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We prove the condition “𝑐 is neither 0 nor a negative integer” can be dropped on the boundedness of a class of integral operators
𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝 space, which improves the result by Krues and Zhu. Besides, the exact norm of 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝 space is also obtained under
the assumption 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏.

1. Introduction

Let B
𝑛
be the open unit ball in the complex space C𝑛. The

measure,

𝑑]
𝑡
= (1 − |𝑧|

2

)
𝑡

𝑑] (𝑧) , (1)

denotes the weighted Lebesguemeasure onB
𝑛
, where 𝑡 is real

parameter and ] is the normalized Lebesgue measure on B
𝑛

such that V(B
𝑛
) = 1. It is easy to know 𝑑]

𝑡
is finite if and only

if 𝑡 > −1. Suppose 1 ≤ 𝑝 < ∞; to simplify the notation, we
write 𝐿𝑝

𝑡
:= 𝐿

𝑝

(B
𝑛
, V

𝑡
) for the weighted 𝐿

𝑝-space under the
measure ]

𝑡
on B

𝑛
and 𝐿

𝑝

:= 𝐿
𝑝

0
for the usual 𝐿𝑝-space under

the measure ].
Suppose 𝑎, 𝑏, 𝑐 are real numbers, and a class of integral

operators is defined by

𝑆
𝑎,𝑏,𝑐

𝑓 (𝑧) = (1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑] (𝑤) . (2)

The class of integral operators is introduced by Kures and
Zhu [1]. And it is closely related to “maximal Bergman
projection” and Berezin transform. In fact, the boundedness

of Bergman projection on 𝐿
𝑝

𝛼
comes from the boundedness

of the operator

𝑃
♯

𝛼
𝑓 (𝑧) =

Γ (𝑛 + 𝛼 + 1)

𝑛!Γ (𝛼 + 1)
∫
B
𝑛

𝑓 (𝑤)

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝛼

𝑑V
𝛼
(𝑤) ,

𝛼 > −1,

(3)

on 𝐿
𝑝

𝛼
; see [2]. Therefore, we can call 𝑃

♯

𝛼
by “maximal

Bergman projection,” which is the particular case of 𝑆
𝑎,𝑏,𝑐

.
Berezin transforms, whatever the case of the unit disk [3, page
141] or the case of unit ball ([4, page 76], [5, page 383]), are all
concluded in the form of 𝑆

𝑎,𝑏,𝑐
with special 𝑎, 𝑏, 𝑐.

In [1], Krues and Zhu gave the sufficient and necessary
conditions of the boundedness of operator 𝑆

𝑎,𝑏,𝑐
.

Theorem A (see [1]). Suppose 𝑐 is neither 0 nor a negative
integer.

(1) The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
𝑝

𝑡
(1 < 𝑝 < ∞) if

and only if −𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), 𝑐 ≤ 𝑛 + 1 + 𝑎 + 𝑏.
(2) The operator 𝑆

𝑎,𝑏,𝑐
is bounded on 𝐿1

𝑡
if and only if −𝑎 <

𝑡+ 1 < 𝑏+1, 𝑐 = 𝑛+1+𝑎+𝑏 or −𝑎 < 𝑡+ 1 ≤ 𝑏+1, 𝑐 <

𝑛 + 1 + 𝑎 + 𝑏.

The main purposes of this note contain two parts. One
part is to prove the condition “𝑐 is neither 0 nor a nega-
tive integer” in Theorem A can be removed; see Section 3.
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The other part is to give the accurate norm of the operator
𝑆
𝑎,𝑏,𝑐

on 𝐿𝑝

𝑡
under the assumption 𝑐 = 𝑛+ 1+𝑎+ 𝑏, which can

be seen from the following two theorems.

Theorem 1. Suppose 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏. If 1 ≤ 𝑝 < ∞ and
−𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), then

𝑆𝑎,𝑏,𝑐
𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

=
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(4)

Else, we also give the sufficient and necessary conditions
of the operator 𝑆

𝑎,𝑏,𝑐
on 𝐿

∞ and the accurate norm under
𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 of this case, where 𝐿∞ denotes the set of
all essentially bounded and measurable functions under the
measure ]

𝑡
on B

𝑛
.

