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Let L = —A +V be a Schrédinger operator on R",n > 3, where V' # 0 is a nonnegative potential belonging to the reverse Holder
class B, ,. The Hardy type spaces HY,n/(n+6) < p < 1, for some § > 0, are defined in terms of the maximal function with respect

to the semigroup {e **},.,. In this paper, we investigate the bounded properties of some singular integral operators related to L, such
as LV and VL%, on spaces Hf . We give the molecular characterization of H f , which is used to establish the Hf -boundedness of

singular integrals.

1. Introduction

Let L = —A + V be a Schrédinger operator on R”, n > 3,
where V' # 0 is a nonnegative potential belonging to the
reverse Holder class Bq for some q > n/2; that is, there exists
a constant C > 0 such that the reverse Holder inequality

(%JBVq(x)dxy/qSC(l—;I LV(x)dx) )

holds for every ball B in R™. It is well known that if V € B,
then V € B,,, for some ¢ > 0. Also obviously, B, ¢ B,
when g; > q,.

Some singular integral operators related to L, such as the
imaginary power L, and the Riesz transform VL™'/? have
been studied by Shen [1]. Some of his results are following.
The operator L is a Calderén-Zygmund operator for any
y € R. VL™ is a Calderén-Zygmund operator if g > n.
When /2 < g < n, VL% is bounded on L? for 1 < p < p,,
where 1/p, = 1/q — 1/n. The above range of p is optimal.
Earlier results were given by Fefferman [2] and Zhong [3].

The Hardy type spaces H, n/(n + &) < p < 1 for some
0 > 0, associated with L, are studied by Dziubanski and

Zienkiewicz [4, 5]. They establish the Hf’oo atomic decom-
position theorem and the Riesz transform characterization
of H;. Specifically, VL' is bounded from Hj to L'. We
will investigate the bounded properties of the operators L
and VL™'/? on spaces H?. To do this, we give the molecular
characterization of H?.

Without loss of generalization, we assume that V' € B,/
for some g, > n/2 and set § = min(2-n/q,, 1). When g, > n,
we set = 1 —n/q,. Throughout the paper, we will use A and
C to denote the positive constants, which are independent of
main parameters and may be different at each occurrence. By
B, ~ B,, we mean that there exists a constant C > 1 such that
1/C < B,/B, <C.

Let {T'},.o = {e'"},o be the semigroup of linear
operators generated by —L and K[(x, y) their kernels. Since
V is nonnegative, the Feynman-Kac formula implies that

0< K (x,y) <K, (x—y)= (drt) e @l (2)

where K, (x) is the convolution kernels of the heat semigroup
{Ti}so = {em}t>0. The estimate (2) can be improved as



follows. We introduce the auxiliary function p(x,V) = p(x)
defined by

1
p(x):sup{r>0: n—ZJ V(y)dygl}. (3)
r B(x,r)
It is known that 0 < p(x) < co. For every N > 0,

-N
(4)

(cf. [6, Theorem 4.10]). Let 0 < &' < &; for every N > 0 and
all |h] < Wi,

|K; (x + 1, y) = K (x,y)]

TN oo - e lz( VE L)
SCN<\/E>te J'lp +()

©)

(cf. [6, Proposition 4.11]).

We define the Hardy type spaces Hf, n/(n+d) < p < 1,in
terms of the maximal function with respect to the semigroup
{TtL}t>0-

For p = 1, the Hardy space Hj is defined, according to
Dziubanski and Zienkiewicz [4], by

Hy={fel':M'felL'}, (6)
where

M"f (x) = sup [T} £ ()] 7)
t>0

The norm of a function f € Hi is defined to be ”f”Hi =
1M £l

The Hardy spaces, Hf, n/(n+38) < p < 1, consist of some
kind of distributions. But M" f(x) may have no meaning for
a tempered distribution f because K/(x, y) are not smooth.

Let f be a locally integrable function. B = B(x, r) is the ball
of radius r centered at x. Set

f= |B| J f()’)
_ (8)
fp if r<p(x),

f(B,V)={0, if r>p(x).

Letn/n+98) < p < 1,1 < q < 00. A locally integrable
function f is said to be in the Campanato type space A*
if

1/p-14

1/q ]
1-1/p q dx
"f“Ali/pfl,q’ - I:uﬂs {|B| <J |f f(B V)l |B| > }

< 0Q.

