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Let 𝑋 be a completely regular Hausdorff space, and let (𝐸, ‖ ⋅ ‖
𝐸
) and (𝐹, ‖ ⋅ ‖

𝐹
) be Banach spaces. Let 𝐶

𝑏
(𝑋, 𝐸) be the space of all

𝐸-valued bounded, continuous functions defined on 𝑋, equipped with the strict topologies 𝛽
𝑧
, where 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡. General

integral representation theorems of (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 with respect to the corresponding

operator-valued measures are established. Strongly bounded and (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
)-continuous operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 are studied.

We extend to “the completely regular setting” some classical results concerning operators on the spaces𝐶(𝑋, 𝐸) and𝐶
𝑜
(𝑋, 𝐸), where

𝑋 is a compact or a locally compact space.

1. Introduction and Terminology

Throughout the paper let (𝐸, ‖ ⋅ ‖
𝐸
) and (𝐹, ‖ ⋅ ‖

𝐹
) be real

Banach spaces, and let 𝐸󸀠 and 𝐹󸀠 denote the Banach duals
of 𝐸 and 𝐹, respectively. By 𝐵

𝐹
󸀠 and 𝐵

𝐸
we denote the closed

unit ball in 𝐹󸀠 and 𝐸, respectively. ByL(𝐸, 𝐹) we denote the
space of all bounded linear operators 𝑈 : 𝐸 → 𝐹. Given a
locally convex space (𝐿, 𝜉) by (𝐿, 𝜉)󸀠 or 𝐿󸀠

𝜉
we will denote its

topological dual. We denote by 𝜎(𝐿,𝐾) the weak topology on
𝐿 with respect to a dual pair ⟨𝐿, 𝐾⟩.

Assume that 𝑋 is a completely regular Hausdorff space.
Let 𝐶

𝑏
(𝑋, 𝐸) stand for the Banach space of all bounded

continuous, 𝐸-valued functions on 𝑋 provided with the
uniform norm ‖ ⋅ ‖. We write 𝐶

𝑏
(𝑋) instead of 𝐶

𝑏
(𝑋,R).

By 𝐶
𝑏
(𝑋, 𝐸)

󸀠 we denote the Banach dual of 𝐶
𝑏
(𝑋, 𝐸). For

𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) let 𝑓(𝑡) = ‖𝑓(𝑡)‖

𝐸
for 𝑡 ∈ 𝑋.

LetB (resp.,B𝑎) be the algebra (resp.,𝜎-algebra) of Baire
sets in𝑋, which is the algebra (resp., 𝜎-algebra) generated by
the class Z of all zero sets of functions of 𝐶

𝑏
(𝑋). By P we

denote the family of all cozero sets in 𝑋. Let 𝐵(B, 𝐸) stand
for the Banach space of all totally B-measurable functions
𝑓 : 𝑋 → 𝐸 (the uniform limits of sequences of 𝐸-valued
B-simple functions) provided with the uniform norm ‖ ⋅ ‖

(see [1, 2]). We will write 𝐵(B) instead of 𝐵(B,R).

Strict topologies 𝛽
𝑧
on 𝐶

𝑏
(𝑋) and 𝐶

𝑏
(𝑋, 𝐸) (for 𝑧 = 𝜎,

∞, 𝑝, 𝜏, 𝑡) play an important role in the topological measure
theory (see [3–12] for definitions and more details). Recall
that a subset𝐻 of 𝐶

𝑏
(𝑋, 𝐸) is said to be solid if 𝑓

1
∈ 𝐶

𝑏
(𝑋, 𝐸)

and 𝑓
2
∈ 𝐻 with 𝑓

1
(𝑡) ≤ 𝑓

2
(𝑡) for 𝑡 ∈ 𝑋 imply that 𝑓

1
∈ 𝐻.

Then 𝛽
𝑧
are locally convex-solid topologies on 𝐶

𝑏
(𝑋, 𝐸); that

is, they have a local base at 0 consisting of convex and solid
sets (see [6, Theorem 8.1], [10, Theorem 5]). We have 𝛽

𝑡
⊂

𝛽
𝜏
⊂ 𝛽

∞
⊂ 𝛽

𝜎
⊂ T

‖⋅‖
and 𝛽

𝑡
⊂ 𝛽

𝑝
⊂ 𝛽

𝜎
. For a net (𝑓

𝛼
)

in 𝐶
𝑏
(𝑋, 𝐸), 𝑓

𝛼
→ 0 for 𝛽

𝑧
if and only if 𝑓

𝛼
→ 0 for 𝛽

𝑧
in

𝐶
𝑏
(𝑋) (see [6, 10]).
Let 𝐶

𝑏
(𝑋) ⊗ 𝐸 stand for the algebraic tensor product of

𝐶
𝑏
(𝑋) and 𝐸; that is, 𝐶

𝑏
(𝑋) ⊗ 𝐸 is the space of all functions

∑
𝑛

𝑖=1
(𝑢
𝑖
⊗ 𝑥

𝑖
), where 𝑢

𝑖
∈ 𝐶

𝑏
(𝑋), 𝑥

𝑖
∈ 𝐸 for 𝑖 = 1, . . . , 𝑛, and

(𝑢
𝑖
⊗ 𝑥

𝑖
)(𝑡) = 𝑢

𝑖
(𝑡)𝑥

𝑖
for 𝑡 ∈ 𝑋. Then 𝐶

𝑏
(𝑋) ⊗ 𝐸 is dense in

(𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑧
) for 𝑧 = ∞, 𝜏, 𝑡 (see [6, 8]). Moreover, 𝐶

𝑏
(𝑋) ⊗

𝐸 is dense in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝜎
) if 𝑋 or 𝐸 is a 𝐷-space (see [6,

Theorem 5.2], [13]) and in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑝
) if𝑋 is real-compact

(see [10, Theorem 7]).
Let 𝐶

𝑟𝑐
(𝑋, 𝐸) denote the Banach space of all continuous

functions ℎ : 𝑋 → 𝐸 such that ℎ(𝑋) is a relatively compact
set in 𝐸, provided with the uniform norm ‖ ⋅ ‖. Then 𝐶

𝑏
(𝑋) ⊗

𝐸 ⊂ 𝐶
𝑟𝑐
(𝑋, 𝐸) ⊂ 𝐵(B, 𝐸).

Hindawi Publishing Corporation
Journal of Function Spaces
Volume 2015, Article ID 407521, 12 pages
http://dx.doi.org/10.1155/2015/407521



2 Journal of Function Spaces

Linear operators from the spaces 𝐶
𝑟𝑐
(𝑋, 𝐸) and 𝐶

𝑏
(𝑋, 𝐸),

equipped with the strict topologies 𝛽
𝑧
(𝑧 = 𝜎,∞, 𝜏) to a

locally convex space (𝐹, 𝜉), were studied by Katsaras and
Liu [14], Aguayo-Garrido, Nova-Yanéz and Sanchez [15, 16],
and Khurana [17]. In particular, Katsaras and Liu found
an integral representation of weakly compact operators 𝑆 :
𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 and characterizations of (𝛽

𝑧
, 𝜉)-continuous

andweakly compact operators 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 for 𝑧 = 𝜎, 𝜏

(see [14, Theorems 3, 4, 5]). Aguayo-Arrido and Nova-Yanéz
derived aRiesz representation theorem for (𝛽

𝑧
, 𝜉)-continuous

and weakly compact operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 for 𝑧 =

∞, 𝜏 in terms of their representing operator measures (see
[15, Theorems 5 and 6]). If 𝑋 is a locally compact space,
continuous operators on 𝐶

𝑜
(𝑋, 𝐸) were studied by Dobrakov

(see [18]) and Mitter and Young (see [19]).
In this paper we develop the theory of continuous linear

operators from 𝐶
𝑏
(𝑋, 𝐸), equipped with the strict topologies

𝛽
𝑧
(𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡) to a Banach space (𝐹, ‖ ⋅ ‖

𝐹
). In partic-

ular, we extend to “the completely regular setting” some clas-
sical results of Brooks and Lewis (see [20, Theorem 5], [21,
Theorem 5.2], [22, Theorem 2.1]) concerning operators on
the spaces 𝐶(𝑋, 𝐸) and 𝐶

𝑜
(𝑋, 𝐸), where 𝑋 is a compact or

a locally compact space, respectively. In Section 2, using the
device of embedding the space 𝐵(B, 𝐸) into 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠 (the
Banach bidual of 𝐶

𝑟𝑐
(𝑋, 𝐸)), we state the integral represen-

tation of bounded linear operators from 𝐶
𝑟𝑐
(𝑋, 𝐸) to 𝐹. In

Section 3 we derive general Riesz representation theorems
for (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) →

𝐹 (𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡) with respect to the corresponding
measures 𝑚 : B → L(𝐸, 𝐹󸀠󸀠) (see Theorems 9 and
14 below). Section 4 is devoted to the study of (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and strongly bounded operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) →

𝐹.

2. Integral Representation of Bounded
Linear Operators on 𝐶

𝑟𝑐
(𝑋,𝐸)

Let𝑀(𝑋) stand for the Banach lattice of all Bairemeasures on
B, provided with the norm ‖]‖ = |]|(𝑋) (= the total variation
of ]). Due to the Alexandrov representation theorem 𝐶

𝑏
(𝑋)

󸀠

can be identified with𝑀(𝑋) through the lattice isomorphism
𝑀(𝑋) ∋ ] 󳨃→ 𝜑] ∈ 𝐶𝑏(𝑋)

󸀠, where 𝜑](𝑢) = ∫𝑋 𝑢 𝑑] for 𝑢 ∈
𝐶
𝑏
(𝑋) and ‖𝜑]‖ = ‖]‖ (see [4, Theorem 5.1]).
By 𝑀(𝑋, 𝐸󸀠) we denote the set of all finitely additive

measures 𝜇 :B → 𝐸
󸀠 with the following properties:

(i) for each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B → R defined by

𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) belongs to𝑀(𝑋),

(ii) |𝜇|(𝑋) < ∞, where |𝜇|(𝐴) stands for the variation of
𝜇 on 𝐴 ∈B.

