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The main purpose of this study is to introduce the spaces 𝑐𝑠𝜆, 𝑐𝑠𝜆
0
, and 𝑏𝑠

𝜆 which are 𝐵𝐾-spaces of nonabsolute type. We prove that
these spaces are linearly isomorphic to the spaces 𝑐𝑠, 𝑐𝑠

0
, and 𝑏𝑠, respectively, and derive some inclusion relations. Additionally,

Schauder bases of the spaces 𝑐𝑠
𝜆 and 𝑐𝑠

𝜆

0
have been constructed and the 𝛼-, 𝛽-, and 𝛾-duals of these spaces have been computed.

Besides, we characterize some matrix classes from the spaces 𝑐𝑠𝜆, 𝑐𝑠𝜆
0
, and 𝑏𝑠

𝜆 to the spaces ℓ𝑝, 𝑐, and 𝑐0, where 1 ≤ 𝑝 ≤ ∞. Finally,
we examine some geometric properties of these spaces as Gurařı’s modulus of convexity, property 𝑚∞, property (𝑀), property
WORTH, nonstrict Opial property, and weak fixed point property.

1. Introduction

By a sequence space, we understand a linear subspace of the
space 𝑤 = CN, where N = {0, 1, 2, . . .} and C denotes the
complex field. A sequence space 𝐸 with a linear topology is
called a 𝐾-space provided each of the maps 𝑝𝑖 : 𝐸 → C
defined 𝑝𝑖(𝑥) = 𝑥𝑖 which is continuous for all 𝑖 ∈ N. A 𝐾-
space is called an 𝐹𝐾-space provided 𝐸 is a complete linear
metric space. An 𝐹𝐾-space whose topology is normable is
called a 𝐵𝐾-space (see [1, pages 272-273]) which contains 𝜙,
the set of all finitely nonzero sequences.Wewrite ℓ∞, 𝑐, and 𝑐0
for the spaces of all bounded, convergent, and null sequences,
respectively. Also by ℓ𝑝, we denote the space of all 𝑝-
absolutely summable sequences, where 1 ≤ 𝑝 < ∞. More-
over, we write 𝑏𝑠, 𝑐𝑠, and 𝑐𝑠0 for the spaces of all bounded,
convergent, and null series, respectively.

Let 𝜇 and ] be two sequence spaces, and let 𝐴 = (𝑎𝑛𝑘) be
an infinite matrix of complex numbers 𝑎𝑛𝑘, where 𝑛, 𝑘 ∈ N.
Then we say that 𝐴 defines a matrix transformation from 𝜇

into ], and we denote it by writing 𝐴 : 𝜇 → ] if for every
sequence 𝑥 = (𝑥𝑘) ∈ 𝜇, the sequence 𝐴𝑥 = {(𝐴𝑥)𝑛}, the 𝐴-
transform of 𝑥, is in ], where

(𝐴𝑥)𝑛 := ∑

𝑘

𝑎𝑛𝑘𝑥𝑘, (𝑛 ∈ N, 𝑥 ∈ 𝐷00 (𝐴)) , (1)

and by𝐷00(𝐴) denotes the subspace of𝑤 consisting of 𝑥 ∈ 𝑤

for which the sum exists as a finite sum. For simplicity in
notation, here and in what follows, the summation without
limits runs from 0 to ∞ and we will use the convention that
any term with a negative subscript is equal to naught; for
example, 𝜆−1 = 0 and 𝑥−1 = 0.

By (𝜇 : ]), we denote the class of all matrices 𝐴 such that
𝐴 : 𝜇 → ]. Thus 𝐴 ∈ (𝜇 : ]) if and only if the series on the
right side of (1) converges for each 𝑛 ∈ N and each 𝑥 ∈ 𝜇 and
we have 𝐴𝑥 = {(𝐴𝑥)𝑛}𝑛∈N ∈ ] for all 𝑥 ∈ 𝜇. For an arbitrary
sequence space 𝜇, thematrix domain 𝜇𝐴 of an infinite matrix
𝐴 in 𝜇 is defined by

𝜇𝐴 := {𝑥 ∈𝑤 : 𝐴𝑥 ∈ 𝜇} , (2)

which is a sequence space. If𝐴 is triangle, then one can easily
observe that the normed sequence spaces 𝜇𝐴 and 𝜇 are norm
isomorphic; that is, 𝜇𝐴 ≅ 𝜇. If 𝜇 is a sequence space, then the
continuous dual 𝜇∗

𝐴
of the space 𝜇𝐴 is defined by

𝜇
∗

𝐴
:= {𝑓 : 𝑓 =𝑔 ∘𝐴, 𝑔 ∈ 𝜇

∗
} . (3)

We denote the collection of all finite subsets ofN byF. Also,
we will write 𝑒

(𝑘) for the sequence whose only nonzero term
is 1 in the 𝑘th place for each 𝑘 ∈ N. Throughout this paper,
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let 𝜆 = (𝜆𝑘) be a strictly increasing sequence of positive real
numbers tending to infinity; that is,

0 < 𝜆0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ ,

lim
𝑘→∞

𝜆𝑘 = ∞.

(4)

We define the matrix Λ = (𝜆𝑛𝑘) of weighted mean relative to
the sequence 𝜆 by

𝜆𝑛𝑘 =

{

{

{

𝜆𝑘 − 𝜆𝑘−1
𝜆𝑛

, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(5)

for all 𝑘; 𝑛 ∈ N. With a direct calculation we derive the equal-
ity

(Λ𝑥)𝑛 =

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) 𝑥𝑘; (𝑛 ∈ N) . (6)

It is easy to show that the matrix Λ is regular and is reduced,
in the special case 𝜆𝑘 = 𝑘 + 1 for all 𝑘 ∈ N to the matrix 𝐶1
of Cesàro means of order one. Introducing the concept of Λ-
strong convergence, several results onΛ-strong convergence of
numerical sequences and Fourier series were given byMóricz
[2]. Since we have in the special case

𝑄𝑛 =

𝑛

∑

𝑘=0
𝑞𝑘 = 𝜆𝑛,

𝑟𝑛𝑘 =

𝑞𝑘

𝑄𝑛

=

𝜆𝑘 − 𝜆𝑘−1
𝜆𝑛

= 𝜆𝑛𝑘,

(7)

𝑞𝑘 = 𝜆𝑘−𝜆𝑘−1 for all 𝑘 ∈ N, thematrixΛ is also reduced to the
Riesz means 𝑅𝑞 = (𝑟𝑛𝑘)with respect to the sequence 𝑞 = (𝑞𝑘).

We summarize the knowledge in the existing literature
concerning domain of the matrix 𝜆 over some sequence
spaces. Mursaleen and Noman [3–6] introduced the spaces
ℓ
𝜆

∞
, 𝑐𝜆, 𝑐𝜆0 , and ℓ

𝜆

𝑝
of lambda-bounded, lambda-convergent,

lambda-null, and lambda-absolutely 𝑝-summable sequences
and gave the inclusion relations between these spaces and the
classical sequence spaces ℓ∞, 𝑐, and 𝑐0. Later, Mursaleen and
Noman [7] investigated the difference spaces 𝑐𝜆0 (Δ) and 𝑐

𝜆
(Δ)

obtained from the spaces 𝑐
𝜆

0 and 𝑐
𝜆. Recently, paranormed

𝜆-sequence spaces of nonabsolute type have been studied
by Karakaya et al. [8]. More recently, Sönmez and Başar [9]
introduce the difference sequence spaces 𝑐

𝜆

0 (𝐵) and 𝑐
𝜆
(𝐵),

which are the generalization of the spaces 𝑐
𝜆

0 (Δ) and 𝑐
𝜆
(Δ).

Quite recently, some new sequence spaces of nonabsolute
type and matrix transformations have been studied by Ganie
and Sheikh [10]. The same authors have studied the spaces of
𝜆-convergent sequences and almost convergence [11]. Also,
the fine spectrum of the operator defined by lambda matrix
over the spaces of null and convergent sequences has been
studied by Yeşilkayagil and Başar [12].