€)
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All spaces Al/p 1

norms and will be simply denoted by A 1p-1 (cf. [7]). Due to
(4) and (5), for every t > 0,

, are mutually coincident with equivalent

—-d/2p
1/p-1

(cf. [7, Lemma 1]). Thus the semigroup maximal function Mf
is well defined for distributions in (AL1 / P_l)*. We define the

Hardy space, Hf, nf/(n+68) < p<1,by

HE ={fe(af,.) M ferr}, (1)

and set | £l = IM" £l

Similar to the classical case, the Hardy space HY admits
an atomic decomposition. Letn/(n+8) < p<1<g<o0o,p #
g. A function a is called an H*?-atom associated with a ball
B(x,, 1) if

(1) supp a < B(xy, 1),
() llalls < 1B(xg,r)[V47Y2,
(3)if r < p(x,),then [a(x)dx = 0.

Proposition 1 (see [7, Theorem 1]). Given p, q as above, then

f € HY ifand only if f can be written as f = 2 Ajaj, where

P4 4 P
a; are H} ™ -atoms and Zj I/\jl < 00. The sum converges in Hy

norm and also in (AI]/}H)* when p < 1. Moreover,

1/p
”f”Hf ~ "f”Hf'q’“ = inf { (Z'MF) } > (12)
]

where the infimum is taken over all decompositions of f into
H-atoms.

Now we state the main results in this paper.

Theorem 2. For any y € R, the imaginary power L7 is
bounded on HY forn/(n+0) < p < 1. When q, > n, the Riesz
transform VL™ is bounded on H? forn/(n +1n) < p < 1.
Moreover, VL™ is bounded on H| whenever q, > n/2.

Remark 3. When n/2 < g, < n, the kernel of Riesz transform
VL ™'/ only satisfies the Hormander condition with respect
to the second variable, which is weaker than the smoothness
condition of standard kernels. Thus we cannot expect, in
general consideration, to deal with the boundedness of
VL' for the case of p < 1.

In order to prove Theorem 2, we give the molecular
characterization of HY.

Letn/(n+8) < p<l<g<oo,p#qande>1/p-1
Seta=1-1/p+e b=1-1/q+e Afunction M € L7 is
called an H**-molecule with the center x;, if

(1) X M(x) € L%,
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1-a/b
) (M) = @b IMIEE - —xo ™M <1,

3) if ||M||” a- ‘” <y p(xo)", then [ M(x)dx =0

where p, is the volume of the unit ball.

Theorem 4. Given p,q,e as above, then f € HY if and
only if f can be written as f = };A;M;, where M; are

pae Cop
H;"""-molecules and Zj IAjlp < 00. The sum converges in H;
norm and also in (ALI/P_I)* when p < 1, where M; are Hf-
molecules. Moreover,

1/p
[l ~ 1 lgpoeoe = in€ {( zw) } e
J

where the infimum is taken over all decompositions of f into
Hf‘q’e-molecules.

Remark 5. 1t is easy to verify that any H?"?-atom is an H/**-
molecule with a constant factor less than or equal to 1. We
will see that the image of an H/-atom under the action of a
singular integral operator may not be an H?*“-molecule but
is a sum of two H?"**~molecules up to constant factors. This
is different from the classical case.

This paper is organized as follows. In Section 2, we collect
some useful facts and results about the potential V, the
auxiliary function p(x) and the kernels of operators L', and

VL™'/2, which will be used in the sequel. Most of these results
are already known. In Section 3, we prove Theorem 4. The
proof of Theorem 2 is given in the last two sections. The H? -
boundedness for p < 1 is proved in Section 4 while H; -
boundedness is proved in Section 5.

2. Preliminaries

First we list some known facts and results about the potential
V, the auxiliary function p(x), and the kernels of operators

L and VL V2,

Lemma 6. V(x)dx is a doubling measure; that is, there exists
a constant C, > 0 such that

J V(y)dyscof V(y)dy. (14)
B(x,2r) B(x,r)

Lemma 7. Consider

1 R\"072 1
\% d sC(—)
2 JB(x,r) (y) 4 r R"2

j V(y)dy,
B(x,R)

0<r<R<o0.
(15)

Lemma 8. There exists my > 0 such that

1

WL( R)V(y)dy£C<1+—> .36

(x)

Lemma 9. There exists k, > 0 such that

—kqy ko/(ko+1)
l(1+|x_y|) sp(y)sC(Hlx_yl) .
C p(x) p(x) p(x)

17)

In particular, p(y) ~ p(x) if |x — y| < Cp(x).