In view of [23, Theorem 2.5] 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠 can be identified
with𝑀(𝑋, 𝐸󸀠) through the linear mapping𝑀(𝑋, 𝐸󸀠) ∋ 𝜇 󳨃→
Φ
𝜇
∈ 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠, whereΦ
𝜇
(ℎ) = ∫

𝑋
ℎ𝑑𝜇 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸) and

‖Φ
𝜇
‖ = |𝜇|(𝑋). Then one can embed 𝐵(B, 𝐸) into 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠

by the mapping 𝜋 : 𝐵(B, 𝐸) → 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠, where for 𝑔 ∈
𝐵(B, 𝐸),

𝜋 (𝑔) (Φ
𝜇
) := ∫

𝑋

𝑔𝑑𝜇 for 𝜇 ∈ 𝑀(𝑋, 𝐸
󸀠
) . (1)

Let 𝑖
𝐹
: 𝐹 → 𝐹

󸀠󸀠 denote the canonical embedding; that is,
𝑖
𝐹
(𝑦)(𝑦

󸀠
) = 𝑦

󸀠
(𝑦) for 𝑦 ∈ 𝐹, 𝑦󸀠 ∈ 𝐹󸀠. Moreover, let 𝑗

𝐹
:

𝑖
𝐹
(𝐹) → 𝐹 stand for the left inverse of 𝑖

𝐹
; that is, 𝑗

𝐹
∘ 𝑖
𝐹
= 𝑖𝑑

𝐹
.

Assume that 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 is a bounded linear

operator. Let

𝑆 := 𝑆
󸀠󸀠
∘ 𝜋 : 𝐵 (B, 𝐸) 󳨀→ 𝐹

󸀠󸀠
, (2)

where 𝑆󸀠 : 𝐹󸀠 → 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠 and 𝑆󸀠󸀠 : 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠
→ 𝐹

󸀠󸀠

denote the conjugate and biconjugate operators of 𝑆, respec-
tively. Then we can define a measure 𝑚 : B → L(𝐸, 𝐹󸀠󸀠)
(called a representing measure of 𝑆) by

𝑚(𝐴) (𝑥) := 𝑆 (1𝐴 ⊗ 𝑥) = (𝑆
󸀠󸀠
∘ ⊗ 𝜋) (1

𝐴
⊗ 𝑥)

for 𝐴 ∈B, 𝑥 ∈ 𝐸.
(3)

Then 𝑚̃(𝑋) < ∞, where the semivariation 𝑚̃(𝐴) of 𝑚 on
𝐴 ∈ B is defined by 𝑚̃(𝐴) := sup ‖∑𝑚(𝐴

𝑖
)(𝑥

𝑖
)‖
𝐹
󸀠󸀠 , where

the supremum is taken over all finiteB-partitions (𝐴
𝑖
) of 𝐴

and 𝑥
𝑖
∈ 𝐵

𝐸
for each 𝑖. For 𝑦󸀠 ∈ 𝐹󸀠 let us put

𝑚
𝑦
󸀠 (𝐴) (𝑥) := (𝑚 (𝐴) (𝑥)) (𝑦

󸀠
) for 𝐴 ∈B, 𝑥 ∈ 𝐸. (4)

Let |𝑚
𝑦
󸀠 |(𝐴) stand for the variation of𝑚

𝑦
󸀠 on𝐴.Then (see

[1, Section 4, Proposition 5])

𝑚̃ (𝐴) = sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} . (5)

The following general properties of the operator 𝑆 :

𝐵(B, 𝐸) → 𝐹
󸀠󸀠 are well known (see [1, Section 6], [2, Section

1], [13, 24]):

𝑆 (𝑔) = ∫
𝑋

𝑔𝑑𝑚 for 𝑔 ∈ 𝐵 (B, 𝐸) , 󵄩󵄩󵄩󵄩󵄩𝑆
󵄩󵄩󵄩󵄩󵄩
= 𝑚̃ (𝑋) , (6)

and for each 𝑦󸀠 ∈ 𝐹󸀠,

𝑆 (𝑔) (𝑦
󸀠
) = ∫

𝑋

𝑔𝑑𝑚
𝑦
󸀠 for 𝑔 ∈ 𝐵 (B, 𝐸) . (7)

For 𝐴 ∈B let

∫
𝐴

𝑔𝑑𝑚 := ∫
𝑋

1
𝐴
𝑔𝑑𝑚 for 𝑔 ∈ 𝐵 (B, 𝐸) . (8)

From the general properties of 𝑆 it follows that

𝑆 (𝐶
𝑟𝑐 (𝑋, 𝐸)) ⊂ 𝑖𝐹 (𝐹) ,

𝑆 (ℎ) = 𝑗𝐹 (∫
𝑋

ℎ𝑑𝑚) for ℎ ∈ 𝐶
𝑟𝑐 (𝑋, 𝐸) .

(9)

Hence for each 𝑦󸀠 ∈ 𝐹󸀠 we get

𝑦
󸀠
(𝑆 (ℎ)) = ∫

𝑋

ℎ𝑑𝑚
𝑦
󸀠 for ℎ ∈ 𝐶

𝑟𝑐 (𝑋, 𝐸) , (10)
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and hence𝑚
𝑦
󸀠 ∈ 𝑀(𝑋, 𝐸

󸀠
). Moreover, we have

‖𝑆‖ =
󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠󵄩󵄩󵄩󵄩󵄩

= sup {󵄩󵄩󵄩󵄩󵄩𝑆
󸀠
(𝑦
󸀠
)
󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {󵄩󵄩󵄩󵄩󵄩𝑦
󸀠
∘ 𝑆
󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝑚
𝑦
󸀠

󵄩󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑋) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ,

(11)

and using (5) we get

‖𝑆‖ = 𝑚̃ (𝑋) . (12)

By 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) we will denote the space of all
measures 𝑚 : B → L(𝐸, 𝐹󸀠󸀠) such that 𝑚̃(𝑋) < ∞ and
𝑚
𝑦
󸀠 ∈ 𝑀(𝑋, 𝐸

󸀠
) for each 𝑦󸀠 ∈ 𝐹

󸀠. Thus the representing
measure𝑚 of 𝑆 belongs to𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)).

For any 𝑥 ∈ 𝐸 define

𝑆
𝑥 (𝑢) := 𝑆 (𝑢 ⊗ 𝑥) for 𝑢 ∈ 𝐶

𝑏 (𝑋) ,

𝑚
𝑥 (𝐴) := 𝑚 (𝐴) (𝑥) for 𝐴 ∈B.

(13)

Then 𝑆
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is a bounded linear operator. Let 𝜒 :

𝐵(B) → 𝐶
𝑏
(𝑋)

󸀠󸀠 stand for the canonical embedding; that is,
for 𝑢 ∈ 𝐵(B),

𝜒 (𝑢) (𝜑]) = ∫
𝑋

𝑢𝑑] for ] ∈ 𝑀 (𝑋) . (14)

Let

𝑆
𝑥
:= (𝑆

𝑥
)
󸀠󸀠
∘ 𝜒 : 𝐵 (B) 󳨀→ 𝐹

󸀠󸀠
. (15)

Then

𝑆
𝑥
(𝐶
𝑏 (𝑋)) ⊂ 𝑖𝐹 (𝐹) ,

𝑆
𝑥 (𝑢) = 𝑗𝐹 (𝑆𝑥 (𝑢)) for 𝑢 ∈ 𝐶

𝑏 (𝑋) .

(16)

The following lemma will be useful.

Lemma 1. Let 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then 𝑆󸀠󸀠(𝜋(1
𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒(1

𝐴
)) for any 𝑥 ∈ 𝐸

and 𝐴 ∈B.

Proof. Let 𝑦󸀠 ∈ 𝐹󸀠. Then for each 𝑢 ∈ 𝐶
𝑏
(𝑋),

(𝑦
󸀠
∘ 𝑆
𝑥
) (𝑢) = 𝑦

󸀠
(𝑆 (𝑢 ⊗ 𝑥))

= ∫
𝑋

(𝑢 ⊗ 𝑥) 𝑑𝑚𝑦󸀠 = ∫
𝑋

𝑢𝑑𝑚
𝑥,𝑦
󸀠

= 𝜑
𝑚
𝑥,𝑦
󸀠
(𝑢) .

(17)

Hence we have

(𝑆
𝑥
)
󸀠󸀠
(𝜒 (1

𝐴
)) (𝑦

󸀠
)

= 𝜒 (1
𝐴
) (𝑆

󸀠

𝑥
(𝑦
󸀠
))

= 𝜒 (1
𝐴
) (𝑦

󸀠
∘ 𝑆
𝑥
) = 𝜒 (1

𝐴
) (𝜑

𝑚
𝑥,𝑦
󸀠
)

= ∫
𝑋

1
𝐴
𝑑𝑚

𝑥,𝑦
󸀠 = 𝑚

𝑥,𝑦
󸀠 (1

𝐴
) = 𝑚

𝑥
(1
𝐴
) (𝑦

󸀠
) .