In this work, our purpose is to construct the sequence
spaces 𝑐𝑠𝜆0 , 𝑐𝑠

𝜆, and 𝑏𝑠
𝜆 by the domain of the matrix Λ in the

spaces 𝑐𝑠0, 𝑐𝑠, and 𝑏𝑠, respectively, of the series whose seque-
nce of partial sums are in the spaces 𝑐0, 𝑐, and ℓ∞ [3].

We define the sequence 𝑦 = (𝑦𝑘) by the Λ-transform Λ𝑥

of a sequence 𝑥 = (𝑥𝑘); that is, 𝑦 = Λ𝑥, and so we have

𝑦𝑘 :=

1
𝜆𝑘

𝑘

∑

𝑗=0
(𝜆𝑗 −𝜆𝑗−1) 𝑥𝑗; (𝑘 ∈ N) . (8)

Also, we say that a sequence 𝑥 = (𝑥𝑘) ∈ 𝑤 is 𝜆-convergent if
Λ𝑥 ∈ 𝑐. In particular, we say that 𝑥 is 𝜆-null or 𝜆-bounded if
Λ𝑥 ∈ 𝑐0 or ℓ∞, respectively.

2. The Sequence Spaces 𝑐𝑠
𝜆, 𝑐𝑠𝜆
0

, and 𝑏𝑠
𝜆

In the present section, we introduce the sequence spaces 𝑐𝑠𝜆,
𝑐𝑠
𝜆

0 , and 𝑏𝑠
𝜆 as the sets of all sequences whose Λ-transforms

are in the spaces 𝑐𝑠, 𝑐𝑠0, and 𝑏𝑠, respectively; that is,

𝑐𝑠
𝜆
= {𝑥= (𝑥𝑘)

∈𝑤 : lim
𝑚→∞

𝑚

∑

𝑛=0

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) 𝑥𝑘 exists} ,

(9)

𝑐𝑠
𝜆

0 = {𝑥= (𝑥𝑘)

∈𝑤 : lim
𝑚→∞

𝑚

∑

𝑛=0

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) 𝑥𝑘 = 0} ,

(10)

𝑏𝑠
𝜆
= {𝑥= (𝑥𝑘) ∈𝑤 : sup

𝑚












𝑚

∑

𝑛=0

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) 𝑥𝑘












<∞} .

(11)

With the notation of (2), we can redefine the spaces 𝑐𝑠
𝜆,

𝑐𝑠
𝜆

0 , and 𝑏𝑠
𝜆 as the matrix domains of the triangle Λ in the

spaces 𝑐𝑠, 𝑐𝑠0, and 𝑏𝑠 by

𝑐𝑠
𝜆
= (𝑐𝑠)Λ ,

𝑐𝑠
𝜆

0 = (𝑐𝑠0)Λ ,

𝑏𝑠
𝜆
= (𝑏𝑠)Λ .

(12)

Then, it is immediate by (12) that the sets 𝑐𝑠
𝜆, 𝑐𝑠𝜆0 , and

𝑏𝑠
𝜆 are linear spaces with coordinatewise addition and scalar

multiplication; that is, 𝑐𝑠
𝜆, 𝑐𝑠
𝜆

0 , and 𝑏𝑠
𝜆 are the sequence

spaces consisting of all sequences which are 𝜆-convergent, 𝜆-
null, and 𝜆-bounded series of type 𝜆, respectively.

Now, we may begin with the following theorem which is
essential in the text.

Theorem 1. The sequence spaces 𝑐𝑠
𝜆, 𝑐𝑠
𝜆

0 , and 𝑏𝑠
𝜆 are BK-

spaces with the same norm ‖𝑥‖𝑐𝑠𝜆 = ‖𝑥‖
𝑐𝑠𝜆0

= ‖𝑥‖𝑏𝑠𝜆 ; that is,

‖𝑥‖𝑏𝑠𝜆 = ‖Λ𝑥‖𝑏𝑠 = sup
𝑚












𝑚

∑

𝑛=0
(Λ𝑥)𝑛












< ∞. (13)
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Proof. Since (12) holds and 𝑐𝑠, 𝑐𝑠0, and 𝑏𝑠 are 𝐵𝐾-spaces with
the respect to their natural norms and the matrix Λ is a
triangle, Theorem 4.3.12 of Wilansky [13, page 63] gives the
fact that 𝑐𝑠𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠

𝜆 are𝐵𝐾-spaces with the given norms.
This completes the proof.

Remark 2. One can easily check that the absolute property
does not hold on the spaces c𝑠𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠

𝜆; that is, ‖𝑥‖𝑐𝑠𝜆 ̸=

‖|𝑥|‖𝑐𝑠𝜆 , ‖𝑥‖𝑐𝑠𝜆0 ̸= ‖|𝑥|‖
𝑐𝑠𝜆0
, and ‖𝑥‖𝑏𝑠𝜆 ̸= ‖|𝑥|‖𝑏𝑠𝜆 for at least one

sequence in the spaces 𝑐𝑠
𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠

𝜆, and this shows that
𝑐𝑠
𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠

𝜆 are the sequence spaces of nonabsolute type,
where |𝑥| = (|𝑥𝑘|).

Now, we give the final theorem of this section.

Theorem 3. The sequence spaces 𝑐𝑠𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠
𝜆 of nonabso-

lute type are isometrically isomorphic to the spaces 𝑐𝑠, 𝑐𝑠0, and
𝑏𝑠, respectively; that is, 𝑐𝑠𝜆 ≅ 𝑐𝑠, 𝑐𝑠𝜆0 ≅ 𝑐𝑠0, and 𝑏𝑠

𝜆
≅ 𝑏𝑠.

Proof. To prove this, we should show the existence of an iso-
metric isomorphism between the spaces 𝑐𝑠

𝜆

0 and 𝑐𝑠0. Con-
sider the transformation 𝑇 defined, with the notation of (8),
from 𝑐𝑠

𝜆

0 to 𝑐𝑠0 by 𝑥 → 𝑦 = 𝑇𝑥. Then, 𝑇𝑥 = 𝑦 = Λ𝑥 ∈ 𝑐𝑠0
for every 𝑥 ∈ 𝑐𝑠

𝜆

0 and the linearity of 𝑇 is clear. Also, it is
trivial that 𝑥 = 𝜃 whenever 𝑇𝑥 = 𝜃 and hence 𝑇 is injective.
Furthermore, let 𝑦 = (𝑦𝑘) ∈ 𝑐𝑠0 be given and define the
sequence 𝑥 = (𝑥𝑘) by

𝑥𝑘 :=

𝑘

∑

𝑗=𝑘−1
(−1)𝑘−𝑗

𝜆𝑗

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑗; (𝑘 ∈ N) . (14)

Then, by using (8) and (14), we have for every 𝑛 ∈ N that

(Λ𝑥)𝑛 =

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) 𝑥𝑘

=

1
𝜆𝑛

𝑛

∑

𝑘=0

𝑘

∑

𝑗=𝑘−1
(−1)𝑘−𝑗 𝜆𝑗𝑦𝑗

=

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘𝑦𝑘 −𝜆𝑘−1𝑦𝑘−1) = 𝑦𝑛.

(15)

This shows that Λ𝑥 = 𝑦 and since 𝑦 ∈ 𝑐𝑠0, we obtain that
Λ𝑥 ∈ 𝑐𝑠0. Thus, we deduce that 𝑥 ∈ 𝑐𝑠

𝜆

0 and 𝑇𝑥 = 𝑦. Hence
𝑇 is surjective. Moreover, one can easily see for every 𝑥 ∈ 𝑐𝑠

𝜆

0
that

‖𝑇𝑥‖𝑐𝑠0
= ‖𝑥‖𝑐𝑠𝜆0

, (16)

which means that 𝑇 is norm preserving.Therefore 𝑇 is isom-
etry. Consequently 𝑇 is an isometric isomorphism which
shows that the spaces 𝑐𝑠

𝜆

0 and 𝑐𝑠0 are isometrically isomor-
phic.