Let Ff(x, y) and Fy(x, y) be the kernels of L7 and
(-A)7, respectively, and RE(x, y) and R(x, y) the kernels of
-1/2 J1/2 . = _ L
VL an~d V(=A)""", respectively. Set F, (x, y) = F,(x, y) -
E,(x,y),R(x, y) = RY(x, ) - R(x, y).
Lemma 10. L is a Calderén-Zygmund operator. It does not

matter to assume that n/2 < q, < n. The kernel F)f(x, ¥)
satisfies

Ceﬂ|V|/2|h|

|F)f (x,y+h) —F]]j (x,y)| <

and, for any N > 0,

Cpe™M7? |x =y )_N
. 19
g (xy)|_|x )’|<+P()/) )
In addition,
Ce™2 [ |x - y| ®
'F (x, y)' ST ( o) ) (20)

Lemma 11. When n/2 < g, < n, VL™ is bounded on L¥ for
1 < p < py, where 1/p, = 1/qy — 1/n. The kernel R*(x, y)
satisfies, for any N > 0,

C V(z)dz 1
|RL(x,y)'S—Nn_1<J — ot T )
|x -y B(xlx-yl/4) |z — x| |x =y
-N
X (1 + |x _ yl > .
p(»)
(21)
In addition,
IR (x, )|
_C<
I_x _ ylnfl

(J V(2)dz 1 (lx—y|)8>
X ) + .
Blolx—yl/4) |z — X| lx =\ p(»)

(22)



Lemma 12. When q, > n, VL™ is a Calderén-Zygmund
operator. The kernel R (x, y) satisfies

1
'RL (x,y+h)- RE (x,y)' < %,
(23)
< 22
s
and, for any N > 0,
-N
R (1 BN e
|x = ] p()
In addition, for any §' < 1,
6,
IR ()| < —C n("“‘y') . 25)
lx ="\ P ()

For Lemmas 6-12, we refer readers to [1]. We also need
the following estimates about Fy(x, y) and R(x, y).

Lemma 13. Whenn/2 < q, <n,

~ ~ CeM2 (| 8
|Fy(x,y+h)—Fy(x,y)'S <— ,

lx=y["\p(») (26)
< 222
S5
When q, > n, forany 8’ < 1,
_ c [\
|R(x,y+h)—R(x,y)'s n(—) ,
< |x - y|
Proof. It is well known that
C |h|
|F], (x,y +h)~F, (x, y)| < —,
|x -yl
< 2
<
(28)
IR(x,y+h)-R(x,y)| < %
S5
Therefore, we also have the estimates
_ _ Ceﬂ|V|/2|h|5 x-y
|Fy(x,y+h)—Fy (x,y)' < W, || < %;
(29)
= = Clh|" x-y
|R(x,y+h)—R(X,y)|Sm, |h|§%
(30)
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We may assume that |x — y| < p(y). Otherwise, Lemma 13 is
obvious.

We will use the following known facts (cf. [1]). Let
I (x, y,7) and I'(x, y, T) denote, respectively, the fundamen-
tal solutions for the operators L + it and —A + it in R", where
7 € R. They satisfy the following estimates. For any k > 0 and
lhl < |x = yl/2,

C, 1
(1 + |T|1/2 |x _ yl)k |x _ yln—z’

(7)<

|FL (x,y+h1) =T (x, 3, T)'

Ci L (1

<
(1 + |T|1/2 |x _ }/l)k |x _ yln—2+6

Sy

(31)

when n/2 < g, < n. Set T(x, Y, T) = FL(x, y,7) = I'(x, y,7).
Then T(x, y, T) is expressed as

T(x,y1)=- JR»« [(x,21)V ()T (2 y,1)dz.  (32)

Thus,

|f (x,y+h,7) —f(x,y,'r)|

< J IT (x,2,7)|V (2) |FL (z,y+h1)-T" (2,9, T)l dz
Rn

_ -k
< | (cnv@ (e )" fe- ) “dz)
1/2 k 1/2 k
< ((1+ 121" x=zl) (1+ 12" |z - y|)
n-2+8\"1
x |x - 2" 2|z =y 6)