Theorem 2. The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
∞ if and only

if 𝑎 > 0, 𝑏 > −1, and 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 or 𝑎 ≥ 0, 𝑏 > −1, and
𝑐 < 𝑛 + 1 + 𝑎 + 𝑏. Moreover, when 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, we have

𝑆𝑎,𝑏,𝑐
𝐿∞→𝐿

∞
=

𝑛!Γ (𝑎) Γ (1 + 𝑏)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
. (5)

Notice 𝑆
𝑎,𝑏,𝑐

is the generalization of “maximal Bergman
projection” and Berezin transformwhichwas first introduced
by Berezin [6]. The boundedness of Berezin transform of
𝑓 ∈ 𝐿

1

(D) is a well-known fact; see [7, Proposition 2.2]. But
the norm of it was not calculated out until 2008 by Dostanić;
see [8, Corollary 2]. Recently, the result by Dostanić has been
extended to several complex variables in [9, Theorem 1.1].
Thus, Theorems 1 and 2 promote the main results in [8, 9].
And they also imply the following corollary.

Corollary 3. Suppose 1 ≤ 𝑝 < ∞, 𝛼 > −1, and the norm of
𝑃
♯

𝛼
on 𝐿

𝑝

𝛼
can be


𝑃
♯

𝛼

𝐿𝑝
𝛼
→𝐿
𝑝

𝛼

=
Γ ((𝛼 + 1) /𝑝) Γ ((𝛼 + 1) − (𝛼 + 1) /𝑝) Γ (𝑛 + 𝛼 + 1)

Γ2 ((𝑛 + 1 + 𝛼) /2) Γ (𝛼 + 1)
,

(6)

which implies ‖𝑃♯

𝛼
‖
𝐿
𝑝

𝛼
→𝐿
𝑝

𝛼

grows at most like (𝛼 + 1)
−1 as 𝛼 →

−1.

Next, we will see that the boundedness of an operator
called Berezin-type transform on 𝐿

𝑝

𝑡
can also be obtained

from our main results.The Berezin-type transform is defined
by

B
𝑘,𝛼,𝛽

𝑓 (𝑧)

= 𝐶
𝑘,𝛼,𝛽

×∫
B
𝑛

(1 − |𝑧|
2

)
𝑛+𝛼+𝛽+𝑘+1

(1 − |𝑤|
2

)
𝑘

(1 − ⟨𝑧, 𝑤⟩)
𝑛+𝛼+𝑘+1

(1 − ⟨𝑤, 𝑧⟩)
𝑛+𝛽+𝑘+1

𝑓 (𝑤) 𝑑] (𝑤) ,

(7)

where

𝐶
𝑘,𝛼,𝛽

=
Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ (𝑛 + 1) Γ (𝑘 + 1) Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1)
, (8)

and 𝑛 + 𝛼 + 𝛽 > 0, 𝑛 + 𝛼 > 0, 𝑛 + 𝛽 > 0, and 𝑘 >

−1. The transform was introduced by Li and Liu [10] when
they discuss whether themean-value property implies (𝛼, 𝛽)-
harmonicity for integrable functions on the unit ball in C𝑛.
Notice that


B

𝑘,𝛼,𝛽
𝑓 (𝑧)


≤ 𝐶

𝑘,𝛼,𝛽
𝑆
𝑎,𝑏,𝑐

𝑓
 (𝑧) (9)

with 𝑎 = 𝑛 + 𝛼 + 𝛽 + 𝑘 + 1, 𝑏 = 𝑘, and 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏.
And B

𝑘,𝛼,𝛼
𝑓(𝑧) = 𝐶

𝑘,𝛼,𝛼
𝑆
𝑎,𝑏,𝑐

𝑓(𝑧) as 𝛼 = 𝛽. Therefore, the
boundedness of Berezin-type transform B

𝑘,𝛼,𝛽
on 𝐿

𝑝

𝑡
comes

from the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
. Thus, we

have the following result, which extends Propositions 3.3 and
3.4 in [10] combining the fact of Lemma 2.4 in [10] therein.

Corollary 4. If 1 ≤ 𝑝 < ∞ such that −𝑝(𝑛 + 𝛼 + 𝛽 + 𝑘 + 1) <

𝑡 + 1 < 𝑝(𝑘 + 1), then the Berezin-type B
𝑘,𝛼,𝛽

is bounded on
𝐿
𝑝

𝑡
and


B

𝑘,𝛼,𝛽

𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≤ 𝜆
𝑘,𝛼,𝛽,𝑝

Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ2 (𝑛 + 1 + (𝛼 + 𝛽) /2 + 𝑘)
,

(10)

where

𝜆
𝑘,𝛼,𝛽,𝑝

=
Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1 + (𝑡 + 1) /𝑝) Γ (𝑘 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1) Γ (𝑘 + 1)
.