It is clear that if the spaces 𝑐𝑠𝜆0 and 𝑐𝑠0 are replaced by the
respective one of the spaces 𝑐𝑠𝜆 and 𝑐𝑠 or 𝑏𝑠𝜆 and 𝑏𝑠, then we
obtain the fact that 𝑐𝑠𝜆 ≅ 𝑐𝑠 and 𝑏𝑠

𝜆
≅ 𝑏𝑠. This completes the

proof.

3. The Inclusion Relations

In the present section, we establish some inclusion relations
concerning the spaces 𝑐𝑠

𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠
𝜆. We may begin with

the following lemma.

Lemma 4 (see [3]). For any sequence 𝑥 = (𝑥𝑘) ∈ 𝑤, the
equality

(𝑆𝑥)𝑛 = 𝑥𝑛 − (Λ𝑥)𝑛 ; (𝑛 ∈ N) (17)

holds, where 𝑆𝑥 = {(𝑆𝑥)𝑛} is the sequence defined by

(𝑆𝑥)0 = 0,

(𝑆𝑥)𝑛 =

1
𝜆𝑛

𝑛

∑

𝑘=1
𝜆𝑘−1 (𝑥𝑘 −𝑥𝑘−1) ; (𝑛 ≥ 1) .

(18)

Theorem 5. The inclusions 𝑐𝑠𝜆0 ⊂ 𝑐𝑠
𝜆
⊂ 𝑏𝑠
𝜆 strictly hold.

Proof. It is obvious that the inclusions 𝑐𝑠
𝜆

0 ⊂ 𝑐𝑠
𝜆

⊂ 𝑏𝑠
𝜆 hold.

Let us consider the sequence 𝑥 = (𝑥𝑘) defined by

𝑥𝑘 =

𝜆𝑘 (1/ (𝑘 + 2)2) − 𝜆𝑘−1 (1/ (𝑘 + 1)2)
𝜆𝑘 − 𝜆𝑘−1

;

(𝑘 ∈ N) .

(19)

In the present case, we obtain for every 𝑛 ∈ N that

(Λ𝑥)𝑛 =

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘

1
(𝑘 + 2)2

−𝜆𝑘−1
1

(𝑘 + 1)2
)

=

1
(𝑛 + 2)2

,

(20)

which shows that Λ𝑥 ∈ 𝑐𝑠 \ 𝑐𝑠0. Thus, the sequence 𝑥 is in 𝑐𝑠
𝜆

but not in 𝑐𝑠
𝜆

0 . Hence 𝑐𝑠
𝜆

0 ⊂ 𝑐𝑠
𝜆 is a strict inclusion.

To show the strictness of the inclusion 𝑐𝑠
𝜆

⊂ 𝑏𝑠
𝜆, we

define the sequence 𝑦 = (𝑦𝑘) by

𝑦𝑘 = (−1)𝑘 (
𝜆𝑘 + 𝜆𝑘−1
𝜆𝑘 − 𝜆𝑘−1

) ; (𝑘 ∈ N) . (21)

Then, we have for every 𝑚 ∈ N that

𝑚

∑

𝑛=0
(Λ𝑦)
𝑛
=

𝑚

∑

𝑛=0

1
𝜆𝑛

𝑛

∑

𝑘=0
(−1)𝑘 (𝜆𝑘 +𝜆𝑘−1) =

𝑚

∑

𝑛=0
(−1)𝑛 . (22)

This showsΛ𝑦 ∈ 𝑏𝑠\𝑐𝑠.Thus, the sequence 𝑦 is in 𝑏𝑠
𝜆 but not

in 𝑐𝑠
𝜆 and hence 𝑐𝑠

𝜆
⊂ 𝑏𝑠
𝜆 is a strict inclusion.This concludes

the proof.

Lemma6 (see [3,Theorem4.1.]). The inclusions 𝑐𝜆0 ⊂ 𝑐
𝜆
⊂ ℓ
𝜆

∞

strictly hold.

Theorem 7. The inclusions 𝑐𝑠
𝜆

⊂ 𝑐
𝜆

0 and 𝑏𝑠
𝜆

⊂ ℓ
𝜆

∞
strictly

hold.
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Proof. It is clear that the inclusion 𝑐𝑠
𝜆

⊂ 𝑐
𝜆

0 holds, since 𝑥 ∈

𝑐𝑠
𝜆 implies Λ𝑥 ∈ 𝑐𝑠 and hence Λ𝑥 ∈ 𝑐0 which means that

𝑥 ∈ 𝑐
𝜆

0 . Consider the sequence 𝑥 = (𝑥𝑘) defined by

𝑥𝑘 =

1
𝑘 + 1

; (𝑘 ∈ N) . (23)

Then, 𝑥 ∈ 𝑐0 and hence 𝑥 ∈ 𝑐
𝜆

0 , since the inclusion 𝑐0 ⊂ 𝑐
𝜆

0
holds. On the other hand, we have for every 𝑛 ∈ N that

(Λ𝑥)𝑛 =

1
𝜆𝑛

𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1
𝑘 + 1

≥

1
𝜆𝑛 (𝑛 + 1)

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) =

1
𝑛 + 1

,

(24)

which shows that Λ𝑥 ∉ 𝑐𝑠 and hence 𝑥 ∉ 𝑐𝑠
𝜆. Thus, the

sequence 𝑥 is in 𝑐
𝜆

0 but not in 𝑐𝑠
𝜆. Therefore, the inclusion

𝑐𝑠
𝜆
⊂ 𝑐
𝜆

0 is strict.
Similarly, it is also trivial that the inclusion 𝑏𝑠

𝜆
⊂ ℓ
𝜆

∞

holds. To show that this inclusion is strict, we define the
sequence 𝑦 = (𝑦𝑘) by 𝑦 = 𝑒 = (1, 1, 1, . . .). In the present
case, we have for every 𝑛 ∈ N that

(Λ𝑦)
𝑛
=

1
𝜆𝑛

𝑛

∑

𝑘=0
(𝜆𝑘 −𝜆𝑘−1) = 1, (25)

which shows thatΛ𝑦 ∈ ℓ∞ \ 𝑏𝑠. Thus, the sequence 𝑦 is in ℓ
𝜆

∞

but not in 𝑏𝑠
𝜆 and hence 𝑏𝑠

𝜆
⊂ ℓ
𝜆

∞
is a strict inclusion. This

completes the proof.

Theorem 8. The inclusion 𝑐𝑠
𝜆
⊂ 𝑐𝑠 holds if and only if 𝑆𝑥 ∈ 𝑐𝑠

for every sequence 𝑥 ∈ 𝑐𝑠
𝜆.

Proof. Suppose that the inclusion 𝑐𝑠
𝜆
⊂ 𝑐𝑠 holds, and take any

𝑥 = (𝑥𝑘) ∈ 𝑐𝑠
𝜆. Then Λ𝑥 ∈ 𝑐𝑠 and 𝑥 ∈ 𝑐𝑠 by the hypothesis.

Thus, we deduce from (17) that
𝑚

∑

𝑛=0
(𝑥𝑛 − (Λ𝑥)𝑛) =

𝑚

∑

𝑛=0
𝑥𝑛 −

𝑚

∑

𝑛=0
(Λ𝑥)𝑛 =

𝑚

∑

𝑛=0
(𝑆𝑥)𝑛 . (26)

Hence, we obtain from (26) by letting 𝑚 → ∞ that

lim
𝑚

𝑚

∑

𝑛=0
(𝑆𝑥)𝑛 = ∑

𝑛

𝑥𝑛 −∑

𝑛

(Λ𝑥)𝑛 . (27)

As (𝑥𝑛) ∈ 𝑐𝑠 and ((Λ𝑥)𝑛) ∈ 𝑐𝑠, the right-hand side of equality
(27) is convergent as 𝑚 → ∞. Thereby, the series ∑𝑚

𝑛=0(𝑆𝑥)𝑛
converges and so 𝑆𝑥 ∈ 𝑐𝑠.