J )+ J ()
lz—x|<|x=yl/2 lz=yl<lx=yl/2

+ J
lz=x|2|x=y/2,|z=y|2|x-y|/2

=L+ +1;.
(33)

Note that V € B
and B

qote

4, +e for some € > 0. Using Holder inequality
condition, it is easy to see that, for 0 < o < §,

V(y) C J
dy < V(y)dy. (34
JB(x,R) |x _ y|n—2+¢7 y Rn—2+¢7 B(x,R) (y) )’ ( )
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Note that p(x) ~ p(y) when |x — y| < p(y). Making use of
(34), we get

- Cilh° J V(z)dz
(R = o) - e e 2l
3 Cilhl® 1
< (1 R |T|1/2 |x 3 y|)k|x _ y|n72+6 |x _ yln—z
X J V(z)dz
|z—x|<|x—yl/2
<

_ C (|m f
(1412 = ) e - 52 P OY)
(35)

where we have used Lemma 7 in the last inequality. Similarly,

L < Cylhl® J V(z)dz
2= —
(14 112 |x = ) e =y stz [o = "
- Cilhl® 1
B k n— n-2
(1 + |T|1/2 Ix_ )’I) |x— )’l 248 |x— )/|
X J- V(z)dz
|z-y|<lx-yl/2
< Cr ( m|)5
< - — .
(1+ 11" x = y]) | = o2\ P DY)
(36)
To estimate I, we write
5
IS < Ck|h| .
(14122 = 1)
< (1+V‘ﬂ)* V(2)dz
- _ ( ) _ 2n—4+6
|z=y|2lx-y1/2 py ERY
Cylhl° )

(e e yl)

<J V(z)dz
x 2n—4+8
le-yl/2s|z-yl<p(y) |z - y]

+ p(y)* jl Viz)de ) :

Z-)’|ZP()/) |Z _ ylZn—4+6+k

Using Holder inequality and B, condition, we obtain
0

J‘ V(z)dz
|

x=yl/2s|e=y|<p(y) |z - y|2"_4+6

1/q,
< V(z)*d
= (J |z=y|<p(¥) @ Z)

1/q,
dz
X 2n—4+8)q,
|=ylzeyif2 |z — |20

C
s n-2 8
e =y""p(7)
Using Lemma 6 and taking k sufficiently large, we get

Viz)dz
|2n—4+6+k

p(y)* J

lz—y12p(y) |z -y

-2n-8 o i(2n—4+8+k)
<Cp(y) 0y 2 I
j; |z==y[=27p(y)

V(z)dz

o) .
< Cp(y)4—2n—6 ZZ—J(Zn—4+8+k) C]

0 V(z)dz

J |z=yl<p(y)

i1

2-n-8
< Cp(y)

C
S a5
lx =" p(y)

(39)

Therefore,

|f(x,y+h,1) —f(x,y,r)|

< Gy (|m f (40)
(1 =) ey P D)

We also have
V.T(x,9,7) = —J VI (x%21)V ()T (2 y,1)dz, (41)
Rr

where V_I'(x, z, ) satisfies the estimate

lvxr (X, ya T)l < Ck k ! n—-1"° (42)
(14 el = y]) =y
If g, > n, by the same argument as (40), for any 8’ < 1,
|Vx1~“ (x,y +h1)-V.T(x, T)'
< Ce ( | )8/ (43)
(1 =) ey AP D)



By the functional calculus and making use of (40), we obtain

|ﬁy (x,y+h)-F,(x y)'

- o] iy e hn) T () dr

Ce/2 ( Ih| )5
P
x=y"\p()
This proves (26).
Similarly, it follows from (43) that

(44)

|1~Q(x,y+h)—1~€(x,y)|

J (—it)” 1/2(V T(x,y+h7t)- fo(x,y,r))dr

271
C ( Ih| )6
< —
lx=y"\p(»)
(45)
This proves (27). L]

3. Molecular Characterization

Essentially, the proof of Theorem 4 is the same as the usual
molecular theory.

Proof of Theorem 4. By Proposition 1, it is sufficient to prove
that for any HP*“-molecule M(x) admits an atomic decom-
position M = };Aa;, where a; are HP"-atoms and
2l P <C.