(18)

On the other hand, for each ℎ ∈ 𝐶
𝑟𝑐
(𝑋, 𝐸), (𝑦󸀠 ∘ 𝑆)(ℎ) =

∫
𝑋
ℎ𝑑𝑚

𝑦
󸀠 = Φ

𝑚
𝑦
󸀠
(ℎ), and hence

𝑆
󸀠󸀠
(𝜋 (1

𝐴
⊗ 𝑥))

= (1
𝐴
⊗ 𝑥) (𝑆

󸀠
(𝑦
󸀠
)) = 𝜋 (1

𝐴
⊗ 𝑥) (𝑦

󸀠
∘ 𝑆)

= 𝜋 (1
𝐴
⊗ 𝑥) (Φ

𝑚
𝑦
󸀠
) = Φ

𝑚
𝑦
󸀠
(1
𝐴
⊗ 𝑥)

= ∫
𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 (𝐴) (𝑥) = 𝑚𝑥 (1𝐴) (𝑦

󸀠
) .

(19)

It follows that 𝑆󸀠󸀠(𝜋(1
𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒(1

𝐴
)), as desired.

From Lemma 1 for 𝐴 ∈B and 𝑥 ∈ 𝐸 we get

𝑚
𝑥 (𝐴) := 𝑆 (1𝐴 ⊗ 𝑥) = 𝑆

󸀠󸀠
(𝜋 (1

𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒 (1

𝐴
)) ;

(20)

that is,

𝑚
𝑥 (𝐴) = 𝑆𝑥 (1𝐴) , 𝑆

𝑥 (𝑢) = ∫
𝑋

𝑢𝑑𝑚
𝑥

for 𝑢 ∈ 𝐵 (B) .

(21)

Nowwe are ready to prove the following Bartle-Dunford-
Schwartz type theorem (see [25, Theorem 5, pages 153-154]).

Theorem 2. Let 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 be a bounded linear oper-

ator and let𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its representing measure.Then
for each 𝑥 ∈ 𝐸 the following statements are equivalent.

(i) 𝑆
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly compact.

(ii) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹) for each 𝐴 ∈ B and {𝑗

𝐹
(𝑚(𝐴)(𝑥)) :

𝐴 ∈B} is a relatively weakly compact set in 𝐹.
(iii) 𝑚

𝑥
:B → 𝐹

󸀠󸀠 is strongly bounded.

Proof. (i)⇒(ii) Assume that 𝑆
𝑥
is weakly compact. Then by

the Gantmacher theorem (𝑆
𝑥
)
󸀠󸀠
(𝐶
𝑏
(𝑋)

󸀠󸀠
) ⊂ 𝑖

𝐹
(𝐹) and (𝑆

𝑥
)
󸀠󸀠
:

𝐶
𝑏
(𝑋)

󸀠󸀠
→ 𝐹

󸀠󸀠 is weakly compact (see [26, Theorem 17.2]).
Hence 𝑆

𝑥
(𝐵(B)) ⊂ 𝑖

𝐹
(𝐹) and 𝑆

𝑥
: 𝐵(B) → 𝐹

󸀠󸀠 is weakly
compact. In view of (21) for each 𝑥 ∈ 𝐸, 𝑚

𝑥
(𝐴) ∈ 𝑖

𝐹
(𝐹) for

𝐴 ∈ B and 𝑚
𝑥
: B → 𝐹

󸀠󸀠 is strongly bounded (see [25,
Theorem 1, page 148]). It follows that {𝑗

𝐹
(𝑚(𝐴)(𝑥)) : 𝐴 ∈B}

is a relatively weakly compact subset of 𝐹 (see [24, Theorem
7]).

(ii)⇒(iii) It follows from [24, Theorem 7].
(iii)⇒(i) Assume that 𝑚

𝑥
: B → 𝐹

󸀠󸀠 is strongly bound-
ed. Then by (21) 𝑆

𝑥
: 𝐵(B) → 𝐹

󸀠󸀠 is weakly compact and in
view of (16) we derive that 𝑆

𝑥
is weakly compact.
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3. Integral Representation of Continuous
Linear Operators on 𝐶

𝑏
(𝑋,𝐸)

The spaces of all 𝜎-additive, 𝑢-additive, perfect, 𝜏-additive,
and tight members of 𝑀(𝑋) will be denoted by 𝑀

𝜎
(𝑋),

𝑀
∞
(𝑋),𝑀

𝑝
(𝑋),𝑀

𝜏
(𝑋), and𝑀

𝑡
(𝑋), respectively (see [3, 4]).

Then (𝐶
𝑏
(𝑋), 𝛽

𝑧
)
󸀠
= {𝜑] : ] ∈ 𝑀𝑧

(𝑋)} for 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡.
For the integration theory of functions𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸)with

respect to 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
) we refer the reader to [6, page 197],

[5, Definition 3.10], [27, page 375]. For 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡 let

𝑀
𝑧
(𝑋, 𝐸

󸀠
)

:= {𝜇 ∈ 𝑀(𝑋, 𝐸
󸀠
) : 𝜇

𝑥
∈ 𝑀

𝑧 (𝑋) for each 𝑥 ∈ 𝐸} .
(22)

Then |𝜇| ∈ 𝑀
𝑧
(𝑋) if 𝜇 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
) (see [5, Proposition 3.9],

[6, Theorem 3.1], [10, Theorem 1]). For Φ ∈ 𝐶
𝑏
(𝑋, 𝐸)

󸀠 let us
put, for 𝑢 ∈ 𝐶

𝑏
(𝑋)

+,

|Φ| (𝑢) := sup {󵄨󵄨󵄨󵄨Φ (𝑓)
󵄨󵄨󵄨󵄨 : 𝑓 ∈ 𝐶𝑏 (𝑋, 𝐸) , 𝑓 ≤ 𝑢} . (23)

It is known that |Φ| : 𝐶
𝑏
(𝑋)

+
→ R+ is additive and positively

homogeneous and can be extended to a linear functional on
𝐶
𝑏
(𝑋) (denoted by |Φ| again) by |Φ|(𝑢) = |Φ|(𝑢+) − |Φ|(𝑢−)

for 𝑢 ∈ 𝐶
𝑏
(𝑋).

Theorem 3. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is dense in

(𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝜎
) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is dense

in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑝
); 𝑧 = 𝜏; 𝑧 = 𝑡). Then the following statements

hold.

(i) For a linear functional Φ on 𝐶
𝑏
(𝑋, 𝐸) the following

conditions are equivalent.

(a) Φ is 𝛽
𝑧
-continuous.

(b) There exists a unique 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
) such that

Φ(𝑓) = Φ
𝜇
(𝑓) = ∫

𝑋

𝑓𝑑𝜇 𝑓𝑜𝑟 𝑓 ∈ 𝐶
𝑏 (𝑋, 𝐸) . (24)

(ii) For 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
), |Φ

𝜇
|(𝑢) = ∫

𝑋
𝑢𝑑|𝜇| = 𝜑

|𝜇|
(𝑢) for

𝑢 ∈ 𝐶
𝑏
(𝑋).

Proof. (i) See [6, Theorems 5.3 and 4.2, Corollary 3.9], [5,
Theorem 3.13], and [10, Theorem 8].

(ii) See [6, Theorem 2.1].

Assume that M is a subset of 𝑀
𝑧
(𝑋, 𝐸

󸀠
) and

sup
𝜇∈M|𝜇|(𝑋) < ∞, where 𝑧 = 𝜎, ∞, 𝑝, 𝜏, 𝑡. Then we say

thatM satisfies the condition (𝐶
𝑧
) if we have the following:

(1) for 𝑧 = 𝜎: sup{|𝜇|(𝑍
𝑛
) : 𝜇 ∈ M} → 0 whenever

𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂Z;

(2) for 𝑧 = ∞: for every partition of unity (𝑢
𝛼
)
𝛼∈A for 𝑋

and every 𝜀 > 0 there exists a finite setA
𝜀
inA such

that sup
𝜇∈M ∫𝑋

(1 − ∑
𝛼∈A
𝜀

𝑢
𝛼
)𝑑|𝜇| < 𝜀;

(3) for 𝑧 = 𝑝: for every continuous function 𝑓 from 𝑋

onto a separable metric space𝑌 and every 𝜀 > 0, there
is a compact subset 𝐾 of 𝑌 such that sup

𝜇∈M|𝜇|(𝑋 \

𝑓
1

(𝐾)) ≤ 𝜀;
(4) for 𝑧 = 𝜏: sup{|𝜇|(𝑍

𝛼
) : 𝜇 ∈ M} → 0 whenever

𝑍
𝛼
↓ 0, (𝑍

𝛼
) ⊂Z;

(5) for 𝑧 = 𝑡: for every 𝜀 > 0 there exists a compact subset
𝐾 of𝑋 such that sup{|𝜇|(𝑍) : 𝑍 ∈ Z, 𝑍 ⊂ 𝑋 \ 𝐾} ≤ 𝜀
for each 𝜇 ∈M.

The following lemmas will be useful.

Lemma 4. Assume that M is a subset of 𝑀
𝑧
(𝑋, 𝐸

󸀠
) and

sup
𝜇∈M|𝜇|(𝑋) < ∞, where 𝑧 = 𝜎 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense

in 𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense

in 𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Then the following statements are

equivalent.

(i) {Φ
𝜇
: 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(ii) {|Φ
𝜇
| : 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(iii) {𝜑
|𝜇|
: 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(iv) The condition (𝐶
𝑧
) holds.

Proof. (i)⇔(ii) See [9, Lemma 2].
(ii)⇔(iii) It follows fromTheorem 3.
(iii)⇔(iv) See [4, Theorem 11.14] for 𝑧 = 𝜎; [28, Propo-

sition 3.6] for 𝑧 = ∞; [28, Proposition 2.6] for 𝑧 = 𝑝; [4,
Theorem 11.24] for 𝑧 = 𝜏; and [28, Proposition 1.1] for 𝑧 =
𝑡.

Lemma 5. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Let 𝜇 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
). Then for 𝐴 ∈ B

the following statements hold.