Conversely, let 𝑥 ∈ 𝑐𝑠
𝜆 be given. Then, we have by the

hypothesis that 𝑆𝑥 ∈ 𝑐𝑠. Again, it follows by (26) that

lim
𝑚

𝑚

∑

𝑛=0
𝑥𝑛 = ∑

𝑛

(𝑆𝑥)𝑛 +∑

𝑛

(Λ𝑥)𝑛 , (28)

which shows that 𝑥 ∈ 𝑐𝑠 while Λ𝑥 ∈ 𝑐𝑠 and 𝑆𝑥 ∈ 𝑐𝑠. Hence,
the inclusion 𝑐𝑠

𝜆
⊂ 𝑐𝑠holds and this concludes the proof.

Theorem 9. The inclusion 𝑐𝑠
𝜆

0 ⊂ 𝑐𝑠0 holds if and only if 𝑆𝑥 ∈

𝑐𝑠0 for every sequence 𝑥 ∈ 𝑐𝑠
𝜆

0 .

Proof. One can see by analogy toTheorem8 that the inclusion
𝑐𝑠
𝜆

0 ⊂ 𝑐𝑠0 also holds if and only if 𝑆𝑥 ∈ 𝑐𝑠0 for every sequence
𝑥 ∈ 𝑐𝑠

𝜆

0 . This completes the proof.

Theorem 10. The inclusion 𝑏𝑠
𝜆

⊂ 𝑏𝑠 holds if and only if 𝑆𝑥 ∈

𝑏𝑠 for every sequence 𝑥 ∈ 𝑏𝑠
𝜆.

Proof. Suppose that the inclusion 𝑏𝑠
𝜆

⊂ 𝑏𝑠 holds, and take
any 𝑥 = (𝑥𝑘) ∈ 𝑏𝑠

𝜆. Then, 𝑥 ∈ 𝑏𝑠 by the hypothesis. Thus, we
obtain from equality (17)

‖𝑆𝑥‖𝑏𝑠 ≤ ‖𝑥‖𝑏𝑠 + ‖Λ𝑥‖𝑏𝑠 = ‖𝑥‖𝑏𝑠 + ‖𝑥‖𝑏𝑠𝜆 < ∞, (29)
which yields that 𝑆𝑥 ∈ 𝑏𝑠.

Conversely, assume that 𝑆𝑥 ∈ 𝑏𝑠 for every 𝑥 ∈ 𝑏𝑠
𝜆. Again,

we obtain from equality (17)
‖𝑥‖𝑏𝑠 ≤ ‖𝑆𝑥‖𝑏𝑠 + ‖Λ𝑥‖𝑏𝑠 = ‖𝑆𝑥‖𝑏𝑠 + ‖𝑥‖𝑏𝑠𝜆 < ∞. (30)

This shows that 𝑥 ∈ 𝑏𝑠. Hence, the inclusion 𝑏𝑠
𝜆

⊂ 𝑏𝑠 holds.
This completes the proof.

4. The Basis for the Spaces 𝑐𝑠
𝜆, 𝑐𝑠𝜆
0

, and 𝑏𝑠
𝜆

In the present section, we give a sequence of the points of the
spaces 𝑐𝑠

𝜆 and 𝑐𝑠
𝜆

0 which forms a basis for these spaces. If a
normed sequence space 𝑋 contains a sequence (𝑏𝑛) with the
property that for every 𝑥 ∈ 𝑋 there is a unique sequence of
scalars (𝛼𝑛) such that

lim
𝑛→∞





𝑥 − (𝛼0𝑏0 +𝛼1𝑏1 + ⋅ ⋅ ⋅ + 𝛼𝑛𝑏𝑛)





= 0, (31)

then (𝑏𝑛) is called a Schauder basis (or briefly basis) for 𝑋.
The series ∑

𝑘
𝛼𝑘𝑏𝑘 which has the sum 𝑥 is then called the

expansion of 𝑥 with respect to (𝑏𝑛) and is written as 𝑥 =

∑
𝑘
𝛼𝑘𝑏𝑘.
Now, since the transformation 𝑇 defined from 𝑐𝑠

𝜆

0 to 𝑐𝑠0
in the proof of Theorem 3 is an isomorphism, we have the
following theorem.

Theorem11. Define the sequence 𝑒(𝑛)
𝜆

= {(𝑒
(𝑛)

𝜆
)𝑘} for every fixed

𝑘 ∈ N by

{(𝑒
(𝑛)

𝜆
)
𝑘
} =

{

{

{

(−1)𝑘−𝑛
𝜆𝑛

𝜆𝑘 − 𝜆𝑘−1
, 𝑛 ≤ 𝑘 ≤ 𝑛 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(32)

for all 𝑘 ∈ N.
Then, one has the following:

(a) The sequence (𝑒
(0)
𝜆

, 𝑒
(1)
𝜆

, . . .) is a Schauder basis for the
spaces 𝑐𝑠𝜆 and 𝑐𝑠

𝜆

0 and every𝑥 ∈ 𝑐𝑠
𝜆 or 𝑐𝑠𝜆0 has a unique

representation of the form

𝑥 =

∞

∑

𝑛=0
(Λ𝑥)𝑛 𝑒

(𝑛)

𝜆
. (33)

(b) 𝑏𝑠
𝜆 has no Schauder basis.
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Proof. (a) It is clear that 𝑒
(𝑛)

𝜆
is a basis for 𝑐𝑠

𝜆 since 𝑒
(𝑛) is a

basis for 𝑐𝑠 and Λ(𝑒
(𝑛)

𝜆
) = 𝑒
(𝑛) [14, Corollary 2.3]. Let 𝑥 ∈ 𝑐𝑠

𝜆

be given. Then, 𝑦 = Λ𝑥 ∈ 𝑐𝑠 and

𝑦
[𝑚]

=

𝑚

∑

𝑛=0
𝑦𝑛𝑒
(𝑛)

→ 𝑦 (𝑚 → ∞) (34)

for a unique sequence (𝑦𝑛)
∞

𝑛=0 of scalars.Therefore, we obtain
that

Λ̂ (𝑦
[𝑚]

) =

𝑚

∑

𝑛=0
𝑦𝑛Λ̂ (𝑒

(𝑛)
) =

𝑚

∑

𝑛=0
𝑦𝑛𝑒
(𝑛)

𝜆
, (35)

where Λ̂ is the inverse of the matrix Λ. Since 𝑦𝑛 = (Λ𝑥)𝑛, we
get that

𝑥
[𝑚]

=

𝑚

∑

𝑛=0
(Λ𝑥)𝑛 𝑒

(𝑛)

𝜆
. (36)

Consequently,





𝑥
[𝑚]

−𝑥





𝑐𝑠𝜆

=






Λ (𝑥
[𝑚]

−𝑥)





𝑐𝑠

=






Λ (𝑥
[𝑚]

) −Λ𝑥





𝑐𝑠

=






𝑦
[𝑚]

−𝑦





𝑐𝑠

→ 0 (𝑚 → ∞) .

