2)𝑃(2|𝜂
𝑛
(𝑥)|) + (1/2)𝑃(2|𝑤

𝑛
(𝑥)|) ≤ (𝐾/2)𝑃(|𝜂

𝑛
(𝑥)|) +

(𝐾/2)𝑃(|𝑤
𝑛
(𝑥)|), for some 𝐾 > 0. By (32), 𝑃(|𝜂

𝑛
(𝑥) −

𝑤
𝑛
(𝑥)|) ≤ 𝐾𝑃(ℎ(𝑥)), for a.e. 𝑥 ∈ Ω, all 𝑛 ∈ N. Using

Lebesgue’s dominated convergence theorem, we obtain that

lim
𝑛→∞

∫

Ω

𝑃 (




𝜂
𝑛
(𝑥) − 𝑤

𝑛
(𝑥)




) 𝑑𝑥 = 0. (46)
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Since 𝑃 ∈ Δ
2
,

lim
𝑛→∞





𝜂
𝑛
− 𝑤

𝑛




𝐿
𝑃
(Ω)
= 0. (47)

In view of (47) and (43), we can deduce that

𝑤
𝑛
⇀ 𝜂

0
weakly in 𝐿

𝑃
(Ω) for 𝜎 (𝐿

𝑃
(Ω) , 𝐿

𝑃
(Ω)) ,

(48)

as 𝑛 → ∞.Therefore, 𝜂
0
∈
̃
𝑓
0
(𝑢

0
) by the convexity and close-

ness of ̃𝑓
0
(𝑢

0
) and the reflexivity of 𝐿

𝑃
(Ω). Consequently,

𝜂
0
∈ �̃�. By (43) and the reflexivity of 𝐿

𝑃
(Ω), there exists

𝑁
0
∈ N, such that 𝜂

𝑛
∈ �̃�, for any 𝑛 ≥ 𝑁

0
. From (42), 𝜂

𝑛
∈ 𝑈;

this is a contradiction.
(iii) Referring to [19, Proposition 2.2] we can get that if

{𝑢
𝑛
} ⊂ 𝑋 with 𝑢

𝑛
⇀ 𝑢

0
and if 𝜂

𝑛
∈ (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢

𝑛
) such that

lim sup
𝑛→∞

⟨𝜂
𝑛
, 𝑢

𝑛
− 𝑢

0
⟩ ≤ 0, then to each element V ∈ 𝑋,

𝜂(V) ∈ (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢

0
) exists with

lim inf
𝑛→∞

⟨𝜂
𝑛
, 𝑢

𝑛
− V⟩ ≥ ⟨𝜂 (V) , 𝑢

0
− V⟩ . (49)

By (i)–(iii) and using Definition 3, we get that 𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
is a

pseudomonotone and bounded mapping from𝑋 toK(𝑋∗
).

Step 3. By Step 1 and Step 2,A+𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
+𝑖

∗

𝑀
B𝑖

𝑀
−∑

𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+

∑
𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃

is a multivalued bounded pseudomonotone
mapping on 𝑋 with domain 𝐷(A + 𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
−

∑
𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+ ∑

𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
) = 𝑋.

From the definition of 𝜕𝐽 (38) is equivalent to 0 ∈ (A +

𝑖
∗

𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
− ∑

𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+ ∑

𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
)(𝑢) + 𝜕𝐽(𝑢).

By [17, Proposition 32.17] or [27, Theorem 4], 𝜕𝐽 is maximal
monotone.

Step 4. For 𝑢
0
∈ 𝐷(𝐽), we check that A + 𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
−

∑
𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+ ∑

𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
is 𝑢

0
-coercive.