(i) A functionalΦ
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → R defined byΦ

𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝜇 is 𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-continuous and can by uniquely
extended to a 𝛽

𝑧
-continuous linear functional Φ

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → R, and one will write the following:

∫
𝐴

𝑓𝑑𝜇 := Φ
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (25)

(ii) | ∫
𝐴
𝑓𝑑𝜇| ≤ ∫

𝐴
𝑓𝑑|𝜇| for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

Proof. (i) Assume that (ℎ
𝛼
) is a net in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 0 for 𝛽

𝑧
. Then

󵄨󵄨󵄨󵄨Φ𝐴 (ℎ𝛼)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 ≤ ∫

𝑋

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 . (26)

Since ℎ̃
𝛼
→ 0 for 𝛽

𝑧
in 𝐶

𝑏
(𝑋) and |𝜇| ∈ 𝑀

𝑧
(𝑋), we

obtain that Φ
𝐴
(ℎ
𝛼
) → 0; that is, Φ

𝐴
is 𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-con-
tinuous. Since 𝐶

𝑟𝑐
(𝑋, 𝐸) is dense in (𝐶

𝑏
(𝑋, 𝐸), 𝛽

𝑧
), Φ

𝐴
can

be uniquely extended to a 𝛽
𝑧
-continuous linear functional

Φ
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → R (see [29, Theorem 2.6]).
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(ii) Assume that 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in

𝐶
𝑟𝑐
(𝑋, 𝐸) such that ℎ

𝛼
→ 𝑓 for 𝛽

𝑧
. Then ℎ̃

𝛼
→ 𝑓 for 𝛽

𝑧
in

𝐶
𝑏
(𝑋). Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 − ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝛼
− 𝑓
󵄨󵄨󵄨󵄨󵄨
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

≤ ∫
𝑋

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝛼
− 𝑓
󵄨󵄨󵄨󵄨󵄨
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 ,

(27)

and hence ∫
𝐴
𝑓𝑑|𝜇| = lim

𝛼
∫
𝐴
ℎ̃
𝛼
𝑑|𝜇|. Since ∫

𝐴
𝑓𝑑𝜇 =

Φ
𝐴
(𝑓) = lim

𝛼
∫
𝐴
ℎ
𝛼
𝑑𝜇, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= lim

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim
𝛼
∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 = ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 .

(28)

For 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡 let us put

𝑀
𝑧
(𝑋,L (𝐸, 𝐹

󸀠󸀠
))

:= {𝑚 ∈ 𝑀(𝑋,L (𝐸, 𝐹
󸀠󸀠
)) : 𝑚

𝑦
󸀠 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
)

for each 𝑦󸀠 ∈ 𝐹󸀠} .

(29)

Lemma 6. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Assume that 𝑚 ∈ 𝑀

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠))

and the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐹

󸀠
} satisfies the condition (𝐶

𝑧
). Then

for 𝐴 ∈B the following statements hold.

(i) An operator 𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹

󸀠󸀠 defined by 𝑆
𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝑚 is (𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

,‖ ⋅ ‖
𝐹
󸀠󸀠)-continuous and can be

uniquely extended to a (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous linear

operator 𝑆
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → 𝐹

󸀠󸀠, and one will write the
following.

∫
𝐴

𝑓𝑑𝑚 := 𝑆
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (30)

(ii) For each 𝑦󸀠 ∈ 𝐹󸀠, (∫
𝐴
𝑓𝑑𝑚)(𝑦

󸀠
) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 for 𝑓 ∈

𝐶
𝑏
(𝑋, 𝐸).

Proof. (i) In view of Lemma 5 the set {𝜑
|𝑚
𝑦
󸀠 |
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is

𝛽
𝑧
-equicontinuous in 𝐶

𝑏
(𝑋)

󸀠

𝛽
𝑧

. Assume that (ℎ
𝛼
) is a net in

𝐶
𝑟𝑐
(𝑋, 𝐸) such that ℎ

𝛼
→ 0 for 𝛽

𝑧
. Let 𝜀 > 0 be given. Then

there exists a neighborhood 𝑉
𝜀
of 0 for 𝛽

𝑧
in 𝐶

𝑏
(𝑋) such that

sup
𝑦
󸀠
∈𝐵
𝐹
󸀠
| ∫
𝑋
𝑢𝑑 |𝑚

𝑦
󸀠 || ≤ 𝜀 for 𝑢 ∈ 𝑉

𝜀
. Since ℎ̃

𝛼
→ 0 for 𝛽

𝑧

in 𝐶
𝑏
(𝑋), choose 𝛼

𝜀
such that ℎ

𝛼
∈ 𝑉

𝜀
for 𝛼 ≥ 𝛼

𝜀
. Hence

sup
𝑦
󸀠
∈𝐵
𝐹
󸀠
∫
𝑋
ℎ̃
𝛼
𝑑 |𝑚

𝑦
󸀠 | ≤ 𝜀 for 𝛼 ≥ 𝛼

𝜀
. It follows that, for

𝛼 ≥ 𝛼
𝜀
and each 𝑦󸀠 ∈ 𝐵

𝐹
󸀠 ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

ℎ
𝛼
𝑑𝑚) (𝑦

󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑋

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀,

(31)

and hence,

󵄩󵄩󵄩󵄩𝑆𝐴(ℎ𝛼)
󵄩󵄩󵄩󵄩𝐹󸀠󸀠

= sup {󵄨󵄨󵄨󵄨󵄨𝑆𝐴 (ℎ𝛼) (𝑦
󸀠
)
󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀. (32)

This means that 𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹

󸀠󸀠 is (𝛽
𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

, ‖ ⋅ ‖
𝐹
󸀠󸀠)-

continuous. Since 𝐶
𝑟𝑐
(𝑋, 𝐸) is 𝛽

𝑧
-dense in (𝐶

𝑏
(𝑋, 𝐸), 𝛽

𝑧
), 𝑆

𝐴

possesses a unique (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous extension 𝑆

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → 𝐹

󸀠󸀠 (see [29, Theorem 2.6]). Let

∫
𝐴

𝑓𝑑𝑚 := 𝑆
𝐴
(𝑓) for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (33)

(ii) Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such

that ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. By Lemma 5 and (7) for 𝑦󸀠 ∈ 𝐹󸀠 we have

(∫
𝐴

𝑓𝑑𝑚) (𝑦
󸀠
) = (lim

𝛼
(∫
𝐴

ℎ
𝛼
𝑑𝑚)) (𝑦

󸀠
)

= lim
𝛼
(∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠) (𝑦

󸀠
)

= lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠 = ∫

𝐴

𝑓𝑑𝑚
𝑦
󸀠 .

(34)

Corollary 7. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense

in 𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense

in 𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Assume that𝑚 ∈ M

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠))

and the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the condition (𝐶

𝑧
). Then

for 𝐴 ∈B the following statements hold:

(a) 󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴)

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

ℎ𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} .

(b) 𝑚̃ (𝐴)

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝐴

ℎ𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝐴

𝑓𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} .

(35)

In particular, if 𝑈 ∈ P, then

(c) 󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑈) = sup{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈

ℎ𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

: ℎ ∈ 𝐶
𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, supp ℎ ⊂ 𝑈}

= sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫
𝑋

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(36)
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where the supremum is taken over all finite disjoint supported
collections {𝑢

1
, . . . , 𝑢

𝑛
} ⊂ 𝐶

𝑏
(𝑋) with ‖𝑢

𝑖
‖ ≤ 1 and supp 𝑢

𝑖
⊂

𝑈 and {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝐵

𝐸
. One has

(d) 𝑚̃ (𝑈) = sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑈

ℎ𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, supp ℎ ⊂ 𝑈}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑈

𝑓𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, supp𝑓 ⊂ 𝑈} .

(37)

Proof. Let 𝐴 ∈ B and 𝑦󸀠 ∈ 𝐹󸀠. Then by Lemma 5 for 𝑓 ∈
𝐶
𝑏
(𝑋, 𝐸) with ‖𝑓‖ ≤ 1 we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) . (38)

On the other hand, let 𝜀 > 0 be given.Then there exist a finite
B-partition (𝐴

𝑖
)
𝑛

𝑖=1
of 𝐴 and 𝑥

𝑖
∈ 𝐵

𝐸
, 𝑖 = 1, . . . , 𝑛, such that

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) −

𝜀

3
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

(𝑚 (𝐴
𝑖
) (𝑥

𝑖
)) (𝑦

󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝐴

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(39)

By the regularity of m
𝑥
𝑖
,𝑦
󸀠 ∈ 𝑀

𝑧
(𝑋) for 𝑖 = 1, . . . , 𝑛, we can

choose 𝑍
𝑖
∈ Z, 𝑍

𝑖
⊂ 𝐴

𝑖
such that |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝐴

𝑖
\ 𝑍

𝑖
) ≤ 𝜀/3𝑛

for 𝑖 = 1, . . . , 𝑛. Choose pairwise disjoint 𝑉
𝑖
∈ P with

𝑍
𝑖
⊂ 𝑉

𝑖
for 𝑖 = 1, . . . , 𝑛 such that |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝑉

𝑖
\ 𝑍

𝑖
) ≤ 𝜀/3𝑛.

Then for 𝑖 = 1, . . . , 𝑛 we can choose V
𝑖
∈ 𝐶

𝑏
(𝑋) with 0 ≤

V
𝑖
≤ 1

𝑋
, V
𝑖
|
𝑍
𝑖

≡ 1, and V
𝑖
|
𝑋\𝑉
𝑖

≡ 0 (see [4, page 115]).
Define ℎ

𝑜
= ∑

𝑛

𝑖=1
(V
𝑖
⊗ 𝑥

𝑖
). Then ‖ℎ

𝑜
‖ ≤ 1 and ∫

𝐴
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 =

∑
𝑛

𝑖=1
∫
𝐴
V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 = ∑

𝑛

𝑖=1
∫
𝑉
𝑖
∩𝐴

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 . Hence we get

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) −

𝜀

3
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝐴

𝑖
) −

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝑍

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫
𝑍
𝑖

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 −

𝑛

∑

𝑖=1

∫
𝑉
𝑖
∩𝐴

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑖
\ 𝑍

𝑖
) +

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑉
𝑖
\ 𝑍

𝑖
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

3
+
𝜀

3
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(40)

and hence |𝑚
𝑦
󸀠 |(𝐴) ≤ | ∫

𝐴
ℎ
𝑜
𝑑 𝑚

𝑦
󸀠 | + 𝜀. Thus the proof of (a)

is complete.