(11)

Moreover, the Berezin-type transform is bounded on 𝐿
∞, and


B

𝑘,𝛼,𝛽

𝐿∞→𝐿
∞
≤
Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ2 (𝑛 + 1 + (𝛼 + 𝛽) /2 + 𝑘)
. (12)

2. Preliminaries

A number of hypergeometric functions will appear through-
out. We use the classical notation

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) to denote

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) =

∞

∑

𝑘=0

(𝛼)
𝑘
(𝛽)

𝑘

(𝛾)
𝑘

𝑧
𝑘

𝑘!
, (13)

with 𝛾 ̸= 0, −1, −2, . . ., where

(𝛼)
0
= 1, (𝛼)

𝑘
= 𝛼 (𝛼 + 1) ⋅ ⋅ ⋅ (𝛼 + 𝑘 − 1) for 𝑘 ≥ 1.

(14)

And the hypergeometric series in (13) converges absolutely
for all the value of |𝑧| < 1. Moreover, as |𝑧| → 1

−, it is easy
to know that

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) ≈

{{{

{{{

{

1, if 𝛾 − 𝛼 − 𝛽 > 0;

log 1

1 − |𝑧|
, if 𝛾 − 𝛼 − 𝛽 = 0;

(1 − |𝑧|)
𝛾−𝛼−𝛽

, if 𝛾 − 𝛼 − 𝛽 < 0,

(15)
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where 𝑎(𝑧) ≈ 𝑏(𝑧) represents the ratio and 𝑎(𝑧)/𝑏(𝑧) has a
positive finite limit as |𝑧| → 1

−. Now we list a few formulas
for easy reference (see [11, Chapter II]):

2
𝐹
1
(𝛼, 𝛽; 𝛾; 1) =

Γ (𝛾) Γ (𝛾 − 𝛼 − 𝛽)

Γ (𝛾 − 𝛼) Γ (𝛾 − 𝛽)
,

Re (𝛾 − 𝛼 − 𝛽) > 0,

(16)

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) = (1 − 𝑧)

𝛾−𝛼−𝛽

2
𝐹
1
(𝛾 − 𝛼, 𝛾 − 𝛽; 𝛾; 𝑧) , (17)

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧)

=
Γ (𝛾)

Γ (𝜆) Γ (𝛾 − 𝜆)

× ∫

1

0

𝑡
𝜆−1

(1 − 𝑡)
𝛾−𝜆−1

2
𝐹
1
(𝛼, 𝛽; 𝜆; 𝑡𝑧) 𝑑𝑡,

Re 𝛾 > Re 𝜆 > 0;
arg (1 − 𝑧)

 < 𝜋; 𝑧 ̸= 1.

(18)

Lemma 5. Suppose Re 𝛿 > 0 and Re(𝜆 + 𝛿 − 𝛼 − 𝛽) > 0. Then

∫

1

0

𝑡
𝜆−1

(1 − 𝑡)
𝛿−1

2
𝐹
1
(𝛼, 𝛽; 𝜆; 𝑡) 𝑑𝑡

=
Γ (𝜆) Γ (𝛿) Γ (𝜆 + 𝛿 − 𝛼 − 𝛽)

Γ (𝜆 + 𝛿 − 𝛼) Γ (𝜆 + 𝛿 − 𝛽)
.

(19)

Proof. Note that, under the assumption of the lemma, both
sides of (18) are continuous at 𝑧 = 1. The lemma then follows
by letting 𝑧 → 1 in (18) and applying (16).

The following integral formulae concerning the hyperge-
ometric function are significant for our main results. And all
these formulae are contained in [12]. Now we list them.

Lemma 6 (see [12, Corollary 2.4]). For 𝛼 ∈ R and 𝛾 > −1, we
have

∫
B
𝑛

(1 − |𝑤|
2

)
𝛾

|1 − ⟨𝑧, 𝑤⟩|
2𝛼
𝑑] (𝑤)

=
𝑛!Γ (1 + 𝛾)

Γ (𝑛 + 1 + 𝛾)
2
𝐹
1
(𝛼, 𝛼; 𝑛 + 1 + 𝛾; |𝑧|

2

) .