We will give the proof in case g = 2. The proof is similar
in the case of ¢ # 2. Suppose M(x) is an Hf’z’e—molecule
centered at x0 Leto = ||M||1/“ Y where ¢ > 1/p-1, a=

1-1/p+e, b=1/2+e.Ifo < ptlp(xo)”, we return the usual
molecular theory (cf. [8]). Thus nothing needs to be proved.
Suppose 0 > u; p(x)". Set

B = {x:|x— x| < 2% "0, k=0,1,2,...,
(46)
EOZBO’ Ek:Bk\Bk—l’ k:1,2,....
Then
M(x)= ) M(x) xp, (x) = Y M (x). (47)
k=0 k=0

Note that supp M, ¢ B, and 26" > p(x,), k =

0,1,2,.... Also we have
IMo|l,> < IMll2 = 0°F = |By|"*72, (48)
P = 2 e
< 2—(k—1)nb "M"a/ a-b)

(49)
_ 2—(k—1)nb oa—b

znb—kna lBkll/Z*I/P'
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Thus My(x) = Aai(x), k = 0,1,2,..., where a; are H-
atoms and Y- AP < C.

Originally, the sum in (47) converges pointwise. When
p = 1, it is easy to see that the sum in (47) converges in L. If

nf(n+68) < p<1, foranygeAl/p b

[(1+ ") g

LZ

1/2 00
- <J’ |g(x)|2dX> N Zz—(k—l)nbp(o)—nb
|x|<p(0) k=1

1/2
x <J : l9 (x)lzdx> (50)
2k-1 p(0)<|x]<2* p(0)

<C Yot gl

1/p-1
=0 /p

<C gl

1/p- 1‘

Therefore,

(1+1x™) "

[Mgl < (1 +1x™) M|,

< 0o. (51)
LZ

It follows that the sum in (47) converges in (AL1 / P*l)*' The
proof of Theorem 4 is completed.

4. H-Boundedness

In this section, we prove the boundedness of L7 on Hf ,n/(n+
8) < p < 1. When g, > n, the boundedness of VL™/? on
H?, n/(n+n) < p <1, can be proved by the same method.
In fact, their kernels satisfy similar estimates.

Let a(x) be an Hf’q—atom associated with a ball B(x,, 1)
for some suitable q. If ¥ > p(x,), we will prove that L7a(x)
is an H*-molecule up to a constant factor. If r < p(x,),
La(x) may be notan H 1{) “+_molecule up to a constant factor
but (~A)"a(x)is (cf. [9]). We will prove that (L —(—=A)")a(x)
isan HP*-molecule up to a constant factor for some suitable
e. This means that |L7a(x)]| S C uniformly. Because

the semigroup maximal function M"f is subadditive, by
Proposition 1, L is bounded on HY, n/(n + 8) < p<L
First, let r > p(x,). Because

|L%a ()], < Clla ()l < C |B(xr)|"",  (52)

wheree > 1/p—1, a=1-1/p+e, b=1-1/q+¢€, wehave

l/a "5 1 px)". (53)

| 2 G
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Thus there needs no the cancelation condition. We only need
to estimate /(L' a). Write

<JW |x - x0|an'LiVa (x)'qu>l/q

. l/q
< (J |x - x0|an|Llya (x)|qu>
B(x0,2r)

(54)
) l/q
+ (j | - xo|an|L”’a (x)|qu)
|x—x0|22r
=1, +1,.
It is obvious that
bl 7i b
L <r" "LWa (x)”Lq < C |B(xq,7)] 5

x [la ()0 < C |B(x0,7)|"-

For y € B(x,r),if p(y) > r,by Lemma 9, p(y) < C p(x,) <
Cr. Note that |[x — y| ~ |x — x| when x ¢ B(xy,2r),y €
B(x, ). Using Lemma 10, we get

_ nb
I, = |x - x0|
|x—xy|=2r B(xg,r)

< |FE (x y)a(y)'dy)qu>l/q

nb
<[, e0la(f e
B(xy,r) |x—x0 | >2r
q a
L
x |y (%) dx) (56)

N
= C JB(xO,r) |a (y)| " dy

b-n-N a
X J |x - x0|(" N4 dx)
|x—x0|22r

<C rn—n/p+Nrnb—n/q'—N
< C |B(x.7)["*
and provide N > ne. Therefore,
'||x - x0|nbLiya (x)"Lq < C |B(xq,1)|" (57)
It follows that

. 1-a/b
||x - xolnbL'Va (x)"Lq <C.

