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The present paper is devoted to the study of the generalized projection𝜋
𝐾
: 𝑋
∗
→ 𝐾, where𝑋 is a uniformly convex and uniformly

smooth Banach space and 𝐾 is a nonempty closed (not necessarily convex) set in 𝑋. Our main result is the density of the points
𝑥
∗
∈ 𝑋
∗ having unique generalized projection over nonempty close sets in 𝑋. Some minimisation principles are also established.

An application to variational problems with nonconvex sets is presented.

1. Introduction

In 1994, Alber [1] (see also [2]) introduced and studied an
appropriate extension of the projection operator over closed
convex sets from Hilbert spaces to uniformly convex and
uniformly smooth Banach spaces. It is called generalized pro-
jection operator. He proved various properties and extended
many existing results from Hilbert spaces to uniformly
convex and uniformly smooth Banach spaces.

In 2005, Li [3] extended and studied this concept from
uniformly convex and uniformly smooth Banach spaces to
reflexive Banach spaces. This concept has been used success-
fully in many applications such as variational inequalities,
minimization principles, and differential inclusions (see [1,
2, 4–7] and the references therein). The main result in [1–
3] is the existence property of the operator 𝜋

𝐾
for closed

convex sets in reflexive Banach spaces (resp., in uniformly
convex and uniformly smooth Banach spaces) in [3] (resp.,
in [1]). Our main aim is to study the existence of 𝜋

𝐾
for

nonempty closed sets not necessarily convex. An application
of our main result to variational problems with nonconvex
sets is presented at the end of the paper.

2. Preliminaries

Let 𝑋 be a Banach space with topological dual space 𝑋∗.
We denote by B and B

∗
the closed unit ball in 𝑋 and

𝑋
∗, respectively. We recall some definitions and results on

uniformly convex and uniformly smooth Banach spaces (see,
e.g., [8, 9]).Themoduli of convexity and smoothness of𝑋 are
defined, respectively, by

𝛿
𝑋 (
𝜖)

= inf {1−
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥 + 𝑦

2
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

: ‖𝑥‖ =
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
= 1, 󵄩󵄩󵄩

󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
= 𝜖} ,

0 ≤ 𝜖 ≤ 2,

𝜌
𝑋 (
𝑡)

= sup {1
2
(
󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) − 1 : ‖𝑥‖ = 1, 󵄩󵄩󵄩

󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
= 𝑡} ,

𝑡 > 0.

(1)

The space𝑋 is said to be uniformly convex whenever 𝛿
𝑋
(𝜖) >

0 for all 0 < 𝜖 ≤ 2 and is said to be uniformly smooth
whenever lim

𝑡↓0𝜌𝑋(𝑡) = 0. Let 𝑝, 𝑞 > 1 be real numbers. The
space 𝑋 is said to be 𝑝-uniformly convex (resp., 𝑞-uniformly
smooth) if there is a constant 𝑐 > 0 such that

𝛿
𝑋 (
𝜖) ≥ 𝑐𝜖

𝑝
(resp., 𝜌

𝑋 (
𝑡) ≤ 𝑐𝑡

𝑞
) . (2)

Obviously from the definition of 𝑝-uniform convexity and 𝑞-
uniform smoothness the constants 𝑝 and 𝑞 satisfy 𝑞 ∈ (1, 2]
and 𝑝 ≥ 2. It is known (see, e.g., [8, 9]) that uniformly convex
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Banach spaces are reflexive strictly convex and that uniformly
smooth Banach spaces are reflexive. If 𝑋 is a 𝑝-uniformly
convex Banach space, then 𝑋

∗ is a 𝑝
󸀠-uniformly smooth

Banach space, where 𝑝󸀠 = 𝑝/(𝑝 − 1) is the conjugate number
of 𝑝. If 𝑋 is a 𝑞-uniformly smooth Banach space, then 𝑋∗ is
a 𝑞󸀠-uniformly convex Banach space, where 𝑞󸀠 = 𝑞/(𝑞 − 1).