(20)

Lemma 6 is also contained implicitly in the proof of
Theorem 1.4.10 in [13] (see the formula in page 19, line 5 of
[13]).

Lemma 7 (see [12, Corollary 2.5]). Suppose that 𝛼, 𝛽 > 0, 𝛾 ∈

R, and 𝑛 + 𝛼 + 𝛽 − 2𝛾 > 0. Then

∫
B
𝑛

|𝑧|
2𝛽

(1 − |𝑧|
2

)
𝛼−1 {

{

{

∫
B
𝑛

(1 − |𝑤|
2

)
𝛽−1

|1 − ⟨𝑧, 𝑤⟩|
2𝛾
𝑑] (𝑤)

}

}

}

𝑑] (𝑧)

=
𝑛 (𝑛!) Γ (𝛼) Γ (𝛽) Γ (𝑛 + 𝛼 + 𝛽 − 2𝛾)

Γ2 (𝑛 + 𝛼 + 𝛽 − 𝛾)
.

(21)

Proof. Using Lemma 6 in the inner integral, we have

𝑛!Γ (𝛽)

Γ (𝑛 + 𝛽)
∫
B
𝑛

|𝑧|
2𝛽

(1 − |𝑧|
2

)
𝛼−1

×
2
𝐹
1
(𝛾, 𝛾; 𝑛 + 𝛽; |𝑧|

2

) 𝑑] (𝑧)

=
𝑛 (𝑛!) Γ (𝛽)

Γ (𝑛 + 𝛽)
∫

1

0

𝑟
𝑛+𝛽−1

(1 − 𝑟)
𝛼−1

×
2
𝐹
1
(𝛾, 𝛾; 𝑛 + 𝛽; |𝑧|

2

) 𝑑𝑟.

(22)

Then (19) gives the result.

The following result, usually called Schur’s test, is a very
effective tool in proving the 𝐿

𝑝-boundedness of integral
operators. See, for example, [3].

Lemma 8. Suppose that (𝑋, 𝜇) is a 𝜎-finite measure space,
𝐾(𝑥, 𝑦) is a nonnegative measurable function on𝑋×𝑋, and 𝑇
is the associated integral operator:

𝑇𝑓 (𝑥) = ∫
𝑋

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) . (23)

Let 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1. If there exist a positive
constant𝐶 and a positivemeasurable function 𝑢 on𝑋 such that

∫
𝑋

𝐾(𝑥, 𝑦) 𝑢(𝑦)
𝑞

𝑑𝜇 (𝑦) ≤ 𝐶𝑢(𝑥)
𝑞

, (24)

for almost every 𝑥 in𝑋, and

∫
𝑋

𝐾(𝑥, 𝑦) 𝑢(𝑥)
𝑝

𝑑𝜇 (𝑥) ≤ 𝐶𝑢(𝑦)
𝑝

, (25)

for almost every 𝑦 in 𝑋, then 𝑇 is bounded on 𝐿
𝑝

(𝑋, 𝜇) with
‖𝑇‖ ≤ 𝐶.

3. The Improvement

The section mainly proposes the condition “𝑐 is neither 0 nor
a negative integer” can be omitted in Theorem A. Notice the
condition is only used to give 𝑐 ≤ 𝑛+1+𝑎+𝑏while proving the
necessity for the boundedness of the operator 𝑆

𝑎,𝑏,𝑐
on𝐿𝑝

𝑡
(1 ≤

𝑝 < ∞); see [1, lemma 12]. Nowwewill give a newproof of the
necessity for the boundedness of 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝

𝑡
in Propositions

9 and 11 to introduce the condition can be put off.

Proposition 9. Suppose the operator 𝑆
𝑎,𝑏,𝑐

is bounded on
𝐿
𝑝

𝑡
(1 < 𝑝 < ∞), and then −𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), 𝑐 ≤

𝑛 + 1 + 𝑎 + 𝑏.

Proof. Let 𝑞 be the number such that 1/𝑝 + 1/𝑞 = 1. For any
fixed 𝜖 > 0, define

𝑔
𝜖
(𝑤) = 𝐶

1
(𝜖) (1 − |𝑤|

2

)
(𝜖−(𝑡+1))/𝑝

,

ℎ
𝜖
(𝑧) = 𝐶

2
(𝜖) (1 − |𝑧|

2

)
(𝜖−(𝑡+1))/𝑞

|𝑧|
2(𝑏+1+(𝜖−𝑡−1)/𝑝)

,

(26)
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where

𝐶
1
(𝜖) = {

Γ (𝜖) Γ (𝑛 + 1)

Γ (𝑛 + 𝜖)
}

−1/𝑝

, (27)

𝐶
2
(𝜖) = {

𝑛Γ (𝜖) Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝)

Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝 + 𝜖)
}

−1/𝑞

.