(37)

Thus, we deduce that lim𝑚→∞‖𝑥
[𝑚]

−𝑥‖𝑐𝑠𝜆 = 0, which shows
that 𝑥 ∈ 𝑐𝑠

𝜆 is represented as in (33).
Finally, let us show the uniqueness of the representation

(33) of 𝑥 ∈ 𝑐𝑠
𝜆. Suppose on the contrary that there exists

another representation 𝑥 = ∑
𝑛
𝛼𝑛𝑒
(𝑛)

𝜆
. Since the linear trans-

formation𝑇 defined from 𝑐𝑠
𝜆 to 𝑐𝑠, in the proof ofTheorem 3,

is continuous, we have

(Λ𝑥)𝑘 = ∑

𝑛

𝛼𝑛 (Λ𝑒
(𝑛)

𝜆
)
𝑘
= ∑

𝑛

𝛼𝑛𝛿𝑘𝑛 = 𝛼𝑘; (𝑘 ∈ N) . (38)

Therefore, the representation (33) of 𝑥 ∈ 𝑐𝑠
𝜆 is unique. It can

be proved similarly for 𝑐𝑠𝜆0 . This completes the proof.
(b) As a direct consequence of Remark 2.2. of Malkowsky

and Rakocevic [14], since 𝑏𝑠 has no Schauder basis 𝑏𝑠
𝜆 also

has no Schauder basis.

As a result, it easily follows from Theorem 1 that 𝑐𝑠𝜆 and
𝑐𝑠
𝜆

0 are the Banach spaces with their natural norms. Then, by
Theorem 11 we obtain the following corollary.

Corollary 12. The sequence spaces 𝑐𝑠𝜆 and 𝑐𝑠
𝜆

0 of nonabsolute
type are separable.

5. The 𝛼-, 𝛽-, and 𝛾-Duals of
the Spaces 𝑐𝑠

𝜆, 𝑐𝑠𝜆
0

, and 𝑏𝑠
𝜆

In this section, we state and prove the theorems determining
the 𝛼-, 𝛽-, and 𝛾-duals of the sequence spaces 𝑐𝑠

𝜆, 𝑐𝑠𝜆0 , and
𝑏𝑠
𝜆 of nonabsolute type. For arbitrary sequence spaces𝑋 and

𝑌, the set 𝑀(𝑋,𝑌) defined by

𝑀(𝑋,𝑌)

= {𝑎 = (𝑎𝑘) ∈𝑤 : 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑌 ∀𝑥= (𝑥𝑘) ∈𝑋}

(39)

is called the multiplier space of 𝑋 and 𝑌. One can easily
observe for a sequence space 𝑍 with 𝑌 ⊂ 𝑍 and 𝑍 ⊂ 𝑋 that
the inclusions 𝑀(𝑋,𝑌) ⊂ 𝑀(𝑋,𝑍) and 𝑀(𝑋,𝑌) ⊂ 𝑀(𝑍, 𝑌)

hold, respectively.With the notation of (39), the 𝛼-, 𝛽-, and 𝛾-
duals of a sequence space𝑋, which are, respectively, denoted
by 𝑋
𝛼, 𝑋𝛽, and 𝑋

𝛾, are defined by

𝑋
𝛼
= 𝑀(𝑋, ℓ1) ,

𝑋
𝛽
= 𝑀(𝑋, 𝑐𝑠) ,

𝑋
𝛾
= 𝑀(𝑋, 𝑏𝑠) .

(40)

It is clear that 𝑋𝛼 ⊂ 𝑋
𝛽

⊂ 𝑋
𝛾. Also, it can be obviously seen

that the inclusions 𝑋
𝛼

⊂ 𝑌
𝛼, 𝑋𝛽 ⊂ 𝑌

𝛽, and 𝑋
𝛾

⊂ 𝑌
𝛾 hold

whenever 𝑌 ⊂ 𝑋.
The following known results [15] are fundamental for this

section.

Lemma 13. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠 : ℓ1) if and only if

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)












< ∞. (41)

Lemma 14. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0 : ℓ1) if and only if

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)












< ∞. (42)

Lemma 15. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠 : ℓ1) if and only if (42)
holds and

lim
𝑘

𝑎𝑛𝑘 = 0, ∀𝑛 ∈ N. (43)

Lemma 16. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠 : 𝑐) if and only if

sup
𝑛

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1





< ∞, (44)

lim
𝑛

𝑎𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠 ∀𝑘 ∈ N. (45)

Lemma 17. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0 : 𝑐) if and only if (44)
holds:

lim
𝑛

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1) 𝑒𝑥𝑖𝑠𝑡𝑠 ∀𝑘 ∈ N. (46)

Lemma 18. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠 : 𝑐) if and only if (43)
and (45) hold and

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1






𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠. (47)

Lemma 19. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠 : ℓ∞) if and only if

sup
𝑛

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1





< ∞. (48)

Lemma 20. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0 : ℓ∞) if and only if
(44) holds.

Lemma 21. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠 : ℓ∞) if and only if (43)
and (44) hold.
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Now, we prove the following result.

Theorem 22. Define the sets 𝑚𝜆1 and 𝑚
𝜆

2 as follows:

𝑚
𝜆

1 = {𝑎= (𝑎𝑛) ∈𝑤 : sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑏
𝜆

𝑛𝑘
− 𝑏
𝜆

𝑛,𝑘−1)












<∞} ,

𝑚
𝜆

2 = {𝑎= (𝑎𝑛) ∈𝑤 : sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑏
𝜆

𝑛𝑘
− 𝑏
𝜆

𝑛,𝑘+1)












<∞} ,

(49)

where the matrix 𝐵
𝜆

= (𝑏
𝜆

𝑛𝑘
) is defined via the sequence 𝑎 =

(𝑎𝑛) ∈ 𝑤 by

𝑏
𝜆

𝑛𝑘

=

{

{

{

(−1)𝑛−𝑘
𝜆𝑘

𝜆𝑛 − 𝜆𝑛 − 1
𝑎𝑛 if 𝑛 − 1 ≤ 𝑘 ≤ 𝑛,

0 if 𝑛 − 1 > 𝑘 or 𝑘 > 𝑛,

(50)

for all 𝑛, 𝑘 ∈ N. Then {𝑐𝑠
𝜆
}
𝛼
= 𝑚
𝜆

1 and {𝑐𝑠
𝜆

0 }
𝛼
= {𝑏𝑠
𝜆
}
𝛼
= 𝑚
𝜆

2 .

Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝑤. Then, by bearing in mind relations
(8) and (14), it is immediate that the equality

𝑎𝑛𝑥𝑛 =

𝑛

∑

𝑘=𝑛−1
(−1)𝑛−𝑘

𝜆𝑘

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛𝑦𝑘 = (𝐵

𝜆
𝑦)
𝑛

(51)

holds for all 𝑛 ∈ N. We therefore observe by (51) that 𝑎𝑥 =

(𝑎𝑛𝑥𝑛) ∈ ℓ1 whenever 𝑥 = (𝑥𝑘) ∈ 𝑐𝑠
𝜆 if and only if 𝐵𝜆𝑦 ∈ ℓ1

whenever 𝑦 = (𝑦𝑘) ∈ 𝑐𝑠. This means that the sequence 𝑎 =

(𝑎𝑛) ∈ {𝑐𝑠
𝜆
}
𝛼 if and only if 𝐵𝜆 ∈ (𝑐𝑠 : ℓ1). Hence, we obtain by

Lemma 13 with 𝐵
𝜆 instead of 𝐴 that 𝑎 = (𝑎𝑛) ∈ {𝑐𝑠

𝜆
}
𝛼 if and

only if

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑏
𝜆

𝑛𝑘
− 𝑏
𝜆

𝑛,𝑘−1)












< ∞ (52)

which yields the result that {𝑐𝑠𝜆}𝛼 = 𝑚
𝜆

1 .
Similarly, we deduce from Lemma 15 with (51) that 𝑎 =

(𝑎𝑛) ∈ {𝑏𝑠
𝜆
}
𝛼 if and only if 𝐵𝜆 ∈ (𝑏𝑠 : ℓ1). Then, it is clear that

the columns of the matrix 𝐵 are in the space 𝑐0, since

lim
𝑘

𝑏
𝜆

𝑛𝑘
= 0 (53)

for all 𝑛 ∈ N. Therefore, we derive from (42) that

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑏
𝜆

𝑛𝑘
− 𝑏
𝜆

𝑛,𝑘+1)












< ∞. (54)

This shows that {𝑐𝑠
𝜆

0 }
𝛼

= {𝑏𝑠
𝜆
}
𝛼

= 𝑚
𝜆

2 . This completes the
proof.