In fact, for any 𝑢 ∈ 𝑋, by (A1), Young inequality, and the
convexity of𝑀, we have

⟨A (𝑢) , 𝑢 − 𝑢
0
⟩ ≥ ∫

Ω

𝑏
2
𝑀(|𝐷𝑢 (𝑥)|) 𝑑𝑥

− ∫

Ω

𝑎
2
(𝑥) 𝑑𝑥 − ∫

Ω

𝑀(𝑎
1
(𝑥)) 𝑑𝑥

− ∫

Ω

𝑀(




𝐷𝑢

0
(𝑥)




) 𝑑𝑥

− 𝑏
1
∫

Ω

𝑀(𝜀𝑀

−1

(𝑀 (|𝐷𝑢 (𝑥)|))) 𝑑𝑥

− ∫

Ω

𝑀(

1

𝜀





𝐷𝑢

0
(𝑥)




) 𝑑𝑥

≥ (𝑏
2
− 𝜀𝑏

1
) ∫

Ω

𝑀(|𝐷𝑢 (𝑥)|) 𝑑𝑥 − 𝐶1
,

(50)

where 𝜀 = min{𝑏
2
/2𝑏

1
, 1} and 𝐶

1
is a positive constant

independent of 𝑢.

From (32), for any 𝜂 ∈ (𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢),





⟨𝜂, 𝑢 − 𝑢

0
⟩




≤




𝜂



𝑋
∗ ⋅




𝑢 − 𝑢

0




𝑋

≤




𝜂



𝑋
∗ (‖𝑢‖𝑋

+




𝑢
0




𝑋
)

≤ 𝐶
2
(‖𝑢‖𝑋

+ 1) ,

(51)

for some constant 𝐶
2
> 0.

Since𝑀 is convex and𝑀 ∈ Δ
2
, there exists 𝐾 > 1 such

that 𝑀(|𝑢|) ≤ (𝐾/2)[𝑀(𝑢 − 𝑢(𝑥)) + 𝑀(|𝑢(𝑥)|)] whenever
𝑢 > 𝑢(𝑥), and 𝑀(|𝑢|) ≤ (𝐾/2)[𝑀(𝑢(𝑥) − 𝑢) + 𝑀(|𝑢(𝑥)|)]

whenever 𝑢 < 𝑢(𝑥) for 𝑥 ∈ Ω, 𝑢 ∈ R. Note that 𝑀(𝑡) ≤
|𝑡|𝑀

−1

𝑀(|𝑡|), ∀𝑡 ∈ R. In the sequel, we use the set notation
{𝑢 > 𝑢} = {𝑥 ∈ Ω : 𝑢(𝑥) > 𝑢(𝑥)}, {𝑢 ≤ 𝑢 ≤ 𝑢} = {𝑥 ∈ Ω :

𝑢(𝑥) ≤ 𝑢(𝑥) ≤ 𝑢(𝑥)}, and {𝑢 < 𝑢} = {𝑥 ∈ Ω : 𝑢(𝑥) < 𝑢(𝑥)}.
Then we have

⟨(𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) , 𝑢⟩

= ⟨B (𝑢) , 𝑢⟩𝐿
𝑃
(Ω),𝐿

𝑃
(Ω)

= ∫

Ω

𝑏 (𝑥, 𝑢 (𝑥)) 𝑢 (𝑥) 𝑑𝑥

= ∫

{𝑢>𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) (𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥

+ ∫

{𝑢>𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑢 (𝑥) 𝑑𝑥

+ ∫

{𝑢<𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) (𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥

− ∫

{𝑢<𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑢 (𝑥) 𝑑𝑥

≥ ∫

{𝑢>𝑢}

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥

− ∫

{𝑢>𝑢}

𝑀(𝜀
1
𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥))) 𝑑𝑥

− ∫

{𝑢>𝑢}

𝑀(

1

𝜀
1

𝑢 (𝑥)) 𝑑𝑥 + ∫

{𝑢<𝑢}

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥

− ∫

{𝑢<𝑢}

𝑀(𝜀
1
𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥))) 𝑑𝑥

− ∫

{𝑢<𝑢}

𝑀(

1

𝜀
1

𝑢 (𝑥)) 𝑑𝑥

≥ (1 − 𝜀
1
) ∫

{𝑢>𝑢}

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥

+ (1 − 𝜀
1
) ∫

{𝑢<𝑢}

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) 𝑑𝑥 − 𝐶
3

≥ (1 − 𝜀
1
) {∫

{𝑢>𝑢}

[

2

𝐾

𝑀(𝑢 (𝑥)) − 𝑀 (𝑢 (𝑥))] 𝑑𝑥
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+∫

{𝑢<𝑢}

[

2

𝐾

𝑀(𝑢 (𝑥)) − 𝑀(𝑢 (𝑥))] 𝑑𝑥} − 𝐶
3

≥ (1 − 𝜀
1
)