(28)

Easy calculation shows ‖𝑔
𝜖
‖
𝑝,𝑡

= ‖ℎ
𝜖
‖
𝑞,𝑡

= 1. Notice the fact





𝑆
𝑎,𝑏,𝑐




𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

= sup
‖𝑓‖
𝑝,𝑡

=1

‖𝑔‖
𝑞,𝑡

=1

×

{

{

{















∫

B
𝑛

(∫

B
𝑛

(1 − |𝑧|
2

)

𝑎

×

(1 − |𝑤|
2

)

𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑]

𝑡
(𝑤))𝑔 (𝑧)𝑑V

𝑡
(𝑧)















}

}

}

.

(29)

Then the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿𝑝

𝑡
leads to the

integral


∫
B
𝑛

{

{

{

∫
B
𝑛

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐

𝑔
𝜖
(𝑤) 𝑑]

𝑡
(𝑤)

}

}

}

×ℎ
𝜖
(𝑧)𝑑]

𝑡
(𝑧)



≤
𝑆𝑎,𝑏,𝑐

𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

< +∞.

(30)

Hence, using Lemma 7 with 𝛼 = 𝑎 + 𝜖/𝑞 + (𝑡 + 1)/𝑝, 𝛽 =

𝑏 + 1 + (𝜖 − (𝑡 + 1))/𝑝, and 𝛾 = 𝑐/2, we can conclude that

𝑎 +
𝜖

𝑞
+
𝑡 + 1

𝑝
> 0, 𝑏 + 1 +

𝜖 − (𝑡 + 1)

𝑝
> 0,

𝑛 + 1 + 𝑎 + 𝑏 + 𝜖 − 𝑐 > 0.

(31)

Then the arbitrariness of 𝜖 gives

−𝑝𝑎 ≤ 𝑡 + 1 ≤ 𝑝 (𝑏 + 1) , 𝑐 ≤ 𝑛 + 1 + 𝑎 + 𝑏. (32)

Now, we will give the proof by dividing into the following
two cases.

When 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, by Lemma 7, the integral in (30)
equals

𝑛!Γ (𝑎 + (𝜖/𝑞) + ((𝑡 + 1) /𝑝)) Γ (𝑏 + 1 + ((𝜖 − (𝑡 + 1)) /𝑝))

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2 + 𝜖)

× {
Γ (𝑛 + 𝜖)

Γ (𝑛)
}

1/𝑝

× {
Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝 + 𝜖)

Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝)
}

1/𝑞

.

(33)

Then letting 𝜖 → 0
+, by (30), we can know the limits

0 ≤ lim
𝜖→0
+

𝑛!Γ (𝑎 + (𝜖/𝑞) + ((𝑡 + 1) /𝑝)) Γ (𝑏 + 1 + ((𝜖 − (𝑡 + 1)) /𝑝))

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2 + 𝜖)

≤
𝑆𝑎,𝑏,𝑐

𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

.

(34)

Then the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

gives −𝑝𝑎 < 𝑡 +

1 < 𝑝(𝑏 + 1).
When 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏, take the function

𝑓
𝜆
(𝑧) = (1 − |𝑧|

2

)
𝜆

, (35)

with 𝜆 > 𝑎. The condition (32) implies the function 𝑓
𝜆
∈ 𝐿

𝑝

𝑡
.

And using Lemma 6, we have

𝑆
𝑎,𝑏,𝑐

𝑓
𝜆
(𝑧) = (1 − |𝑧|

2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓
𝜆
(𝑤) 𝑑V (𝑤)

= (1 − |𝑧|
2

)
𝑎 𝑛!Γ (1 + 𝑏 + 𝜆)

Γ (𝑛 + 1 + 𝑏 + 𝜆)

×
2
𝐹
1
(
𝑐

2
,
𝑐

2
; 𝑛 + 1 + 𝑏 + 𝜆; |𝑧|

2

) .

(36)

According to (15), we can obtain that 𝑆
𝑎,𝑏,𝑐

𝑓
𝜆
(𝑧) ≈ (1 − |𝑧|

2

)
𝑎.

