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Complex graphics of dynamical system have striking features of fractals and become a wide area of research due to their beauty and
complexity of their nature. The aim of this paper is to study dynamics of relative superior tricorns and multicorns using S-iteration
schemes. Several examples are presented to explore the geometry of relative superior tricorns and multicorns for antipolynomial
𝑧 → 𝑧

𝑛

+ 𝑐 of complex polynomial 𝑧𝑛 + 𝑐 for 𝑛 ≥ 2.

1. Introduction

In 1918, French mathematician Julia [1] investigated the
iteration process of complex function and attained a Julia set.
On the other hand, the object Mandelbrot set was given by
Mandelbrot [2]. In 1989, Crowe et al. [3] considered formal
analogy with Mandelbrot set and named it “Mandelbrot sets”
and showed its feature bifurcations along arcs rather than
at points. The word “tricorn” was coined by Milnor for the
connectedness locus for antiholomorphic polynomials 𝑧2 +
𝑐, which plays an intermediate role between quadratic and
cubic polynomials. Tricorn has many similarities with the
Mandelbrot set due to a compact subset of C.

Milnor [4] found it in a real slice of the cubic connect-
edness locus. Winters [5] explained that boundary of the
tricorn contains a smooth arc. The symmetries of tricorns
and multicorns have been analyzed by Lau and Schleicher
[6]. Nakane and Schleicher [7] presented various properties
of tricorns and multicorns and quoted that the multicorns
are the generalized tricorns or the tricorns of higher order.
They also investigate that the Julia set of a polynomial of
the form 𝑝

𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐 for 𝑛 ≥ 2 is either connected or
disconnected. The set of parameters 𝑐 such that the Julia set
of 𝑝
𝑐
is connected is called the multicorn. Tricorn prints,

such as tricorn mugs and tricorn shirts, are being used for
commercial purpose.

The dynamics of antiholomorphic complex polynomials
𝑧 → 𝑧

𝑛

+ 𝑐 for 𝑛 ≥ 2 was studied and explored using Mann
iteration by Rani [8, 9]. Relative superior tricorns and relative
superior multicorns were introduced using Ishikawa iterates
by Chauhan et al. [10]. Also, they studied their corresponding
relative superior Julia sets.

In this paper we introduce and visualize a new class of
relative superior tricorns and relative superior multicorns
using 𝑆-iteration scheme.

This paper is organized as follows. In Section 2, some
basic definitions are presented. Section 3 contains the escape
criterion for relative superior tricorns and multicorns. In
Section 4, we generate relative superior tricorns and mul-
ticorns of 𝑆-iteration scheme for quadratic, cubic, and
biquadratic functions. At last, paper has been concluded in
Section 5.

2. Preliminaries

Definition 1 (see [11], multicorn). The multicorn 𝐴
𝑐
for the

quadratic function 𝐴
𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐 is defined as the collection
of all 𝑐 ∈ C for which the orbit of the point 0 is bounded; that
is,

𝐴
𝑐
= {𝑐 ∈ C : 𝐴

𝑛

𝑐
(0) does not tend to ∞} , (1)
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where C is a complex space and 𝐴
𝑛

𝑐
is the 𝑛th iterate of

the function 𝐴
𝑐
(𝑧). An equivalent formulation is that the

connectedness of loci for higher degree antiholomorphic
polynomials 𝐴

𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐 is called multicorns.

Notice that, at 𝑛 = 2, multicorns reduce to tricorn.
Moreover, the tricorn naturally lives in the real slice 𝑑 = 𝑐

in the two-dimensional parameter space of maps 𝑧 → (𝑧
2

+

𝑑)
2

+𝑐.They have (𝑛+1)-fold rotational symmetries. Also, by
dividing these symmetries, the resultingmulticorns are called
unicorns [7].

Definition 2 (see [12], 𝑆-iteration scheme for relative superior
tricorns andmulticorns). Let𝑋 be a subset of real or complex
numbers and 𝑓 : 𝑋 → 𝑋. For 𝑥

0
∈ 𝑋, one constructs the

sequences {𝑥
𝑛
} and {𝑦

𝑛
} in𝑋 in the following manner:

𝑥
𝑛
= (1 − 𝑠

𝑛−1
) 𝑓 (𝑥

𝑛−1
) + 𝑠
𝑛−1

𝑓 (𝑦
𝑛−1

) ,

𝑦
𝑛
= (1 − 𝑠

󸀠

𝑛
) 𝑥
𝑛
+ 𝑠
󸀠

𝑛
𝑓 (𝑥
𝑛
) ,

(2)

where 0 < 𝑠
𝑛
< 1, 0 < 𝑠

󸀠

𝑛
< 1, and 𝑠

𝑛
, 𝑠󸀠
𝑛
both are convergent

to nonzero number.
The sequences {𝑥

𝑛
} and {𝑦

𝑛
} constructed above are called

𝑆-iteration scheme sequences of iterations or relative superior
sequences of iterates. We denote it by RSO(𝑥

0
, 𝑠
𝑛
, 𝑠
󸀠

𝑛
, 𝑡).