(58)

N (Liya) = ‘u?_”"Liya (x)"z:b

Let us estimate

Next, suppose r < pxp).

(LY = (=A)")a(x)] ;4. Consider

(I,
([ - corpot)
+ (LY - (-8)") a (x)["dx "
2r§|x—x0|<2p(xo)

. . g 1/q
iy ANy
+ (J|xx0|>2p(x0) '(L (=A) )a(x)| dx)

=]1+]2+]3-

(LY - (-8)")a (x)|qu>1/q

(59)

Note that p(y) ~ p(x,), when y € B(x,,r) and by Lemma 10,
we have

Ji

B <L(x0,zr (JB(xo,r) 'ﬁ" (oy)a (y)' dy>qu>1/q

—_ l/q
<[ woN(] IR Gaax)
B(xg,r) B(xy,2r)

dx a

-8

< CJ la ()] p(xo) <J — o > dy
B(xor) B(xo.2r) |x — y|

1/q
-8 _nnfp J dx )
< Cp(x, r —
P( 0) ( B(03) |x|(n_5)q

< Cplie) s
n(a—b)
< Cp(x,) .
(60)

Here we choose g such that 1 < g < n/(n - §) and n/q —
n/p+ 306 > 0 or, equivalently, 1 < g < np/(n — ps). When
2r < |x — x| < 2p(x,), using the cancelation condition of a
and Lemma 13, we obtain

(L7 = (=8)") a ()|

Jo  (Brs2) = Fy (o x0)a () dy

< CP(’CO)_(S (61)



It follows that

1
dx ) /q
nq
rslx—x0|<2p(x0) |X - XOI

et |

< Cplxy) e
< Cpliry)" ™.
(62)
When |x — x,| = 2p(x,), by (29), we have
(17 - 8 a @)
= J (ﬁy(x,y)—ﬁy(x,xo))a(y)dy
B(xg,r)
C J 5 (63)
S —05 la ()] [y = x| dy
|X _ x0|n+§ B(xo,r) 0
C rn—n/p+6
- |X _ x0|n+8 :
Then
1/q
Iy < Crnn/pw(] dx(ma) )
beesaf226(50) [ — g 70
) (64)
< Crn—n/p+8p(xo)—n/q =
< Cplix,)" ™.

We have seen that
i i 1/(a-b) 1 n
(L - o) a2 c P (69)
As above, there needs no the cancelation condition . To finish
the proof, we only need to prove 4 ((L" - (-A)?")a) < C or,
equivalently,
nb i i
l'|x - x| (L Y _(=A) y) a (x)"m < C p(x)™. (66)

Write

. . 1/q
([ bl ™ 17 - -0 aof'ex)
R
nbq | iy iy q V4
< <J |x—x0| |L - (-A) a(x)| dx)
B(x,2p(x¢))

. ) 1/q
+ (J |x - x0|"bq 'L’V—(—A)’ya (x)'qu>
|x—2x0122p(x,)

=H, + H,.
(67)
It is clear that

H, < Cp(xo)"|LY = (-8)"a (1)), < Cplx)™.  (68)
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By (63),

1/q
H, < Crnn/pﬂs(J X - x0|(nb—n—8)qu>

|x—x0|22p(x0)

s (69)
Crn—n/p+6p(x0)nb §-n/q

IA

IN

Cp(xo)™,

where we have taken € such that 1/p — 1 < e < §/n, which
implies that (nb — n — §)q + n < 0. The proof is complete.

5. H,-Boundedness

In this section we prove the boundedness of VL2 on H;
when n/2 < gy < n.

Let a(x) be an H i’q—atom associated with a ball B(x, 1)

for some suitable g. As the above section, if r > p(x,),
we will prove that vL Y 2a(x) is an H i’q‘e-molecule up to a
constant factor. If ¥ < p(x,), we will prove that (VL7V2 -
V(—A)_l/ Ha(x) is an Hi’q’e—molecule up to a constant factor
for some suitable €. In any case we have ||VL_1/2a(x)||Hf <C

uniformly.
Suppose r > p(x,). It follows from Lemma 11 that

|vL7a )], < Cla@l, < C [B(xpr)"™,  (70)

provide 1 < q < p,y, where 1/p, = 1/q,—1/n, a = € >
0, b = 1 - 1/q + €. Thus there needs no the cancelation
condition. Write