Thus the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
(B

𝑛
) gives

that 𝑝𝑎 + 𝑡 > −1; that is, −𝑝𝑎 < 𝑡 + 1. Now we consider the
adjoint operator 𝑆∗

𝑎,𝑏,𝑐
of the operator 𝑆

𝑎,𝑏,𝑐
; that is,

𝑆
∗

𝑎,𝑏,𝑐
𝑓 (𝑧) = (1 − |𝑧|

2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑤|
2

)
𝑎+𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑V (𝑤) .

(37)

The boundedness of 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
implies the boundedness of

𝑆
∗

𝑎,𝑏,𝑐
on 𝐿

𝑞

𝑡
. With the similar discussion above, we can obtain

that 𝑞(𝑏 − 𝑡) + 𝑡 > −1; that is, 𝑡 + 1 < 𝑝(𝑏 + 1).

When 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, (34) implies the following result.

Corollary 10. Suppose 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 and 1 < 𝑝 < ∞,
−𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), and then

𝑆𝑎,𝑏,𝑐
𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≥
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(38)

Proposition 11. The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
1

𝑡
if and

only if −𝑎 < 𝑡 + 1 < 𝑏 + 1, 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 or −𝑎 < 𝑡 + 1 ≤

𝑏 + 1, 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏. And when 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, we have

𝑆𝑎,𝑏,𝑐
𝐿1
𝑡
→𝐿
1

𝑡

=
𝑛!Γ (1 + 𝑎 + 𝑡) Γ (𝑏 − 𝑡)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
. (39)

When 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏, −𝑎 < 𝑡 + 1 = 𝑏 + 1, we have

𝑆𝑎,𝑏,𝑐
𝐿1
𝑡
→𝐿
1

𝑡

=
𝑛!Γ (1 + 𝑎 + 𝑏) Γ (𝜎)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏 + 𝜎) /2)
, (40)

where 𝜎 = (𝑛 + 1 + 𝑎 + 𝑏) − 𝑐.
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Proof. By Lemma 6, we have

𝑆𝑎,𝑏,𝑐
𝐿1
𝑡
→𝐿
1

𝑡

=

𝑆
∗

𝑎,𝑏,𝑐

𝐿∞→𝐿
∞

= sup
𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑤|
2

)
𝑎+𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑑] (𝑤)

=
𝑛!Γ (1 + 𝑎 + 𝑡)

Γ (𝑛 + 1 + 𝑎 + 𝑡)
sup
𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑏−𝑡

×
2
𝐹
1
(
𝑐

2
,
𝑐

2
; 𝑛 + 1 + 𝑎 + 𝑡; |𝑧|

2

) ,

(41)

where 𝑆∗
𝑎,𝑏,𝑐

denotes the adjoint operator of 𝑆
𝑎,𝑏,𝑐

. Then, using
(15), we can obtain that the operator 𝑆

𝑎,𝑏,𝑐
is bounded on 𝐿1

𝑡
if

and only if

1 + 𝑎 + 𝑡 > 0,

𝑏 − 𝑡 > 0,

𝑛 + 1 + 𝑎 + 𝑡 − 𝑐 ≥ 𝑡 − 𝑏,

(42)

or

1 + 𝑎 + 𝑡 > 0,

𝑏 − 𝑡 = 0,

𝑛 + 1 + 𝑎 + 𝑡 − 𝑐 > 0,

(43)

which gives the first part of the proposition.
Now we will give the second part. When 𝑐 < 𝑛 + 1 + 𝑎 +

𝑏 and −𝑎 < 𝑡 + 1 = 𝑏 + 1, the hypergeometric function in
(41) is increasing since its Taylor coefficients are all positive.
Applying (16), we have (40). When 𝑐 = 𝑛+1+𝑎+𝑏, (17) gives

2
𝐹
1
(
𝑛 + 1 + 𝑎 + 𝑏

2
,
𝑛 + 1 + 𝑎 + 𝑏

2
; 𝑛 + 1 + 𝑎 + 𝑡; |𝑧|

2

)

= (1 − |𝑧|
2

)
𝑡−𝑏

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡,

𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡;

𝑛 + 1 + 𝑎 + 𝑡; |𝑧|
2

) .