2

𝐾

{∫

{𝑢>𝑢}

𝑀(𝑢 (𝑥)) 𝑑𝑥 + ∫

{𝑢<𝑢}

𝑀(𝑢 (𝑥)) 𝑑𝑥}

+ (1 − 𝜀
1
)

2

𝐾

⋅ {∫

{𝑢≤𝑢≤𝑢}

[𝑀 (𝑢 (𝑥)) − 𝑀(




𝑢




∨ |𝑢| (𝑥))] 𝑑𝑥} − 𝐶4

≥ (1 − 𝜀
1
)

2

𝐾

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 − 𝐶
5
,





⟨(𝑖

∗

𝑀
B𝑖

𝑀
) (𝑢) , 𝑢

0
⟩





≤ ∫

Ω

|𝑏 (𝑥, 𝑢 (𝑥))| ⋅




𝑢
0
(𝑥)




𝑑𝑥

= ∫

{𝑢>𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) ⋅




𝑢
0
(𝑥)




𝑑𝑥

+ ∫

{𝑢<𝑢}

𝑀

−1

𝑀(𝑢 (𝑥) − 𝑢 (𝑥)) ⋅




𝑢
0
(𝑥)




𝑑𝑥

≤ ∫

{𝑢>𝑢}

𝜀
3
𝑀((𝑢 (𝑥) − 𝑢 (𝑥))) 𝑑𝑥

+ ∫

{𝑢>𝑢}

𝑀(

1

𝜀
3





𝑢
0
(𝑥)




) 𝑑𝑥

+ ∫

{𝑢<𝑢}

𝜀
3
𝑀((𝑢 (𝑥) − 𝑢 (𝑥))) 𝑑𝑥

+ ∫

{𝑢<𝑢}

𝑀(

1

𝜀
3





𝑢
0
(𝑥)




) 𝑑𝑥

≤

𝐾𝜀
3

2

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 +

𝐾𝜀
3

2

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥

+

𝐾𝜀
3

2

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 + ∫

Ω

𝑀(

1

𝜀
3





𝑢
0
(𝑥)




) 𝑑𝑥

≤

𝐾𝜀
3

2

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 + 𝐶
6
,

(52)

where 𝜀
1
, 𝜀

2
∈ (0, 1), 𝐶

3
, 𝐶

4
, 𝐶

5
, 𝐶

6
> 0. Taking 𝜀

1
= 1/2 and

𝜀
2
= 1/𝐾

2, we can deduce that

⟨(𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) , 𝑢 − 𝑢

0
⟩

≥ ⟨(𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) , 𝑢⟩ −





⟨(𝑖

∗

𝑀
B𝑖

𝑀
) (𝑢) , 𝑢

0
⟩





≥ [(1 − 𝜀
1
)

2

𝐾

−

𝐾𝜀
3

2

]∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 − 𝐶
7

=

1

2𝐾

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥 − 𝐶
7
.

(53)

For 𝑖 ∈ {1, . . . , 𝑘}, we have




⟨(𝑖

∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩





=









∫

Ω

𝑇
𝑖
(𝑥, 𝑢 (𝑥)) (𝑢 (𝑥) − 𝑢

0
(𝑥)) 𝑑𝑥









≤








𝜂
𝑖
− 𝜂






𝐿
𝑃(Ω)

‖𝑢‖𝐿
𝑃(Ω)

+








𝜂
𝑖
− 𝜂






𝐿
𝑃(Ω)





𝑢
0




𝐿
𝑃(Ω)

,

(54)

and thus

𝑘

∑

𝑖=1





⟨(𝑖

∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩




≤ 𝐶

8
(‖𝑢‖𝑋

+ 1) , (55)

for some 𝐶
8
> 0. Similarly,

𝑚

∑

𝑗=1






⟨(𝑖

∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩






≤ 𝐶

9
(‖𝑢‖𝑋

+ 1) , (56)

for some 𝐶
9
> 0.