Definition 3 (Mandelbrot set). TheMandelbrot set𝑀 consists
of all parameters 𝑐 for which the filled Julia set of 𝑄

𝑐
is

connected; that is

𝑀 = {𝑐 ∈ 𝐶 : 𝐾 (𝑄
𝑐
) is connected} . (3)

In fact, 𝑀 contains an enormous amount of information
about the structure of Julia sets. The Mandelbrot set 𝑀 for
the quadratic 𝑄

𝑐
(𝑧) = 𝑧

2

+ 𝑐 is defined as the collection of all
𝑐 ∈ 𝐶 for which the orbit of the point 0 is bounded; that is,

𝑀 = {𝑐 ∈ 𝐶 : {𝑄
𝑛

𝑐
(0)} (𝑛 = 0, 1, 2, . . .) is bounded} . (4)

We choose the initial point 0, as 0 is the only critical point of
𝑄
𝑐
[11].

3. Escape Criterion for Relative Superior
Tricorns and Multicorns

The escape criterion plays an important role in the generation
and analysis of relative superior tricorns and multicorns. We
now obtain a general escape criterion for polynomials of the
form 𝐺

𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐.

Theorem 4. For general function 𝐺
𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐, 𝑛 =

1, 2, 3, . . ., suppose that |𝑧| ≥ |𝑐| > (2/𝑠)
1/𝑛−1 and |𝑧| ≥ |𝑐| >

(2/𝑠
󸀠

)
1/𝑛−1, where 0 < 𝑠, 𝑠󸀠 < 1, and 𝑐 is a complex number.

Define

𝑧
1
= (1 − 𝑠) (𝑧

𝑛

+ 𝑐) + 𝑠𝐺
𝑐
(𝑧) ,

.

.

.

𝑧
𝑛
= (1 − 𝑠) (𝑧

𝑛

𝑛−1
+ 𝑐) + 𝑠𝐺

𝑐
(𝑧
𝑛−1

) .

(5)

Then |𝑧
𝑛
| → ∞ as 𝑛 → ∞. Thus the general escape criterion

ismax{|𝑐|, (2/𝑠)1/𝑛−1, (2/𝑠󸀠)1/𝑛−1}.

Proof. We will use induction. For 𝑛 = 1, we get 𝐺
𝑐
(𝑧) =

𝑧 + 𝑐, so the escape criterion is |𝑐|, which is obvious; that
is, |𝑧| > max{|𝑐|, 0, 0}. For 𝑛 = 2, we get 𝐺

𝑐
(𝑧) = 𝑧

2

+ 𝑐

so the escape criterion is |𝑧| > max{|𝑐|, 2/𝑠, 2/𝑠󸀠}. For 𝑛 =

3, we get 𝐺
𝑐
(𝑧) = 𝑧

3

+ 𝑐 so the escape criterion is |𝑧| >

max{|𝑐|, (2/𝑠)1/2, (2/𝑠󸀠)1/2}.
Now suppose that theorem is true for any 𝑛. Let 𝐺

𝑐
(𝑧) =

𝑧
𝑛+1

+ 𝑐 and |𝑧| ≥ |𝑐| > (2/𝑠)
1/𝑛 and |𝑧| ≥ |𝑐| > (2/𝑠

󸀠

)
1/𝑛 exist.

Then for 𝐺󸀠
𝑐
(𝑧) = 𝑧

𝑛+1

+ 𝑐, consider
󵄨
󵄨
󵄨
󵄨
𝐺
𝑐
(𝑧)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠

󸀠

) 𝑧 + 𝑠
󸀠

𝐺
󸀠

𝑐
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠

󸀠

) 𝑧 + 𝑠
󸀠

(𝑧
𝑛+1

+ 𝑐)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠

󸀠

) 𝑧 + 𝑠
󸀠

𝑧
𝑛+1

+ 𝑠
󸀠

𝑐

󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛+1

+ (1 − 𝑠
󸀠

) 𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑐

󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛+1

+ (1 − 𝑠
󸀠

) 𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧

󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠

󸀠

) 𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑠
󸀠

|𝑧|

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
− |𝑧| + 𝑠

󸀠

|𝑧| − 𝑠
󸀠

|𝑧|

≥ |𝑧| (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
− 1) .