1/q
<J |x - x0|an|VL_l/2a (x)|qu>
R"

1/q
< (J |x - x0|an'VL_1/2a (x)'qu)
B(xp,2r)

(71)
Y g 1/q
+ (J |x - x0|" Uy 12 (x)| dx)
|x—x0|22r
=1, +1,.
It is obvious that

I, < r"b”VL_l/za (x)“m

(72)

|a

< C|B (x| la (@)l < C [B(xg0r)|"
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On the other hand, we have

nb
I < (I (J |x - x0|
|x—2xy|>2r B(x,1)

x[RE (x, )| [a ()| >qu)1/qdy

o |
,[B(xo,r) o ()] <J|x_x0|22r | — x| (73)

1/q
X |RL (x, y)|qu> dy

IN

JB(x ) G(y) la ()’)l dy.

Note that [x— y| ~ |x—x,| when |x—x,| > 2rand y € B(x,,r)
and by Lemma 11,

G(»)

< Cp(y

y <J (J‘ V (2)dz >q
|x=x0|>2r B(xlx-yl/4) |z — x|n*1

1/q
dx
N-nb+n-1)q

|x = x|

1/q9
dx
+ (N-nb+n) '
|x—x|=2r |x — x0| 1

Since p(y) < Cr for y € B(x,,r), it is clear that

1/q
I
|x—xo|22r IX _ xol(N—nb+n)q (75)

< Crtld < C |B (x0r)|"

)N

(74)

provide N > na. We have taken q such that 1 < g < p,,
where 1/p, =1/q, —1/n.Let1/q=1/s—1/n.Thens < q,,.
Using the theorem on fractional integrals, B, condition, and
Lemma 8, we obtain

()" J <J p— >q
emxo 220 \JBGxlx—yl/a) |2 — x|
dx a
X |x Cx |(N—nb+n—1)q
0

= 1
N
<
<Cr Z sz < 2+l (n+N-nb-1)q
=1 r<|x—x|< r |x — x0|

1/q

( J V(z)dz )‘1
. — dx
B(x|x-y/4) |z — x|

< Ciz_jN(zjr)_n+nb+l
< &

Vz)dz \1, \"
U B i ) )
Blx,2*'r) \JB(x,|x-y1/9) |2 — X]|

_Cooz_jN 2j —n+nb+1(J
<C27(2) .

1/s
V(x)sdx>

X0,2/t1r)

< Ciz_ﬂ\,(zjr)—mnbﬂ 'B(xo, 2j+11’)'1/s_1
j=1

X J V (x)dx
B(x0,27"1r)

< Ciz_j(N_mn)(zjr)—n+nb+n/s—l
< 4

N -/ (N-11y-ia)
-C 9~ i(N-my—na) na
< C|B(xp,7)|"
(76)

provide N sufficiently large. Thus G(y) < C |B(x,, 7). It
follows that

L < J G(y)la(y)|dy
B(xg,r)

(77)
< C|B(xp,7)|"llall s < C |B(xq,7)]|".
Therefore, |- —xol"bVL_l/zaIILq < C|B(xg 1) and
N(VL?a) < C.
12

In case r < p(x,), we need to prove that (VL™
V(—A)fl/z)a(x) is an Hi’q’e—molecule up to a constant fac-
tor for some suitable e. First we give the estimate of
I(VL™Y2 = V(=A)®)a(x)|l 4. Write

(I,

1/
< (J (VL2 - V(—A)_l/z)a(x)|qu> !
B(x,2p(x))

(VL—1/2 _ V(—A)_l/z) a (x)'qu)l/q

1/
+ (J’ |(VL71/2 - V(—A)fl/z) a (x)|qu> ’
[x=x4122p(x0)

=]t/
(78)
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We have

1/q
e | wO([, L [RGfax) ay
B(xg,r) B(x4,2p(xy))

) JB(x ,r)é(y) |a ()| dy.

(79)

By Lemma 11,

— C
G(y) < —_—
()’) <JB(xo,2P(xu)) |x - yl(n_l)q

q 1/q
{225 )4)
B(xlx-y/4) |z — x| (80)

dx a

-8

+Cp(y) J —— o
B(xg,2p(x,)) |x — y|

=G, (1) +Gy ().