Theorem 23. Define the sets 𝑚𝜆3 , 𝑚
𝜆

4 , and 𝑚
𝜆

5 as follows:

𝑚
𝜆

3 = {𝑎= (𝑎𝑘) ∈𝑤 :

∞

∑

𝑘=0










Δ (Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘)










<∞} ,

𝑚
𝜆

4 = {𝑎= (𝑎𝑘) ∈𝑤 : sup
𝑘










𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑘










<∞} ,

𝑚
𝜆

5 = {𝑎= (𝑎𝑘) ∈𝑤 : lim
𝑘→∞

𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑘 = 0} ,

(55)

where

Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
) =

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
−

𝑎𝑘+1
𝜆𝑘+1 − 𝜆𝑘

(56)

for all 𝑘 ∈ N. Then {𝑐𝑠
𝜆
}
𝛽

= {𝑐𝑠
𝜆

0 }
𝛽

= 𝑚
𝜆

3 ∩ 𝑚
𝜆

4 and {𝑏𝑠
𝜆
}
𝛽

=

𝑚
𝜆

3 ∩ 𝑚
𝜆

5 .

Proof. Because the proof may also be obtained for the space
𝑏𝑠
𝜆 in a similar way, we omit it. Take any 𝑎 = (𝑎𝑘) ∈ 𝑤 and

consider the equation

𝑛

∑

𝑘=0
𝑎𝑘𝑥𝑘 =

𝑛

∑

𝑘=0

[

[

𝑘

∑

𝑗=𝑘−1
(−1)𝑘−𝑗

𝜆𝑗

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑗

]

]

𝑎𝑘

=

𝑛−1
∑

𝑘=0
Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘𝑦𝑘 +

𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛𝑦𝑛

= (𝑇
𝜆
𝑦)
𝑛
,

(57)

where the matrix 𝑇
𝜆
= (𝑡
𝜆

𝑛𝑘
) is defined by

𝑡
𝜆

𝑛𝑘
=

{
{
{
{
{

{
{
{
{
{

{

Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘 if 0 ≤ 𝑘 ≤ 𝑛 − 1,

𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛 if 𝑘 = 𝑛,

0 if 𝑘 > 𝑛,

(58)

for all 𝑛, 𝑘 ∈ N.Thus, we deduce by (57) that 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠

where 𝑥 = (𝑥𝑘) ∈ 𝑐𝑠
𝜆 if and only if 𝑇𝜆𝑦 ∈ 𝑐 whenever 𝑦 =

(𝑦𝑘) ∈ 𝑐𝑠. This means that 𝑎 = (𝑎𝑘) ∈ {𝑐𝑠
𝜆
}
𝛽 if and only if

𝑇
𝜆

∈ (𝑐𝑠 : 𝑐). Therefore, by using Lemma 16, we derive from
(44) and (45) that
∞

∑

𝑘=0










Δ (Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘)










< ∞,

sup
𝑛










𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛










< ∞,

(59)

lim
𝑛

𝑡
𝜆

𝑛𝑘
= Δ(

𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘, (60)

respectively. Thereby, we conclude that {𝑐𝑠
𝜆
}
𝛽

= {𝑐𝑠
𝜆

0 }
𝛽

=

𝑚
𝜆

3 ∩ 𝑚
𝜆

4 .
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Theorem 24. The 𝛾-dual of the spaces 𝑐𝑠𝜆, 𝑐𝑠𝜆0 , and 𝑏𝑠
𝜆 is the

set 𝑚𝜆3 ∩ 𝑚
𝜆

4 .

Proof. The proof of this result follows the same lines as those
in the proof of Theorem 23 using Lemmas 19, 20, and 21
instead of Lemma 16.

6. Certain Matrix Mappings on
the Spaces 𝑐𝑠

𝜆, 𝑐𝑠𝜆
0

, and 𝑏𝑠
𝜆

In this present section, we characterize the matrix classes
(𝑐𝑠
𝜆
: ℓ𝑝), (𝑐𝑠

𝜆

0 : ℓ𝑝), (𝑏𝑠
𝜆
: ℓ𝑝), (𝑐𝑠

𝜆
: 𝑐0), (𝑐𝑠

𝜆

0 : 𝑐0), (𝑏𝑠
𝜆
: 𝑐0),

(𝑐𝑠
𝜆
: 𝑐), (𝑐𝑠𝜆0 : 𝑐), and (𝑏𝑠

𝜆
: 𝑐), where 1 ≤ 𝑝 ≤ ∞.

For an infinite matrix 𝐴 = (𝑎𝑛𝑘), we write for brevity that

𝑎𝑛𝑘 = Δ(

𝑎𝑛𝑘

𝜆𝑘 − 𝜆𝑘−1
)𝜆𝑘

= (

𝑎𝑛𝑘

𝜆𝑘 − 𝜆𝑘−1
−

𝑎𝑛,𝑘+1

𝜆𝑘+1 − 𝜆𝑘

)𝜆𝑘 (𝑛, 𝑘 ∈ N) .

(61)

The following lemmas [15] will be needed in proving our
results.

Lemma 25. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠 : 𝑐0) if and only if (44)
holds and

lim
𝑛

𝑎𝑛𝑘 = 0 (∀𝑘 ∈ N) . (62)

Lemma 26. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0 : 𝑐0) if and only if (44)
holds and

lim
𝑛

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1) = 0 (∀𝑘 ∈ N) . (63)

Lemma 27. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠 : 𝑐0) if and only if (43)
holds and

lim
𝑛

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1





= 0. (64)

Lemma 28. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0 : ℓ𝑝) if and only if

sup
𝐾

∑

𝑛












∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)












𝑝

< ∞ (1 < 𝑝 < ∞) . (65)

Lemma 29. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠 : ℓ𝑝) if and only if

sup
𝐾

∑

𝑛












∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)












𝑝

< ∞ (1 < 𝑝 < ∞) . (66)

Lemma 30. Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠 : ℓ𝑝) if and only if (43)
and (65) hold.

Now, we give the following results on the matrix transfor-
mations.

Theorem 31. (i) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

: ℓ∞) if and only
if

sup
𝑛

∞

∑

𝑘=0





𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1





< ∞, (67)

sup
𝑘










𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑛𝑘










< ∞. (68)

(ii) Consider 𝐴 = (𝑎𝑛k) ∈ (𝑐𝑠
𝜆

0 : ℓ∞) if and only if (68)
holds and

sup
𝑛

∞

∑

𝑘=0





𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1





< ∞. (69)

(iii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠
𝜆

: ℓ∞) if and only if (69)
holds and

lim
𝑘→∞

𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑛𝑘 = 0,

lim
𝑘

𝑎𝑛𝑘 = 0.
(70)

Proof. Suppose that conditions (67) and (68) hold and take
any 𝑥 = (𝑥𝑘) ∈ 𝑐𝑠

𝜆. Then, we have by Theorem 23 that
(𝑎𝑛𝑘)
∞

𝑘=0 ∈ (𝑐𝑠
𝜆
)
𝛽 for all 𝑛 ∈ N and this implies the existence of

the𝐴-transform of 𝑥; that is,𝐴𝑥 exists. Further, it is clear that
the associated sequence 𝑦 = (𝑦𝑘) is in 𝑐𝑠 and hence 𝑦 ∈ 𝑐0.

Let us now consider the following equality derived by
using relation (8) from the 𝑚th partial sum of the series
∑
𝑘
𝑎𝑛𝑘𝑥𝑘:

𝑚

∑

𝑘=0
𝑎𝑛𝑘𝑥𝑘 =

𝑚−1
∑

𝑘=0
𝑎𝑛𝑘𝑦𝑘 +

𝜆𝑚

𝜆𝑚 − 𝜆𝑚−1
𝑎𝑛𝑚𝑦𝑚,

(∀𝑛,𝑚 ∈ N) .