(6)

Also, for

𝑧
𝑛
= (1 − 𝑠) 𝑓 (𝑧

𝑛−1
) + 𝑠𝐺

𝑐
(𝑧) , (7)

we obtain
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠) (𝑧

𝑛+1

+ 𝑐) + 𝑠 |𝑧| (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − 𝑠) 𝑧

𝑛+1

+ (1 − 𝑠) 𝑐 + 𝑠 |𝑧|

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
󸀠

𝑧
𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑠 |𝑧|

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠𝑠
󸀠

|𝑧| ⋅
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛󵄨
󵄨
󵄨
󵄨
− 𝑠 |𝑧| + (1 − 𝑠) 𝑧

𝑛+1

+ (1 − 𝑠) 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠𝑠
󸀠

|𝑧| ⋅
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛󵄨
󵄨
󵄨
󵄨
− 𝑠 |𝑧| − (𝑠 − 1) 𝑧

𝑛+1
󵄨
󵄨
󵄨
󵄨
󵄨
− |(1 − 𝑠) 𝑐|

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠𝑠
󸀠
󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑠 |𝑧|

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑠 − 1) 𝑧

𝑛+1
󵄨
󵄨
󵄨
󵄨
󵄨
− (1 − 𝑠) |𝑧|

≥ 𝑠𝑠
󸀠
󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑠 |𝑧| − (𝑠 − 1)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
− |𝑧| + 𝑠 |𝑧|

≥ (𝑠𝑠
󸀠

− 𝑠 + 1)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
− |𝑧|

≥ |𝑧| ((𝑠𝑠
󸀠

− 𝑠 + 1)
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛󵄨
󵄨
󵄨
󵄨
− 1) .

(8)

Since |𝑧| > (2/𝑠)
1/𝑛 and |𝑧| > (2/𝑠

󸀠

)
1/𝑛 it follows that |𝑧𝑛| >

2/𝑠 and |𝑧𝑛| > 2/𝑠
󸀠. It can be easily seen that

󵄨
󵄨
󵄨
󵄨
𝑧
𝑛󵄨
󵄨
󵄨
󵄨
>

2

(𝑠𝑠
󸀠
)

>

2

(𝑠𝑠
󸀠
− 𝑠 + 1)

, (9)

which implies that

(𝑠𝑠
󸀠

− 𝑠 + 1)
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛󵄨
󵄨
󵄨
󵄨
− 1 > 1. (10)
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Hence there exists 𝜆 > 0 such that (𝑠𝑠󸀠 − 𝑠+ 1)|𝑧𝑛| − 1 > 1+𝜆.
Consequently

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
> (1 + 𝜆) |𝑧| ,

.

.

.

󵄨
󵄨
󵄨
󵄨
𝑧
𝑛

󵄨
󵄨
󵄨
󵄨
> (1 + 𝜆)

𝑛

|𝑧| .

(11)

Hence |𝑧
𝑛
| → ∞ as 𝑛 → ∞. So |𝑧| > max{|𝑐|, (2/𝑠)1/𝑛,

(2/𝑠
󸀠

)
1/𝑛

} is the escape criterion. This completes the proof.

Corollary 5. Suppose that |𝑐| > (2/𝑠)
1/𝑛−1 and |𝑐| > (2/𝑠

󸀠

)
1/𝑛−1

exist. Then the relative superior orbit of 𝑆-iteration scheme
RSO(𝐺

𝑐
, 0, 𝑠, 𝑠

󸀠

) escapes to infinity.

Corollary 6. Assume that |𝑧
𝑘
| > max{|𝑐|, (2/𝑠)1/𝑘−1,

(2/𝑠
󸀠

)
1/𝑘−1

} for some 𝑘 ≥ 0. Then |𝑧
𝑘+1

| > 𝛾
𝑛

|𝑧
𝑘
| and |𝑧

𝑛
| →

∞ as 𝑛 → ∞.

This corollary provides an algorithm for computing the
relative superiorMandelbrot sets for the functions of the form
𝐺
𝑐
(𝑧) = 𝑧

𝑛

+ 𝑐 and 𝑛 = 2, 3, . . . also gives escape criterion to
generate relative superior tricorns and multicorns.

4. Generation of Relative Superior
Tricorns and Multicorns

We generate relative superior tricorns and multicorns of
𝑆-iteration scheme for quadratic, cubic, and biquadratic
functions using software MAPLE.