Define, for 𝑢 ∈ 𝑋, 𝜌(𝑢) = ∫
Ω
[𝑀(|𝐷𝑢(𝑥)|)+𝑀(|𝑢(𝑥)|)]𝑑𝑥

and ‖𝑢‖
𝜌
= inf{𝜆 > 0 : 𝜌(𝑢/𝜆) ≤ 1}. Then, it is easy to see

that (1/2)‖𝑢‖
𝜌
≤ ‖𝑢‖

𝑋
≤ 2‖𝑢‖

𝜌
.

Let ‖𝑢‖
𝑋
→ +∞. Then ‖𝑢‖

𝜌
→ +∞. Combining the

estimates from (50)–(56) and using (8), we obtain that

⟨A (𝑢) + 𝜂 + (𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) −

𝑘

∑

𝑖=1

(𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢)

+

𝑚

∑

𝑗=1

(𝑖
∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩

⋅ (‖𝑢‖𝑋
)
−1

≥ ⟨A (𝑢) + 𝜂 + (𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) −

𝑘

∑

𝑖=1

(𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢)

+

𝑚

∑

𝑗=1

(𝑖
∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩

⋅ (2 ‖𝑢‖
𝜌
)

−1

≥

1

2 ‖𝑢‖𝜌

[(𝑏
2
− 𝜀𝑏

1
) ∫

Ω

𝑀(|𝐷𝑢 (𝑥)|) 𝑑𝑥

+

1

2𝐾

∫

Ω

𝑀(𝑢 (𝑥)) 𝑑𝑥] − 𝐶
10
−

𝐶
11

‖𝑢‖𝜌

≥

𝐶
12

‖𝑢‖𝜌

[∫

Ω

𝑀((‖𝑢‖𝜌
− 𝜀)

|∇𝑢 (𝑥)|

‖𝑢‖𝜌
− 𝜀

)𝑑𝑥

+∫

Ω

𝑀((‖𝑢‖𝜌
− 𝜀)

|𝑢 (𝑥)|

‖𝑢‖𝜌
− 𝜀

)𝑑𝑥]

− 𝐶
10
−

𝐶
11

‖𝑢‖𝜌
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≥

𝐶
12

‖𝑢‖𝜌

(‖𝑢‖𝜌
− 𝜀) 𝑔 (‖𝑢‖𝜌

− 𝜀)

⋅ [∫

Ω

𝑀(

|𝐷𝑢 (𝑥)|

‖𝑢‖𝜌
− 𝜀

)𝑑𝑥 + ∫

Ω

𝑀(

|𝑢 (𝑥)|

‖𝑢‖𝜌
− 𝜀

)𝑑𝑥]

− 𝐶
10
−

𝐶
11

‖𝑢‖𝜌

≥

𝐶
12

‖𝑢‖𝜌

(‖𝑢‖𝜌
− 𝜀) 𝑔 (‖𝑢‖𝜌

− 𝜀) − 𝐶
10
−

𝐶
11

‖𝑢‖𝜌

.

(57)

By the arbitrary of 𝜀, we have

⟨A (𝑢) + 𝜂 + (𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢) −

𝑘

∑

𝑖=1

(𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢)

+

𝑚

∑

𝑗=1

(𝑖
∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩

⋅ (‖𝑢‖𝑋
)
−1

≥

𝐶
12

‖𝑢‖𝜌

‖𝑢‖𝜌
𝑔 (‖𝑢‖𝜌

) − 𝐶
10
−

𝐶
11

‖𝑢‖𝜌

= 𝐶
12
𝑔 (‖𝑢‖𝜌

) − 𝐶
10
−

𝐶
11

‖𝑢‖𝜌

.