(44)

Thus (41), the increase of the last hypergeometric function,
and (16) lead to

𝑆𝑎,𝑏,𝑐
𝐿1
𝑡
→𝐿
1

𝑡

=

𝑆
∗

𝑎,𝑏,𝑐

𝐿∞→𝐿
∞

=
𝑛!Γ (1 + 𝑎 + 𝑡)

Γ (𝑛 + 1 + 𝑎 + 𝑡)

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡,

𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡;

𝑛 + 1 + 𝑎 + 𝑡; 1)

=
𝑛!Γ (1 + 𝑎 + 𝑡) Γ (𝑏 − 𝑡)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(45)

4. The Proof of Theorems 1 and 2

Proof of Theorems 1 and 2. Since

𝑆𝑎,𝑏,𝑐
𝐿∞→𝐿

∞
= sup

𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑑] (𝑤) ,

(46)

therefore Theorem 2 comes out as the same discussion as
Proposition 11.

Next, we will concentrate on the proof of Theorem 1.
Remember the hypothesis 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 throughout
the following proof. Since (39) gives the case of 𝑝 = 1, for
the case 1 < 𝑝 < ∞, Corollary 10 gives the lower bound of
‖𝑆

𝑎,𝑏,𝑐
‖
𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

. Thus we only show the fact

𝑆𝑎,𝑏,𝑐
𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(47)

To this end, we will use Schur’s test (Lemma 8) with

𝐾 (𝑧, 𝑤) =
(1 − |𝑧|

2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

. (48)

Set

𝑢
𝑡
(𝑧) = (1 − |𝑧|

2

)
−(𝑡+1)/(𝑝𝑞)

, (49)

where 𝑞 is the conjugate exponent of𝑝 such that 1/𝑝+1/𝑞 = 1.
It then suffices to show

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑤)

𝑞

𝑑]
𝑡
(𝑤)

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
𝑢
𝑡
(𝑧)

𝑞

,

(50)

for all 𝑧 ∈ B
𝑛
, and

(1 − |𝑤|
2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑧|
2

)
𝑎

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑧)

𝑝

𝑑]
𝑡
(𝑧)

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
𝑢
𝑡
(𝑤)

𝑝

(51)
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for all 𝑤 ∈ B
𝑛
. We only prove (50), since (51) comes from the

same way as (50). Applying Lemma 6 and (17), we have

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑤)

𝑞

𝑑]
𝑡
(𝑤)

= (1 − |𝑧|
2

)
𝑎 𝑛!Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝑏 + 1 − (𝑡 + 1) /𝑝)

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 + 𝑏

2
,
𝑛 + 1 + 𝑎 + 𝑏

2
;

𝑛 + 𝑏 + 1 −
𝑡 + 1

𝑝
; |𝑧|

2

)

=
𝑛!Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝑏 + 1 − (𝑡 + 1) /𝑝)
(1 − |𝑧|

2

)
−(𝑡+1)/𝑝

×
2
𝐹
1
(
𝑛 + 1 + 𝑏 − 𝑎

2
−
𝑡 + 1

𝑝
,
𝑛 + 1 + 𝑏 − 𝑎

2

−
𝑡 + 1

𝑝
; 𝑛 + 1 + 𝑏 −

𝑡 + 1

𝑝
; |𝑧|

2

) .

(52)

By (16), the last hypergeometric function is bounded from the
above by

2
𝐹
1
(
𝑛 + 1 + 𝑏 − 𝑎

2
−
𝑡 + 1

𝑝
,
𝑛 + 1 + 𝑏 − 𝑎

2

−
𝑡 + 1

𝑝
; 𝑛 + 1 + 𝑏 −

𝑡 + 1

𝑝
; 1)

=
Γ (𝑛 + 1 + 𝑏 − (𝑡 + 1) /𝑝) Γ (𝑎 + (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
,

(53)

since it is increasing on the interval [0, 1). This proves (50),
which in turn implies (47). The proof is completed.

5. Remark

The topic on the exact norm of an operator is an interesting
but difficult problem. In this note, we only give the accurate
norm of the generalized operator 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝

𝑡
under 𝑐 = 𝑛 +

1 + 𝑎 + 𝑏. But for other cases, except the particular case (40),
we can give an upper bound of ‖𝑆

𝑎,𝑏,𝑐
‖
𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

by Theorem 1
according to the fact

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐

≤
2
𝜎

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

(54)

and a lower bound for one fixed 𝜖 > 0 by (30) and Lemma 7;
thus the problem of the norm of other cases may be left as an
open problem to consider.
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