(71)

Therefore, by using (67) and (68), from (71) as 𝑚 → ∞, we
obtain that

∑

𝑘

𝑎𝑛𝑘𝑥𝑘 = ∑

𝑘

𝑎𝑛𝑘𝑦𝑘 ∀𝑛 ∈ N. (72)

Further, since the matrix 𝐴 = (𝑎𝑛𝑘) is in the class (𝑐𝑠 : ℓ∞) by
Lemma 19 and (67), we have 𝐴𝑦 ∈ ℓ∞. Therefore, we deduce
from (1) and (72) that 𝐴𝑥 ∈ ℓ∞ and hence 𝐴 ∈ (𝑐𝑠

𝜆
, ℓ∞).

Conversely, suppose that 𝐴 ∈ (𝑐𝑠
𝜆
, ℓ∞). Then (𝑎𝑛𝑘)

∞

𝑘=0 ∈

(𝑐𝑠
𝜆
)
𝛽 for all 𝑛 ∈ N and this, with Theorem 23, implies both

(68) and
∞

∑

𝑘=0





𝑎𝑛𝑘 − 𝑎𝑘+1





< ∞ ∀𝑛 ∈ N (73)

which together imply that relation (72) holds for all sequences
𝑥 ∈ 𝑐𝑠

𝜆 and 𝑦 ∈ 𝑐𝑠. Further, since𝐴𝑥 ∈ ℓ∞ by the hypothesis,
we obtain by (72) that 𝐴𝑦 ∈ ℓ∞ which shows that 𝐴 ∈

(𝑐𝑠 : ℓ∞), where 𝐴 = (𝑎𝑛𝑘). Hence, the necessity of (67) is
immediate by (48). This concludes the proof of part (i).

Since parts (ii) and (iii) can be proved similarly, we omit
their proofs.
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Corollary 32. (i) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆
: 𝑐) if and only if

(68) and (69) hold and
lim
𝑛→∞

𝑎𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠. (74)

(ii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

0 : 𝑐) if and only if (68) and
(69) hold and

lim
𝑛

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1) 𝑒𝑥𝑖𝑠𝑡𝑠. (75)

(iii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠
𝜆

: 𝑐) if and only if (70) and
(74) hold and

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1






𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡. (76)

Corollary 33. (i) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

: 𝑐0) if and only
if (68) and (69) hold and

lim
𝑛

𝑎𝑛𝑘 = 0. (77)

(ii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

0 : 𝑐0) if and only if (68) and
(69) hold and

lim
𝑛

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1) = 0. (78)

(iii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠
𝜆
: 𝑐0) if and only if (70) hold

and
lim
𝑛

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1





= 0. (79)

Corollary 34. (i) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

: ℓ1) if and only
if (68) holds and

∑

𝑘





𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1





< ∞, (80)

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)












< ∞. (81)

(ii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

0 : ℓ1) if and only if (68) and
(80) hold and

sup
𝑁,𝐾∈F












∑

𝑛∈𝑁

∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)












< ∞. (82)

(iii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠
𝜆

: ℓ1) if and only if (70),
(80), and (82) hold.

Corollary 35. (i) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

: ℓ𝑝) if and only
if (68) and (80) hold and

sup
𝐾∈F

∑

𝑛












∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)












𝑝

< ∞. (83)

(ii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠
𝜆

0 : ℓ𝑝) if and only if (68) and
(80) hold and

sup
𝐾∈F

∑

𝑛












∑

𝑘∈𝐾

(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)












𝑝

< ∞. (84)

(iii) Consider 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠
𝜆

: ℓ𝑝) if and only if (70),
(80), and (84) hold.

SinceCorollaries 32, 33, 34, and 35 can be proved similarly
withTheorem 31, we omit their proofs.

7. Some Geometric Properties of the Spaces
𝑐𝑠
𝜆, 𝑐𝑠𝜆
0

, and 𝑏𝑠
𝜆

In this section, we investigate some geometric properties for
the sequence spaces 𝑐𝑠𝜆 and 𝑏𝑠

𝜆.
Let (𝑋, ‖ ⋅ ‖) be a normed linear space, and let 𝑆(𝑋) and

𝐵(𝑋) be the unit sphere and unit ball of 𝑋 (for the brevity
𝑋 = (𝑋, ‖ ⋅ ‖)), respectively. Consider Clarkson’s modulus of
convexity (Clarkson [16] and Day [17]) defined by

𝛿𝑋 (𝜖)

= inf {1−





𝑥 + 𝑦






2
; 𝑥, 𝑦 ∈ 𝑆 (𝑋) ,





𝑥 −𝑦





= 𝜖} ,

(85)

where 0 ≤ 𝜖 ≤ 2. The inequality 𝛿𝑋 > 0 for all 𝜖 ∈ (0, 2]
characterizes the uniformly convex spaces.

In [18], Gurařı’s modulus of convexity is defined by

𝛽𝑥 (𝜖) = inf {1

− inf
𝛼∈[0,1]





𝛼𝑥+ (1 − 𝛼) 𝑦





; 𝑥, 𝑦 ∈ 𝑆 (𝑋) ,





𝑥 −𝑦






= 𝜖} ,

(86)

where 0 ≤ 𝜖 ≤ 2. It is easily shown that 𝛿𝑋(𝜖) ≤ 𝛽𝑥(𝜖) ≤

2𝛿𝑋(𝜖) for any 0 ≤ 𝜖 ≤ 2. Also if 0 < 𝛽𝑥(𝜖) < 1, then 𝑋 is
uniformly convex, and if 𝛽𝑥(𝜖) < 1, then 𝑋 is strictly convex.

Opial property [19] states that

if 𝑥𝑛

𝑤

→ 0,

then lim sup
𝑛→∞





𝑥𝑛





< lim sup
𝑛→∞





𝑥𝑛 − 𝑥






∀𝑥 ∈ 𝑋, 𝑥 ̸= 0.
(87)

If the strict inequality becomes ≤, this condition becomes
a nonstrict Opial property.

The coefficient 𝑅(𝑋), introduced by Garćıa-Falset [20], is
defined as

𝑅 (𝑋) := sup {lim inf
𝑛→∞





𝑥𝑛 −𝑥





: 𝑥𝑛

𝑤

→ 0, 



𝑥𝑛






≤ 1 ∀𝑛 ∈N, ‖𝑥‖ ≤ 1} .

(88)

So 1 ≤ 𝑅(𝑋) ≤ 2 and it is not hard to see that, in the definition
of𝑅(𝑋), “liminf” can be replaced by “limsup.” Some values of
𝑅(𝑋) are 𝑅(𝑐0) = 1 and 𝑅(ℓ𝑝) = 21/𝑝, 1 < 𝑝 < ∞.

A Banach space𝑋 has property (𝑀) if whenever 𝑥𝑛
𝑤

→ 0,
then limsup

𝑛→∞
‖𝑥𝑛 − 𝑥‖ is a function of ‖𝑥‖ only. Property

(𝑀) which is introduced by Kalton [21] is equivalent to

if 𝑥𝑛

𝑤

→ 0, ‖𝑢‖ ≤ ‖V‖ ,

then lim sup
𝑛→∞





𝑥𝑛 + 𝑢





≤ lim sup
𝑛→∞





𝑥𝑛 + V


.

(89)
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Sims [22] introduced a property calledweak orthogonality
(WORTH) for Banach spaces. A Banach space 𝑋 is said to
have property WORTH if

for every 𝑥𝑛

𝑤

→ 0, 𝑥 ∈ 𝑋,

lim sup
𝑛→∞





𝑥𝑛 + 𝑥





= lim sup
𝑛→∞





𝑥𝑛 − 𝑥





.

(90)

It remains unknown if property WORTH implies fixed
point property. In many situations, the fixed point property
can be easily obtained when we assume, in addition, that the
spaces are considered to have the property WORTH.