In view of (5), (a), and Lemma 6 we get

𝑚̃ (𝐴) = sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

ℎ𝑑𝑚) (𝑦
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, 𝑦
󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

𝑓𝑑𝑚) (𝑦
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∫
𝐴

ℎ𝑑𝑚)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∫
𝐴

𝑓𝑑𝑚)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} ;

(41)

that is, (b) holds.
Assume now that 𝑈 ∈ P. Let 𝑈

𝑖
= 𝑉

𝑖
∩ 𝑈 ∈ P for 𝑖 =

1, . . . , 𝑛.Then |𝑚
𝑥
𝑖
,𝑦
󸀠 |(𝑈

𝑖
\𝑍

𝑖
) ≤ |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝑉

𝑖
\𝑍

𝑖
) ≤ 𝜀/3𝑛 for 𝑖 =

1, . . . , 𝑛. For 𝑖 = 1, . . . , 𝑛 choose 𝑢
𝑖
∈ 𝐶

𝑏
(𝑋) with 0 ≤ 𝑢

𝑖
≤ 1

𝑋
,

𝑢
𝑖
|
𝑍
𝑖

≡ 1, and𝑢
𝑖
|
𝑋\𝑈
𝑖

≡ 0. Let ℎ
𝑜
= ∑

𝑛

𝑖=1
(𝑢
𝑖
⊗𝑥

𝑖
).Then ‖ℎ

𝑜
‖ ≤ 1

and supp ℎ
𝑜
⊂ 𝑈; and hence by (a), |𝑚

𝑦
󸀠 |(𝑈) ≤ | ∫

𝑈
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 | +

𝜀. Note that ∫
𝑈
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 = ∑

𝑛

𝑖=1
∫
𝑋
𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 , where supp 𝑢

𝑖
are

pairwise disjoint and supp 𝑢
𝑖
⊂ 𝑈 for 𝑖 = 1, . . . , 𝑛. Thus (c)

holds.
Using (c) we easily show that (d) holds. Thus the proof is

complete.

Definition 8. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then the measure𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) defined by

𝑚(𝐴) (𝑥) := ((𝑇|𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠󸀠

∘ 𝜋) (1
𝐴
⊗ 𝑥)

for 𝐴 ∈B, 𝑥 ∈ 𝐸
(42)

will be called a representing measure of 𝑇.

Now we state general Riesz representation theorems for
continuous linear operators on 𝐶

𝑏
(𝑋, 𝐸), provided with the

strict topologies 𝛽
𝑧
, where 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡.

Theorem 9. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡).

(I) Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous

linear operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its
representing measure. Then the following statements
hold.

(i) 𝑚 ∈ 𝑀
𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and {𝑚

𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

satisfies the condition (𝐶
𝑧
).

(ii) For each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(𝑇(𝑓)) = ∫
𝑋
𝑓𝑑𝑚

𝑦
󸀠 for 𝑓 ∈

𝐶
𝑏
(𝑋, 𝐸).
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(iii) For each 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) and 𝐴 ∈ B there exists

a unique vector in 𝐹󸀠󸀠, denoted by ∫
𝐴
𝑓𝑑𝑚, such

that (∫
𝐴
𝑓𝑑𝑚)(𝑦

󸀠
) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 for each 𝑦󸀠 ∈ 𝐹󸀠.

(iv) For each 𝐴 ∈ B, the mapping 𝐶
𝑏
(𝑋, 𝐸) ∋ 𝑓 󳨃→

∫
𝐴
𝑓𝑑𝑚 ∈ 𝐹

󸀠󸀠 is a (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous linear

operator.

(v) For 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) and 𝑇(𝑓) =

𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚).

(vi) ‖𝑇‖ = 𝑚̃(𝑋).

(II) Let 𝑚 ∈ 𝑀
𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and let the set {𝑚

𝑦
󸀠 : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} satisfy the condition (𝐶

𝑧
).Then the statements (iii)

and (iv) hold and for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹)

and the mapping 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by

𝑇(𝑓) := 𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚) is a (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator. Moreover, 𝑚 coincides with the representing
measure of 𝑇 and the statements (ii) and (vi) hold.

Proof. (I) In view of (10) for each 𝑦󸀠 ∈ 𝐹
󸀠, 𝑦󸀠(𝑇(ℎ)) =

∫
𝑋
ℎ𝑑𝑚

𝑦
󸀠 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸). By Theorem 3 for each 𝑦󸀠 ∈ 𝐹󸀠

there exists a unique 𝜇
𝑦
󸀠
∘𝑇
∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
) such that (𝑦󸀠∘𝑇)(𝑓) =

∫
𝑋
𝑓𝑑𝜇

𝑦
󸀠
∘𝑇

for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). It follows that, for each 𝑦󸀠 ∈ 𝐹󸀠,

𝑚
𝑦
󸀠 = 𝜇

𝑦
󸀠
∘𝑇

(see [23, Theorem 2.5]) and this means that
𝑚 ∈ 𝑀

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)). Hence

𝑦
󸀠
(𝑇 (𝑓)) = ∫

𝑋

𝑓𝑑𝑚
𝑦
󸀠 for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (43)

Since {𝑦󸀠 ∘ 𝑇 : 𝑦
󸀠
∈ 𝐵

𝐹
󸀠} is 𝛽

𝑧
-equicontinuous in

𝐶
𝑏
(𝑋, 𝐸)

󸀠

𝛽
𝑧

, by Lemma 4 the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the

condition (𝐶
𝑧
). Thus (i) and (ii) hold. In view of Lemma 6,

(iii) and (iv) are satisfied.
According to (9) for each ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸), ∫

𝑋
ℎ𝑑𝑚 ∈ 𝑖

𝐹
(𝐹)

and𝑇(ℎ) = 𝑗
𝐹
(∫
𝑋
ℎ𝑑𝑚). Hence by Lemma 6, ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹).

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. Hence

𝑇 (𝑓) = lim
𝛼
𝑇 (ℎ

𝛼
) = lim

𝛼
𝑗
𝐹
(∫
𝑋

ℎ
𝛼
𝑑𝑚)

= 𝑗
𝐹
(lim
𝛼
∫
𝑋

ℎ
𝛼
𝑑𝑚) = 𝑗

𝐹
(∫
𝑋

𝑓𝑑𝑚) .

(44)

Thus (v) holds. Using (v) and Corollary 7 we get ‖𝑇‖ = 𝑚̃(𝑋).
(II) By Lemma 6 the statements (iii) and (iv) are satisfied.
Now let𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in𝐶

𝑟𝑐
(𝑋, 𝐸) such

that ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. Then by Lemma 6, ∫

𝑋
𝑓𝑑𝑚 = 𝑆

𝑋
(𝑓) =

lim
𝛼
∫
𝑋
ℎ
𝛼
𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) because ∫

𝑋
ℎ
𝛼
𝑑𝑚 ∈ 𝑖

𝐹
(𝐹), and it

follows that 𝑇(= 𝑗
𝐹
∘ 𝑆
𝑋
) is (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous.

Let 𝑚
𝑜
∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) stand for the representing

measure of 𝑇. Note that, for 𝐴 ∈ B, 𝑥 ∈ 𝐸, and 𝑦󸀠 ∈ 𝐹󸀠
we have

(𝑚
𝑜 (𝐴) (𝑥)) (𝑦

󸀠
) = (((𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠󸀠

∘ 𝜋) (1
𝐴
⊗ 𝑥)) (𝑦

󸀠
)

= 𝜋 (1
𝐴
⊗ 𝑥) ((𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠

(𝑦
󸀠
))

= 𝜋 (1
𝐴
⊗ 𝑥) (𝑦

󸀠
∘ (𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

))

= ∫
𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝑚

𝑦
󸀠 = ∫

𝑋

1
𝐴
𝑑𝑚

𝑥,𝑦
󸀠

= (𝑚 (𝐴) (𝑥)) (𝑦
󸀠
) ;

(45)

that is,𝑚
𝑜
= 𝑚. By the first part of the proof (ii) and (vi) hold.

Thus the proof is complete.

Following [14, 27] by 𝑀
𝜎
(B𝑎) we denote the space of

all bounded countably additive, real-valued, regular (with
respect to zero sets) measures onB𝑎.

We define 𝑀
𝜎
(B𝑎, 𝐸󸀠) to be the set of all measures 𝜇 :

B𝑎 → 𝐸
󸀠 such that the following two conditions are

satisfied.

(i) For each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B𝑎 → R, defined

by 𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) for𝐴 ∈B𝑎, belongs to𝑀

𝜎
(B𝑎).

(ii) |𝜇|(𝑋) < ∞, where for each 𝐴 ∈ B𝑎, we define
|𝜇|(𝐴) = sup | ∑ 𝜇(𝐴

𝑖
)(𝑥

𝑖
)|, where the supremum is

taken over all finite B𝑎-partitions (𝐴
𝑖
) of 𝐴 and all

finite collections 𝑥
𝑖
∈ 𝐵

𝐸
.

It is known that if 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸󸀠), then |𝜇| ∈ 𝑀

𝜎
(B𝑎) (see

[27, Lemma 2.1]).
The following result will be of importance (see [27,

Theorem 2.5]).

Theorem 10. Let 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸

󸀠
). Then 𝜇 possesses a unique

extension 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸󸀠) and |𝜇|(𝑋) = |𝜇|(𝑋).