(58)

Hence,

lim
‖𝑢‖
𝑋
→+∞

[ inf
𝜂∈𝐹
0
(𝑢)

(⟨A (𝑢) + 𝜂

+ (𝑖
∗

𝑀
B𝑖

𝑀
) (𝑢)

−

𝑘

∑

𝑖=1

(𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
) (𝑢)

+

𝑚

∑

𝑗=1

(𝑖
∗

𝑃
T

𝑗
𝑖
𝑃
) (𝑢) , 𝑢 − 𝑢

0
⟩

⋅ (‖𝑢‖𝑋
)
−1

)]

= +∞,

(59)

where 𝐹
0
(𝑢) := (𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
)(𝑢). Therefore,A + 𝑖

∗

𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
−

∑
𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+ ∑

𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
is 𝑢

0
-coercive.

We have verified thatA+ 𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
−∑

𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+

∑
𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
+ 𝜕𝐽 satisfy the conditions of Lemma 5. By

Lemma 5,A+𝑖∗
𝑃

̃
𝑓
0
𝑖
𝑃
+𝑖

∗

𝑀
B𝑖

𝑀
−∑

𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+∑

𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
+𝜕𝐽

is surjective, that is, 𝑅(A + 𝑖
∗

𝑃

̃
𝑓
0
𝑖
𝑃
+ 𝑖

∗

𝑀
B𝑖

𝑀
− ∑

𝑘

𝑖=1
𝑖
∗

𝑃
T

𝑖
𝑖
𝑃
+

∑
𝑚

𝑗=1
𝑖
∗

𝑃
T𝑗
𝑖
𝑃
+ 𝜕𝐽) = 𝑋

∗. Hence, (38) has a solution 𝑢.

Step 5. Let 𝑢 be any solution of (38). Following the lines in [1],
we can deduce (28).

From (28) and the definitions of 𝑏, 𝑇
𝑖
and 𝑇𝑗, we have

𝑏(⋅, 𝑢) = 𝑇
𝑖
(⋅, 𝑢) = 𝑇

𝑗
(⋅, 𝑢) a.e in Ω, for all 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈

{1, . . . , 𝑚}. Also, we get that 𝜂(𝑥) ∈ 𝑓
0
(𝑥, 𝑢(𝑥)) = 𝑓(𝑥, 𝑢(𝑥))

for a.e. 𝑥 ∈ Ω. In view of these observations, (38) reduces to
(25). Our proof of Theorem 11 is complete.

The choice 𝑀(𝑢) = |𝑢|𝑝, 𝑝 > 1 in Theorem 11 leads to
Theorem 2.11 in [1].

Under the assumptions of Theorem 11, we define

S = {𝑢 ∈ 𝑋 : 𝑢 is a solution of (9) , 𝑢 ≤ 𝑢 ≤ 𝑢 a.e. in Ω} ,
(60)

and then the set S is nonempty. As consequences of
Theorem 11, some further properties of S are given in
the following corollary. The proofs of these properties are
omitted, since they do not require substantial modifications
as in Theorem 11.

Corollary 12. Under the assumptions of Theorem 11, the fol-
lowing assertions are true.

(i) Any 𝑢 ∈ S is both a subsolution and a supersolution of
(9).

(ii) S is directed downward and upward; that is, for all
𝑢
1
, 𝑢

2
∈ S, there exist 𝑢

3
, 𝑢

4
∈ S such that 𝑢

3
≤ 𝑢

1
∧𝑢

2

and 𝑢
4
≥ 𝑢

1
∨ 𝑢

2
.

Remark 13. If V ∈ 𝑊
1

0
𝐿
𝑀
(Ω) in problem (P), then the

condition (8) can be omitted. In fact, by Lemma 3.14 and
Lemma 5.7 in [15] the coerciveness holds in Step 4 of the proof
of Theorem 11.

Moreover, if 𝐽 is given by an integral functional such as
𝐽(𝑢) = ∫

Ω
𝑀(|𝐷𝑢|)𝑑𝑥, 𝐹(𝑢) is a single-valued term, then

problem (P) implies problem (1.1) in [28].
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