The following result will be used in our results.

Proposition 36 (see [23, Proposition 2.1]). For the following
conditions on a Banach space 𝑋, one has (i) ⇒ (ii) ⇒ (iii) ⇒
(iv).

(i) 𝑋 has property (𝑀).
(ii) 𝑋 has property WORTH.

(iii) If 𝑥𝑛

𝑤

→ 0, then for each 𝑥 ∈ 𝑋 we have that
limsup

𝑛→∞
‖𝑥𝑛 − 𝑡𝑥‖ is an increasing function of 𝑡 on

[0,∞).
(iv) 𝑋 satisfies the nonstrict Opial property.

In [24, 25] it has been shown that 𝑅(𝑋) = 1 implies𝑋 has
property (𝑀).

It has been shown that Banach space 𝑋 has property 𝑚𝑝

(resp., 𝑚∞) [26] if for all 𝑥 ∈ 𝑋, whenever 𝑥𝑛
𝑤

→ 0,

lim sup
𝑛→∞





𝑥 + 𝑥𝑛






𝑝
= ‖𝑥‖

𝑝
+ lim sup
𝑛→∞





𝑥𝑛






𝑝

(resp., lim sup
𝑛→∞





𝑥 + 𝑥𝑛






=max{‖𝑥‖ , lim sup
𝑛→∞





𝑥𝑛





}) .

(91)

Clearly the above properties imply property (𝑀) and prop-
erty 𝑚1 implies Opial property.

Theorem 37 (see [27]). A Banach space𝑋 has property𝑚∞ if
and only if 𝑅(𝑋) = 1.

Remark 38 (see [28]). A Banach space 𝑋 with 𝑅(𝑋) < 2 has
the weak fixed point property.

Now, let us give our first theorem in this section.

Theorem 39. Gurařı’s modulus of convexity for the normed
spaces 𝑐𝑠𝜆 and 𝑏𝑠

𝜆 is

𝛽𝑐𝑠𝜆 (𝜖) = 𝛽𝑏𝑠𝜆 (𝜖) ≤ 1− |1− 𝜖| , (92)

where 0 ≤ 𝜖 ≤ 2.

Proof. Assume 𝑥 ∈ 𝑐𝑠
𝜆. Then we have

‖𝑥‖𝑐𝑠𝜆 = ‖𝑥‖𝑏𝑠𝜆 = ‖Λ𝑥‖𝑏𝑠 = sup
𝑚












𝑚

∑

𝑛=0
(Λ𝑥)𝑛












. (93)

Let 0 ≤ 𝜖 ≤ 2 and consider the following sequences:

𝑥 = (𝑥𝑛) = (Λ̂ (1) , Λ̂ (−

𝜖

2
) , Λ̂ (

𝜖

2
) , 0, 0, . . .) ,

𝑦 = (𝑦𝑛) = (Λ̂ (1) , 0, Λ̂ (−

𝜖

2
) , Λ̂ (−

𝜖

2
) , 0, . . .) ,

(94)

where Λ̂ is the inverse of the matrix Λ. Since 𝑧𝑛 = (Λ𝑥)𝑛 and
𝑡𝑛 = (Λ𝑦)𝑛, we have

𝑧 = (𝑧𝑛) = (1, − 𝜖

2
,

𝜖

2
, 0, 0, . . .) ,

𝑦 = (𝑦𝑛) = (1, 0, − 𝜖

2
, −

𝜖

2
, 0, . . .) .

(95)

By using sequences given above, we obtain the following
equalities:

‖𝑥‖𝑏𝑠𝜆 = ‖Λ𝑥‖𝑏𝑠 = sup
𝑚












𝑚

∑

𝑛=0
(Λ𝑥)𝑛












= 1,





𝑦



𝑏𝑠𝜆

=




Λ𝑦




𝑏𝑠

= sup
𝑚












𝑚

∑

𝑛=0
(Λ𝑦)
𝑛












= 1,





𝑥 − 𝑦




𝑏𝑠𝜆

=




Λ𝑥−Λ𝑦




𝑏𝑠

= sup
𝑚












𝑚

∑

𝑛=0
((Λ𝑥)𝑛 − (Λ𝑦)

𝑛
)












= 𝜖.

(96)

To complete the conditions of 𝑐𝑠𝜆 or 𝑏𝑠𝜆 for Gurařı’s modulus
of convexity, it remains to evaluate the infimum of ‖𝛼𝑥 + (1−

𝛼)𝑦‖𝑏𝑠𝜆 for 0 ≤ 𝛼 ≤ 1. We have

inf
0≤𝛼≤1





𝛼𝑥+ (1−𝛼) 𝑦




𝑏𝑠𝜆

= inf
0≤𝛼≤1





𝛼Λ𝑥+ (1−𝛼)Λ𝑦




𝑏𝑠

= inf
0≤𝛼≤1









(1, − 𝛼𝜖

2
, 𝛼𝜖 −

𝜖

2
, −

𝜖

2
+

𝛼𝜖

2
, 0, 0, . . .)







𝑏𝑠

= inf
0≤𝛼≤1

|1− 𝜖| = |1− 𝜖| .

(97)

Consequently we get

𝛽𝑐𝑠𝜆 (𝜖) = 𝛽𝑏𝑠𝜆 (𝜖) ≤ 1− |1− 𝜖| . (98)

This is the desired result.Thereby the proof is completed.

Corollary 40. Since 𝛿𝑐𝑠𝜆(𝜖) ≤ 𝛽𝑐𝑠𝜆(𝜖) ≤ 2𝛿𝑐𝑠𝜆(𝜖) and 𝛿𝑐𝑠𝜆(𝜖) =

𝛿𝑏𝑠𝜆(𝜖) = 0 for 0 ≤ 𝜖 ≤ 2, 𝛽𝑐𝑠𝜆(𝜖) = 0 < 1 and hence c𝑠𝜆 and
𝑏𝑠
𝜆 are strictly convex.

Theorem 41. Consider 𝑅(𝑋) = 1 if 𝑋 ∈ {𝑐𝑠
𝜆
, 𝑐𝑠
𝜆

0 }.

Proof. In 𝑐𝑠
𝜆 (or 𝑐𝑠𝜆0 ), we have 𝑒

(𝑛)

𝜆
∈ 𝑆(𝑋) and 𝑒

(𝑛)

𝜆

𝑤

→ 0,where
(𝑒
(𝑛)

𝜆
) is the standard basis. Since 𝑒

(1)
𝜆

∈ 𝑆(𝑋), we have






𝑒
(𝑛)

𝜆
− 𝑒
(1)
𝜆





𝑏𝑠𝜆

𝑛→∞

→ 1; (99)

thus 𝑅(𝑋) = 1.
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Now, by Proposition 36 and Theorem 41, we obtain the
following results.

Corollary 42. The spaces 𝑐𝑠𝜆 and 𝑐𝑠
𝜆

0 have property 𝑚∞ and
so the spaces 𝑐𝑠𝜆 and 𝑐𝑠

𝜆

0 have property (𝑀).

Corollary 43. The spaces 𝑐𝑠𝜆 and 𝑐𝑠
𝜆

0 have property WORTH.

Corollary 44. If 𝑥𝑛
𝑤

→ 0, then for each 𝑥 ∈ 𝑐𝑠
𝜆 or 𝑐𝑠𝜆0 we have

limsup
𝑛→∞

‖𝑥𝑛 − 𝑡𝑥‖ which is an increasing function of 𝑡 on
[0,∞).

Corollary 45. The spaces 𝑐𝑠
𝜆 and 𝑐𝑠

𝜆

0 satisfy the nonstrict
Opial property.

Hence, by Remark 38 and Theorem 41, we have the
following result.

Corollary 46. The spaces 𝑐𝑠
𝜆 and 𝑐𝑠

𝜆

0 have the weak fixed
point property.
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