Arguing as in the proof of Lemma 6 we can obtain the
following lemma.

Lemma 11. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸)

and 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸

󸀠
). Then for𝐴 ∈B𝑎 the following statements

hold.

(i) A functionalΦ
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → R defined byΦ

𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝜇 is 𝛽

𝜎
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-continuous and can be uniquely
extended to a 𝛽

𝜎
-continuous linear functional Φ

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → R, and one will write the following:

∫
𝐴

𝑓𝑑𝜇 := Φ
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (46)

(ii) For 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), | ∫

𝐴
𝑓𝑑𝜇| ≤ ∫

𝐴
𝑓𝑑|𝜇|.

By𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) we will denote the space of all oper-

ator measures 𝑚 : B → L(𝐸, 𝐹) such that 𝑚̃(𝑋) < ∞ and
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𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(𝑋, 𝐸

󸀠
) for each 𝑦󸀠 ∈ 𝐹󸀠. By𝑀

𝜎
(B𝑎,L(𝐸, 𝐹)) we

will denote the space of all operator measures 𝑚 : B𝑎 →

L(𝐸, 𝐹) with 𝑚̃(𝑋) < ∞ such that 𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(B𝑎, 𝐸󸀠) for

each 𝑦󸀠 ∈ 𝐹󸀠.

Remark 12. Note that in view of the Orlicz-Pettis theorem
every 𝑚 ∈ 𝑀

𝜎
(B𝑎,L(𝐸, 𝐹)) is countably additive in the

strong operator topology; that is, for each 𝑥 ∈ 𝐸, the measure
𝑚
𝑥
: B𝑎 → 𝐹 defined by 𝑚

𝑥
(𝐴) := 𝑚(𝐴)(𝑥) for 𝐴 ∈ B𝑎

is countably additive. Moreover, in view of [30, Theorem 2]
for each 𝑥 ∈ 𝐸, 𝑚

𝑥
is inner regular by zero sets and outer

regular by cozero sets; that is, for each 𝐴 ∈ B𝑎 and 𝜀 > 0
there exist 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and 𝑃 ∈ P with 𝐴 ⊂ P such
that ‖𝑚

𝑥
‖(𝐴 \ 𝑍) ≤ 𝜀 and ‖𝑚

𝑥
‖(𝑃 \ 𝐴) ≤ 𝜀, (‖𝑚

𝑥
‖(𝐴) denotes

the semivariation of𝑚
𝑥
on 𝐴 ∈B𝑎).

According to [14, Theorem 7] we have the following
theorem.

Theorem 13. Assume that 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and

{𝑚(𝐴)(𝑥) : 𝐴 ∈ B} is a relatively weakly compact subset of
𝐹 for each 𝑥 ∈ 𝐸. Then 𝑚 possesses a unique extension 𝑚 ∈

𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) such that 𝑚̃(𝑋) = 𝑚̃(𝑋).

For a linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 and 𝑥 ∈ 𝐸 let

𝑇
𝑥
(𝑢) := 𝑇(𝑢 ⊗ 𝑥) for 𝑢 ∈ 𝐶

𝑏
(𝑋). For𝑚 ∈ 𝑀

𝜎
(B,L(𝐸, 𝐹󸀠󸀠))

and 𝑥 ∈ 𝐸 let𝑚
𝑥
(𝐴) := 𝑚(𝐴)(𝑥) for 𝐴 ∈B.

Theorem 14. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

(I) Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous lin-

ear operator such that 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly

compact for each 𝑥 ∈ 𝐸, and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠))
be the representing measure of 𝑇. Then the following
statements hold.

(i) 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and 𝑚̃(𝑍

𝑛
) → 0 when-

ever 𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂Z.

(ii) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹), for each 𝐴 ∈ B, 𝑥 ∈ 𝐸, and

the measure 𝑚
𝐹
: B → L(𝐸, 𝐹), defined by

𝑚
𝐹
(𝐴)(𝑥) := 𝑗

𝐹
(𝑚(𝐴)(𝑥)) for 𝐴 ∈ B, 𝑥 ∈

𝐸, belongs to 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and possesses a

unique extension 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with

𝑚̃(𝑋) = 𝑚̃(𝑋) which is countably additive both
in the strong operator topology and in the weak
star operator topology. Moreover, 𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 for

𝑦
󸀠
∈ 𝐹

󸀠.
(iii) For every 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) and 𝐴 ∈ B𝑎 there exists

a unique vector in 𝐹, denoted by ∫
𝐴
𝑓𝑑𝑚, such

that, for each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(∫
𝐴
𝑓𝑑𝑚) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 .

(iv) For each𝐴 ∈B𝑎, the mapping 𝑇
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) →

𝐹 defined by 𝑇
𝐴
(𝑓) = ∫

𝐴
𝑓𝑑𝑚 is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator.
(v) 𝑇(𝑓) = 𝑇

𝑋
(𝑓) = ∫

𝑋
𝑓𝑑𝑚 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

(II) Let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) be such that 𝑚̃(𝑍

𝑛
) → 0

whenever 𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂ Z and for each 𝑥 ∈ 𝐸, let

𝑚
𝑥
:B → 𝐹

󸀠󸀠 be strongly bounded.Then the operator

𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by 𝑇(𝑓) = 𝑗

𝐹
(∫
𝑋
𝑓𝑑𝑚) is

(𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and 𝑇

𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly

compact for each 𝑥 ∈ 𝐸, and the statements (ii)–(v)
hold.

Proof. (I) (i) It follows fromTheorem 9.
(ii) In view of Theorem 2 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) for 𝐴 ∈ B,

𝑥 ∈ 𝐸, and {𝑚
𝐹
(𝐴)(𝑥) : 𝐴 ∈ B} is a relatively weakly

compact in 𝐹 for each 𝑥 ∈ 𝐸. Since 𝑚
𝐹
∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹)),

by Theorem 13 𝑚
𝐹

possesses a unique extension 𝑚 ∈

𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with 𝑚̃(𝑋) = 𝑚̃(𝑋). By the Orlicz-Pettis

theorem 𝑚 is countably additive in the strong operator
topology. Moreover, since, for each 𝑦󸀠 ∈ 𝐹

󸀠, |𝑚
𝑦
󸀠 | ∈

𝑀
𝜎
(B𝑎) = 𝑐𝑎(B𝑎), we obtain that 𝑚

𝑦
󸀠 ∈ 𝑐𝑎(B𝑎, 𝐸󸀠). This

means that 𝑚 : B𝑎 → L(𝐸, 𝐹) is countably additive in the
weak star operator topology.

Let 𝑦󸀠 ∈ 𝐹
󸀠. Then for 𝐴 ∈ B and 𝑥 ∈ 𝐸 we have

𝑚
𝑦
󸀠(𝐴)(𝑥) = 𝑚

𝑦
󸀠(𝐴)(𝑥), and byTheorem 10,𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 .

(iii) For 𝐴 ∈ B𝑎 let 𝑆
𝐴
(ℎ) := ∫

𝐴
𝑓𝑑𝑚 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸).

Proceeding as in the proof of Lemma 6 we can show that
𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹 is a (𝛽

𝜎
|
𝐶
𝑟𝑐
(𝑋,𝐸)

, ‖ ⋅ ‖
𝐹
)-continuous lin-

ear operator, and hence 𝑆
𝐴
possesses a unique (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear extension 𝑇
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 (see [29,

Theorem 2.6]). Let us write the following:

∫
𝐴

𝑓𝑑𝑚 := 𝑇
𝐴
(𝑓) for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (47)

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 𝑓 for 𝛽

𝜎
. For each 𝑦󸀠 ∈ 𝐹󸀠,𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 (see (i)) and by

Lemma 11 we have

𝑦
󸀠
(∫
𝐴

𝑓𝑑𝑚) = 𝑦
󸀠
(lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚) = lim

𝛼
(𝑦

󸀠
(∫
𝐴

ℎ
𝛼
𝑑𝑚))

= lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠 = lim

𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠

= ∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠 = ∫

𝐴

𝑓𝑑𝑚
𝑦
󸀠 .

(48)

(iv) It follows from the proof of (iii).
(v) Let 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). In view of Theorem 9, for each 𝑦󸀠 ∈

𝐹
󸀠, 𝑦󸀠(𝑇(𝑓)) = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 . On the other hand by (ii) for 𝑦󸀠 ∈

𝐹
󸀠 we have 𝑦󸀠(∫

𝑋
𝑓𝑑𝑚) = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 . It follows

that 𝑇(𝑓) = ∫
𝑋
𝑓𝑑𝑚.

(II) Since {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the condition (𝐶

𝜎
),

by Theorem 9 for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) and

the mapping 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by 𝑇(𝑓) :=

𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚) is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operator, and𝑚

coincides with the representing measure of 𝑇. Hence in view
ofTheorem 2 𝑇

𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is a weakly compact operator.

Thus by the first part of the proof the statements (ii)–(v) are
satisfied.

4. Strongly Bounded Operators on 𝐶
𝑏
(𝑋,𝐸)

Definition 15. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) →

𝐹 is said to be strongly bounded if its representing measure
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𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) is strongly bounded; that is, 𝑚̃(𝐴
𝑛
) →

0 whenever (𝐴
𝑛
) is a pairwise disjoint sequence inB.

Note that𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) is strongly bounded if and
only if the family {|𝑚

𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly strongly

additive.

Now we are ready to state our main results that extend
some classical results of Lewis (see [20, Theorem 5], [31,
Lemma 1]) and Brooks and Lewis (see [22, Theorem 2.1], [21,
Theorem 5.2]) concerning operators on the spaces 𝐶(𝑋, 𝐸)
and 𝐶

𝑜
(𝑋, 𝐸), where 𝑋 is a compact or a locally compact

space, respectively.