4.1. Relative Superior Tricorns for Quadratic Functions. In
case of quadratic antipolynomial, relative superior tricorns
maintain the symmetry along 𝑥-axis (Figures 1–6).

4.2. Relative Superior Multicorns for Cubic Functions. In
case of cubic antipolynomial, relative superior multicorns
maintain the symmetry along 𝑥-axis and 𝑦-axis (Figures 7–
12).

4.3. Relative Superior Multicorns for Biquadratic Functions.
In case of biquadratic antipolynomial, relative superior mul-
ticorns maintain the symmetry along 𝑥-axis (Figures 13–18).

4.4. Generalization of Relative Superior Multicorns. See Fig-
ures 19–24.

5. Conclusions

In this paper relative superior antifractal has been visual-
ized with respect to relative superior orbit and analyzed
the pattern of symmetry among them. In the dynamics of
antipolynomials 𝑧 → 𝑧

𝑛

+ 𝑐 for 𝑛 ≥ 2, we obtained many
relative superior tricorns and multicorns for the same value
of 𝑛 by using different values of 𝑠 and 𝑠󸀠 in 𝑆-iteration scheme.
We found that the number of branches and main ovoids
attached to the branches of the relative superior tricorns and

Figure 1: Relative superior tricorn for 𝑠 = 1.0 and 𝑠󸀠 = 1.0.

Figure 2: Relative superior tricorn for 𝑠 = 0.2 and 𝑠󸀠 = 0.4.

Figure 3: Relative superior tricorn for 𝑠 = 0.4 and 𝑠󸀠 = 0.3.
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Figure 4: Relative superior tricorn for 𝑠 = 0.6 and 𝑠󸀠 = 0.5.

Figure 5: Relative superior tricorn for 𝑠 = 0.4 and 𝑠󸀠 = 0.7.

Figure 6: Relative superior tricorn for 𝑠 = 0.3 and 𝑠󸀠 = 0.7.

Figure 7: Relative superior multicorn for 𝑠 = 1.0 and 𝑠󸀠 = 1.0.

Figure 8: Relative superior multicorn for 𝑠 = 0.3 and 𝑠󸀠 = 0.5.

Figure 9: Relative superior multicorn for 𝑠 = 0.2 and 𝑠󸀠 = 0.6.
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Figure 10: Relative superior multicorn for 𝑠 = 0.6 and 𝑠󸀠 = 0.5.

Figure 11: Relative superior multicorn for 𝑠 = 0.4 and 𝑠󸀠 = 0.3.

Figure 12: Relative superior multicorn for 𝑠 = 0.3 and 𝑠󸀠 = 0.8.

Figure 13: Relative superior multicorn for 𝑠 = 1.0 and 𝑠󸀠 = 1.0.

Figure 14: Relative superior multicorn for 𝑠 = 0.5 and 𝑠󸀠 = 0.6.

Figure 15: Relative superior multicorn for 𝑠 = 0.1 and 𝑠󸀠 = 0.8.
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Figure 16: Relative superior multicorn for 𝑠 = 0.2 and 𝑠󸀠 = 0.6.

Figure 17: Relative superior multicorn for 𝑠 = 0.7 and 𝑠󸀠 = 0.4.

Figure 18: Relative superior multicorn for 𝑠 = 0.3 and 𝑠󸀠 = 0.8.

Figure 19: Relative superior multicorn for 𝑠 = 0.01, 𝑠󸀠 = 0.4, and
𝑛 = 5.

Figure 20: Relative superior multicorn for 𝑠 = 0.3, 𝑠󸀠 = 0.4, and
𝑛 = 7.

Figure 21: Relative superior multicorn for 𝑠 = 0.6, 𝑠󸀠 = 0.5, and
𝑛 = 8.
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Figure 22: Relative superior multicorn for 𝑠 = 0.2, 𝑠󸀠 = 0.7, and
𝑛 = 10.

Figure 23: Relative superior multicorn for 𝑠 = 0.3, 𝑠󸀠 = 0.6, and
𝑛 = 12.

Figure 24: Relative superior multicorn for 𝑠 = 0.4, 𝑠󸀠 = 0.6, and
𝑛 = 16.

multicorns had been 𝑛 + 1, where 𝑛 is the power of 𝑧. We
also found that for 𝑛 is odd the symmetry of relative superior
multicorn is about both 𝑥-axis and 𝑦-axis but for 𝑛 is even the
symmetry is maintained only along 𝑥-axis. We believe that
results of this paper will inspire those who are interested in
generating automatically nicely looking graphics.
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