Note that p(y) ~ p(x,) when y € B(x,, r). It is obvious that

~ -n/q n(a-b
G, (v) < Cp(x) - Cp(xy) @, (81)

provide 1 < g < n/(n — §). On the other hand, using the
theorem on fractional integrals and B, condition with s <
qp-1/q=1/s=1/n,and 1 < g < n/(n - 5), we get

G, (y) < y S —
1 (y) - Z szj+1p(x0) —j (n-1)q

=0 <lx—yl<2772 p(x) lx - yl

<J V(z)dz )q >1/q
. — dx
Blxlx-yI/4) |z — x|

00

Y (27p (x)) "

j=0

8 <J|x_y|<zj+2p(x0)

q 1/q
X <J L)cj_zl ) dx)
Bxlx-y1/4) |z — x|

(o]

3™ (]

j=0

IN

IN

1/s
V(x)® dx)

x—y|<277"3p(x)

(]

CZ(Z_jp (xo))72n+n/s+1 J

=0 |x=y]<27p(x,)

IN

V (x)dx

00

CZ (Z,JP (xo))—n+n/s—12,j5

j=0

Cp(x,)

IN

n(a— h)

IN

(82)

Journal of Function Spaces

where we have used Lemma 7 in the last second inequality.
Thus,

], < I G(y)|a(y)|dy < Cplx,)" ™. (83)
B(x(,,r)

Since |x—y| ~ |x—x,| when |x—x,| > 2p(x,) and y € B(x, 1),
[R(x, y)| < C/|x — y|", it is easy to see that

_ 1/q
J, < I Ia(y)IU IR(x,y)lqu> dy
B(xg,r) [x=x,|22p(x,)

1/q
dx

< CJ |a(y)|(J —n) dy

B(xoyr) |x-xo[220(x,) 2 = y[™ (84)

n(a—b)

< CJ la ()] p(xo)™ "y

B(xy,r)

n(a—b)

< Cp(x,) :

Therefore we have
|(ve 2 - v(-8)") a ()|, < Cp(x,)" ™. (85)

As above, there needs no the cancelation condition. Write

(J |x - xo|an'(VL_l/2 - V(—A)_l/z) a (x)|qu>l/q
R"

_ nbq
= (j-B(xU,Zp(xO)) |x xOl

1/q
x |(VL - v(-8)"")a (x)|qu>

nbq -1/2 q 14
+ x—x0| |VL a(x)| dx)

( |X X0l>2p(x¢)

+ |x - x0|"bq

2 q V4
( V(-4)""a (x)| dx)
[x— xo|>2P(Xo)

=H, +H, + H;.
(86)

It is obvious that

< Cp(o) | (VLT = v(=8)") a ()], < Cplxo)™.

(87)
We have

Hs | ja0)
B(x,r)

b
x (j = x| ™
[x—x0|22p(x)

(88)
q 1/q
X 'RL (x,y)| dx) dy

B JB(x ,r)GO (y) |a(y)| dy
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Since |x — y| ~ |x — x| and p(y) ~ p(x,) when |x — x| >
2p(x,) and y € B(x,, 1), by Lemma 11,

Go (y)

< Cp(xo

y <J <J V (z)dz >q
|x-xo|22p(x0) \JBCxle-yifa) |2 — x|" !

1/q
dx
N-nb+n-1)q

lx—x0|(

1/q
dx
+ (N-nb+n)
lx=xol22p(x0) |x — x| 1

Similar to G(y) in the proof of (77), we obtain Gy(y) <
Cp(xy)™ by the same argument. It follows that

)N

(89)

ms|  GlaO)dy=cplu). o0
B(xo,r)

Using the cancelation condition of a,

me | aO(] o
B(xo,1) lx=x0]>2p(x0)

1/q
x |R(x,y) - R(x, x0)|qu> dy

<c| a0
B(x¢,r)
_ qd 1/q
X (J 2 x((:llﬁ—l—fb) ) dy
=2, >2p(x0) |x - Xol a

< CJ la ()| p(x0) ™ dy

B(xg,r)
< Cp(x)™,

o1
where we have taken € such that 0 < € < 1/n. This proves that

|||x - xolnb (VL_U2 - V(—A)_l/z) a (x)l'Lq < Cp(x,)™. (92)

It follows that W/ ((VL™/? - V(—A)_l/z)a) < C. The proof is
completed.
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