Theorem 16. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its representing
measure. Then 𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and the following

statements are equivalent.

(i) 𝑇 is strongly bounded.
(ii) sup {|𝑚

𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0 whenever 𝐴

𝑛
↓ 0,

(𝐴
𝑛
) ⊂ B𝑎 (here 𝑚

𝑦
󸀠 ∈ 𝑀

𝜎
(B𝑎, 𝐸󸀠) denotes the

unique extension of𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(𝑋, 𝐸

󸀠
)).

(iii) If (𝐴
𝑛
) is a sequence inB𝑎 such that𝐴

𝑛
↓ 0, then there

exists a nested sequence (𝑈
𝑛
) in P such that 𝐴

𝑛
⊂ 𝑈

𝑛

for 𝑛 ∈ N and sup {‖𝑇(𝑓)‖
𝐹
: 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1

and supp𝑓 ⊂ 𝑈
𝑛
} → 0.

Proof. In view of Theorem 9 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)).

(i)⇒(ii) Assume that 𝑇 is strongly bounded. Since the
family {|𝑚

𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly strongly additive,

according to [25, Lemma 1, page 26] the family {|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} is uniformly countably additive (see Theorem 16).
(ii)⇒(i) It follows from [25, Lemma 1, page 26].
(ii)⇒(iii) Assume that (ii) holds and (𝐴

𝑛
) is a sequence

inB𝑎 such that 𝐴
𝑛
↓ 0. Then there exists 𝜆 ∈ 𝑐𝑎(B𝑎)+ such

that {|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly 𝜆-continuous (see [25,

Theorem 4, pages 11-12]). Let 𝜀 > 0 be given. Hence there
exists 𝛿 > 0 such that sup{|𝑚

𝑦
󸀠 |(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀/2

whenever 𝜆(𝐴) ≤ 𝛿 and 𝐴 ∈ B𝑎. Since 𝜆 is zero-set regular,
there exists a nested sequence (𝑈

𝑛
) inP so that𝐴

𝑛
⊂ 𝑈

𝑛
and

𝜆(𝑈
𝑛
\ 𝐴

𝑛
) ≤ 𝛿 for 𝑛 ∈ N. Hence sup{|𝑚

𝑦
󸀠 |(𝑈

𝑛
\ 𝐴

𝑛
) : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} ≤ 𝜀/2 for 𝑛 ∈ N. In view of (ii) there exists 𝑛

𝜀
∈ N

such that sup{|𝑚
𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀/2 for 𝑛 ≥ 𝑛

𝜀
.

Hence sup{|𝑚
𝑦
󸀠 |(𝑈

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀 for 𝑛 ≥ 𝑛

𝜀
; that is,

sup {|𝑚
𝑦
󸀠 |(𝑈

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0.

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, and supp 𝑓 ⊂ 𝑈

𝑛
. Then by

Theorem 9 we have

󵄩󵄩󵄩󵄩𝑇(𝑓)
󵄩󵄩󵄩󵄩𝐹
= sup {

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑋

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

≤ sup {∫
𝑋

𝑓𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

≤ sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} .

(49)

It follows that sup{‖𝑇(𝑓)‖
𝐹
: 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, supp

𝑓 ⊂ 𝑈
𝑛
} → 0.

(iii)⇒(ii) Assume that (iii) holds and𝐴
𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

Then there exists a nested sequence (𝑈
𝑛
) inP such that𝐴

𝑛
⊂

𝑈
𝑛
for 𝑛 ∈ N and

sup {󵄩󵄩󵄩󵄩𝑇(𝑓)
󵄩󵄩󵄩󵄩𝐹
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, supp𝑓𝑛 ⊂ 𝑈𝑛}

󳨀→ 0.

(50)

Assume that (ii) does not hold.Then there exist 𝜀 > 0 and 𝑛
𝜀
∈

N such that sup{|𝑚
𝑦
󸀠 |(𝐴

𝑛
𝜀

) : 𝑦
󸀠
∈ 𝐵

𝐹
󸀠} ≥ 𝜀 and ‖𝑇(𝑓)‖

𝐹
≤

(1/8)𝜀 whenever 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, and supp𝑓 ⊂ 𝑈

𝑛
𝜀

.
It follows that there exists 𝑦󸀠

𝑜
∈ 𝐵

𝐹
󸀠 such that |𝑚

𝑦
󸀠 |(𝐴

𝑛
𝜀

) ≥ 𝜀.
Hence there exist a finiteB𝑎-partition (𝐵

𝑖
)
𝑘

𝑖=1
of𝐴

𝑛
𝜀

and 𝑥
𝑖
∈

𝐵
𝐸
, 𝑖 = 1, . . . , 𝑘, such that

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
𝜀

4
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

𝑚
𝑦
󸀠

𝑜

(𝐵
𝑖
) (𝑥

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝐵
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(51)

Since |(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

| ∈ 𝑀
𝜎
(B𝑎) is zero-set regular (see [4, page

118]), we can choose 𝑍
𝑖
∈ Z, 𝑍

𝑖
⊂ 𝐵

𝑖
, such that |(𝑚

𝑦
󸀠

𝑜

)
𝑥
𝑖

|(𝐵
𝑖
\

𝑍
𝑖
) ≤ 𝜀/4𝑘 for 𝑖 = 1, . . . , 𝑘. Choose pairwise disjoint 𝑉

𝑖
∈ P

with 𝑍
𝑖
⊂ 𝑉

𝑖
for 𝑖 = 1, . . . , 𝑘 such that |𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

|(𝑉
𝑖
\ 𝑍

𝑖
) ≤ 𝜀/4𝑘.

Let𝑈
𝑖
= 𝑉

𝑖
∩𝑈

𝑛
𝜀

for 𝑖 = 1, . . . , 𝑘.Then𝑈
𝑖
∈ P and |𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

|(𝑈
𝑖
\

𝑍
𝑖
) ≤ 𝜀/4𝑘 for 𝑖 = 1, . . . , 𝑘. For 𝑖 = 1, . . . , 𝑘 choose 𝑢

𝑖
∈ 𝐶

𝑏
(𝑋)

such that 0 ≤ 𝑢
𝑖
≤ 1

𝑋
, 𝑢
𝑖
|
𝑍
𝑖

≡ 0, and 𝑢
𝑖
|
𝑋\𝑈
𝑖

≡ 0 (see [4, page
115]). Let ℎ

𝑜
= ∑

𝑘

𝑖=1
(𝑢
𝑖
⊗ 𝑥

𝑖
). Then ‖ℎ

𝑜
‖ ≤ 1, supp ℎ

𝑜
⊂ 𝑈

𝑛
𝜀

,
and

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

=

𝑘

∑

𝑖=1

∫
𝑈
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

. (52)

Hence we get

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
𝜀

4

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝐵
𝑖
) −

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝑍
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

∫
𝑍
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

−

𝑘

∑

𝑖=1

∫
𝑈
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑚

𝑦
󸀠

𝑜

)
𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
(𝐵
𝑖
\ 𝑍

𝑖
) +

𝑘

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑖
\ 𝑍

𝑖
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

4
+
𝜀

4
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(53)
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Hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
3

4
𝜀 ≥

1

4
𝜀,

󵄩󵄩󵄩󵄩𝑇(ℎ𝑜)
󵄩󵄩󵄩󵄩𝐹
≥
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

𝑜
(𝑇 (ℎ

𝑜
))
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑋

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
1

4
𝜀.

(54)

Thus we get a contradiction to ‖𝑇(ℎ
𝑜
)‖
𝐹
≤ (1/8)𝜀.

Thus the proof is complete.

Theorem 17. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and

strongly bounded operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its
representing measure. Then the following statements hold.

(i) 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) for

𝐴 ∈ B, 𝑥 ∈ 𝐸, and the measure 𝑚
𝐹
: B → L(𝐸, 𝐹),

defined by 𝑚
𝐹
(𝐴)(𝑥) := 𝑗

𝐹
(𝑚(𝐴)(𝑥)) for 𝐴 ∈ B,

𝑥 ∈ 𝐸, belongs to 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and possesses a

unique extension𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹))with 𝑚̃(𝑋) =

𝑚̃
𝐹
(𝑋) = 𝑚̃(𝑋) which is variationally semiregular;

that is, 𝑚̃(𝐴
𝑛
) → 0 whenever 𝐴

𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

(ii) For every 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) and 𝐴 ∈ B𝑎 there exists a

unique vector in 𝐹, denoted by ∫
𝐴
𝑓𝑑𝑚, such that, for

each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(∫
𝐴
𝑓𝑑𝑚) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 .

(iii) For each 𝐴 ∈ B𝑎, ∫
𝐴
𝑓
𝑛
𝑑𝑚 → 0 whenever (𝑓

𝑛
) is

a uniformly bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that

𝑓
𝑛
(𝑡) → 0 for 𝑡 ∈ 𝑋.

(iv) 𝑇(𝑓) = ∫
𝑋
𝑓𝑑𝑚 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

(v) 𝑇(𝑓
𝑛
) → 0 whenever (𝑓

𝑛
) is a uniformly bounded

sequence in 𝐶
𝑏
(𝑋, 𝐸) such that 𝑓

𝑛
(𝑡) → 0 for 𝑡 ∈ 𝑋.

Proof. (i) Note that, for 𝑥 ∈ 𝐸, ‖𝑚
𝑥
(𝐴)‖

𝐹
󸀠󸀠 ≤ 𝑚̃(𝐴)‖𝑥‖𝐸 for

𝐴 ∈ B. Hence 𝑚
𝑥
: B → 𝐹

󸀠󸀠 is strongly bounded, and
by Theorems 2 and 14 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) and 𝑚

𝐹
possesses

a unique extension 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with 𝑚̃(𝑋) =

𝑚̃
𝐹
(𝑋) = 𝑚̃(𝑋). Since 𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 for 𝑦󸀠 ∈ 𝐹󸀠, by Theorem 16

we have 𝑚̃(𝐴
𝑛
) = sup{|𝑚

𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0 whenever

𝐴
𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

(ii) It follows from Theorem 14 because for each 𝑥 ∈ 𝐸,
𝑇
𝑥
: 𝐶

𝑐
(𝑋) → 𝐹 is weakly compact (see Theorem 2).

(iii) In view of (i) there exists 𝜆 ∈ 𝑐𝑎(B𝑎)
+ such that

{|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is 𝜆-continuous (see [25, Theorem 4,

pages 11-12]). Let (𝑓
𝑛
) be a sequence in 𝐶

𝑏
(𝑋, 𝐸) such that

sup
𝑛
‖𝑓
𝑛
‖ = 𝑀 < ∞ and 𝑓

𝑛
(𝑡) → 0 for every 𝑡 ∈ 𝑋. Let 𝜀 > 0

be given.Then there exists 𝛿 > 0 such that sup{|𝑚
𝑦
󸀠 |(𝐴) : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} ≤ 𝜀/2𝑀 whenever 𝜆(𝐴) ≤ 𝛿, 𝐴 ∈ B𝑎. Since 𝑓

𝑛
∈ 𝐵(B)

for 𝑛 ∈ N, by the Egoroff theorem there exists 𝐴
𝛿
∈ B𝑎 with

𝜆(𝑋 \ 𝐴
𝛿
) ≤ 𝛿 and sup

𝑡∈𝐴
𝛿

𝑓
𝑛
(𝑡) → 0. Choose 𝑛

𝜀
∈ N such

that sup
𝑡∈𝐴
𝛿

𝑓
𝑛
(𝑡) ≤ 𝜀/2𝑚̃(𝑋) for 𝑛 ≥ 𝑛

𝜀
.

Let 𝐴 ∈ B𝑎. Note that 𝑚
𝑦
󸀠 = 𝑚

𝑦
󸀠 for 𝑦󸀠 ∈ 𝐹󸀠. Then by

Lemma 11 and (ii), for 𝑛 ≥ 𝑛
𝜀
and 𝑦󸀠 ∈ 𝐵

𝐹
󸀠 we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(∫
𝐴

𝑓
𝑛
𝑑𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

𝑓
𝑛
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝐴

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑋

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨

= ∫
𝐴
𝛿

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ∫

𝑋\𝐴
𝛿

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨

≤
𝜀

2𝑚̃ (𝑋)

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝛿
) + 𝑀 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑋 \ 𝐴

𝛿
)

≤
𝜀

2𝑚̃ (𝑋)

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑋) +𝑀 ⋅

𝜀

2𝑀
≤
𝜀

2
+
𝜀

2
= 𝜀.

(55)

Hence ‖ ∫
𝐴
𝑓
𝑛
𝑑𝑚‖

𝐹
≤ 𝜀 for 𝑛 ≥ 𝑛

𝜀
, as desired.

(iv) It follows fromTheorem 14.
(v) It follows from (iii) and (iv).

LetL∞
(B𝑎, 𝐸) stand for theBanach space of all bounded

strongly B𝑎-measurable functions 𝑔 : 𝑋 → 𝐸, equipped
with the uniform norm ‖ ⋅ ‖. Assume that𝑚 :B → L(𝐸, 𝐹)
with 𝑚̃(𝑋) < ∞ is variationally semiregular. Then every 𝑔 ∈
L∞

(B𝑎, 𝐸) is 𝑚-integrable (see [32, Definition 2, page 523
andTheorem 5, page 524]) and ∫

𝑋
𝑔
𝑛
𝑑𝑚 → 0whenever (𝑔

𝑛
)

is a uniformly bounded sequence inL∞
(B𝑎, 𝐸) converging

pointwise to 0 (see [33, Proposition 2.2]).
Recall that a series ∑∞

𝑖=1
𝑧
𝑖
in a Banach space 𝐺 is called

weakly unconditionally Cauchy (wuc) if, for each 𝑧󸀠 ∈ 𝐺
󸀠,

∑
∞

𝑖=1
|𝑧
󸀠
(𝑧
𝑖
)| < ∞. We say that a linear operator 𝑇 : 𝐺 → 𝐹

is unconditionally converging if for every weakly uncondition-
ally Cauchy series∑∞

𝑖=1
𝑧
𝑖
in𝐺, the series∑∞

𝑖=1
𝑇(𝑧

𝑖
) converges

unconditionally in a Banach space 𝐹.
As an application of Theorem 17 we have the following

result.

Corollary 18. Assume that𝐶
𝑏
(𝑋)⊗𝐸 is 𝛽

𝜎
-dense in𝐶

𝑏
(𝑋, 𝐸),

where 𝐸 is a separable Banach space which contains no
isomorphic copy of 𝑐

𝑜
. Let 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 be a

(𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and strongly bounded operator. Then 𝑇

is unconditionally converging.

Proof. Assume that∑∞
𝑖=1
𝑓
𝑖
is a wuc series in the Banach space

𝐶
𝑏
(𝑋, 𝐸). Hence∑∞

𝑖=1
|𝑥
󸀠
(𝑓
𝑖
(𝑡))| < ∞ for each 𝑡 ∈ 𝑋 and 𝑥󸀠 ∈

𝐸
󸀠 because 𝛿

𝑡,𝑥
󸀠 ∈ 𝐶

𝑏
(𝑋, 𝐸)

󸀠, where 𝛿
𝑡,𝑥
󸀠(𝑓) = 𝑥

󸀠
(𝑓(𝑡)) for

𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). It follows that ∑∞

𝑖=1
𝑓
𝑖
(𝑡) is an unconditionally

convergent series in 𝐸 for each 𝑡 ∈ 𝑋 because 𝐸 contains no
isomorphic copy of 𝑐

𝑜
(see [34]). Let 𝑔

𝑜
(𝑡) = lim

𝑛
𝑆
𝑛
(𝑡) for 𝑡 ∈

𝑋, where 𝑆
𝑛
(𝑡) = ∑

𝑛

𝑖=1
𝑓
𝑖
(𝑡) for 𝑡 ∈ 𝑋, 𝑛 ∈ N. Then sup

𝑛
‖𝑆
𝑛
‖ <

∞ because ∑∞
𝑖=1
𝑓
𝑖
is wuc (see [34]) and 𝑆

𝑛
∈ L∞

(B𝑎, 𝐸)
because𝐸 is assumed to be separable (see [2,Theorem21, page
9]). Hence 𝑔

𝑜
∈L∞

(B𝑎, 𝐸) (see [2, Theorem 10, page 6]).
Let 𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) be the representing measure

of 𝑇 and let 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) be a unique extension

of 𝑚
𝐹
∈ 𝑀

𝜎
(B,L(𝐸, 𝐹)) (see Theorem 17). Since 𝑚 is
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variationally semiregular, in view of [33, Proposition 2.2] we
have

lim
𝑛

𝑛

∑

𝑖=1

𝑇 (𝑓
𝑖
) = lim

𝑛
∫
𝑋

𝑆
𝑛
𝑑𝑚 = ∫

𝑋

𝑔
𝑜
𝑑𝑚 ∈ 𝐸. (56)

Hence ∑∞
𝑖=1
𝑇(𝑓

𝑖
) = ∫

𝑋
𝑔
𝑜
𝑑𝑚. Finally, if (𝑛

𝑗
) is any permu-

tation of N, then lim
𝑛
∑
𝑛

𝑗=1
𝑓
𝑛
𝑗

(𝑡) = 𝑔
𝑜
(𝑡) for 𝑡 ∈ 𝑋. Then

∑
∞

𝑗=1
𝑇(𝑓

𝑛
𝑗

) = ∫
𝑋
𝑔
𝑜
𝑑𝑚, as desired.

Remark 19. A related result to Corollary 18 for strongly
bounded operators on the space 𝐶

𝑜
(𝑋, 𝐸) of 𝐸-valued con-

tinuous functions vanishing at infinity defined on a locally
compact space𝑋 was obtained by Brooks and Lewis (see [21,
Theorem 5.2]).

Recall that a Banach space 𝐸 is said to be a Schur space if
every weakly convergent sequence in 𝐸 is norm convergent.

As a consequence of Theorem 17 we derive the following
Dunford-Pettis type theorem for operators on 𝐶

𝑏
(𝑋, 𝐸).

Theorem 20. Assume that𝐶
𝑏
(𝑋)⊗𝐸 is 𝛽

𝜎
-dense in𝐶

𝑏
(𝑋, 𝐸),

where𝐸 is a Schur space. Let𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖⋅‖

𝐹
)-

continuous and strongly bounded operator. Then 𝑇(𝑓
𝑛
) → 0

in 𝐹 whenever (𝑓
𝑛
) is a 𝜎(𝐶

𝑏
(𝑋, 𝐸),𝑀

𝜎
(𝑋, 𝐸

󸀠
)) convergent to

0 sequence in 𝐶
𝑏
(𝑋, 𝐸).

Proof. Assume that 𝑓
𝑛
→ 0 for 𝜎(𝐶

𝑏
(𝑋, 𝐸),𝑀

𝜎
(𝑋, 𝐸

󸀠
)).

Then according to [11, Corollary 5], we obtain that sup
𝑛
‖𝑓
𝑛
‖ <

∞ and 𝑓
𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸󸀠) for each 𝑡 ∈ 𝑋. It follows that

‖𝑓
𝑛
(𝑡)‖

𝐸
→ 0 for 𝑡 ∈ 𝑋 because 𝐸 is supposed to be a Schur

space. Using Theorem 17 we derive that 𝑇(𝑓
𝑛
) → 0 in 𝐹, as

desired.
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