The normalized duality mapping 𝐽 : 𝑋 󴁂󴀱 𝑋
∗ is defined

by

𝐽 (𝑥) = {𝑗 (𝑥) ∈𝑋
∗
: ⟨𝑗 (𝑥) , 𝑥⟩ = ‖𝑥‖

2
=
󵄩
󵄩
󵄩
󵄩
𝑗 (𝑥)

󵄩
󵄩
󵄩
󵄩

2
} . (3)

Many properties of the normalized duality mapping 𝐽 have
been studied. For the details, one may see Takahashi’s book
[10] or Vainberg’s book [11]. We list some properties of 𝐽:

(𝐽
1
) For any 𝑥 ∈ 𝑋, 𝐽(𝑥) is nonempty.

(𝐽
2
) For any 𝑥 ∈ 𝑋 and any real number 𝛼, 𝐽(𝛼𝑥) = 𝛼𝐽(𝑥).

(𝐽
3
) If𝑋 is reflexive, then 𝐽 is a mapping of𝑋 onto𝑋∗.

(𝐽
4
) If 𝑋∗ is strictly convex (i.e., the unit sphere in 𝑋∗ is
strictly convex; i.e., the inequality ‖𝑥∗+𝑦∗‖ < 2 holds
for all 𝑥∗, 𝑦∗ ∈ 𝑋

∗ such that ‖𝑥∗‖ = ‖𝑦
∗
‖ = 1, 𝑥∗ ̸=

𝑦
∗), then 𝐽 is a single valued mapping.

(𝐽
5
) 𝐽 is a continuous operator in smooth Banach spaces.

(𝐽
6
) If𝑋 is strictly convex, then 𝐽 is one-to-one.

(𝐽
7
) If 𝑋 is a reflexive strictly convex space with strictly
convex dual space 𝑋∗ and if 𝐽∗ : 𝑋

∗
󴁂󴀱 𝑋 is a

normalized duality mapping in𝑋∗, then 𝐽−1 = 𝐽
∗.

(𝐽
8
) 𝐽 is the identity operator in Hilbert spaces.

It is known (see [8, 9]) that a reflexive Banach space 𝑋 is
smooth if and only if 𝑋∗ is strictly convex. Hence by (𝐽3)
and (𝐽4), if 𝑋 is a reflexive smooth Banach space, then 𝐽 is
a single valuedmapping from𝑋 onto𝑋∗. And, by (𝐽7), if𝑋 is
reflexive smooth strictly convex Banach space, then 𝐽−1 = 𝐽

∗.
Let 𝑉 : 𝑋

∗
× 𝑋 → R be defined by

𝑉 (𝑥
∗
, 𝑥) =

󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2
− 2 ⟨𝑥∗, 𝑥⟩ + ‖𝑥‖2 . (4)

First, we mention that, in Hilbert spaces (𝑋∗ = 𝑋), the
functional 𝑉 has the form 𝑉(𝑥

∗
, 𝑥) = ‖𝑥

∗
− 𝑥‖
2, ∀𝑥, 𝑥∗ ∈ 𝑋.

We list now some important properties of 𝑉 needed in
our proofs, when𝑋 is a reflexive smooth Banach space:

(i) 𝑉(𝑥∗, 𝑥) ≥ 0.
(ii) (‖𝑥∗‖ − ‖𝑥‖)2 ≤ 𝑉(𝑥

∗
, 𝑥) ≤ (‖𝑥

∗
‖ + ‖𝑥‖)

2.
(iii) 𝑉(𝐽(𝑥), 𝑥) = 0.
(iv) 𝑉(𝑥∗, 𝑥) is continuous and 𝑉 is convex with respect

to 𝑥 when 𝑥∗ is fixed and convex with respect to 𝑥∗
when 𝑥 is fixed.

(v) 𝑉(𝑥∗, 𝑥) is differentiable with respect to 𝑥 when 𝑥∗ is
fixed.

(vi) grad
𝑥
𝑉(𝑥
∗
, 𝑥) = 2(𝐽(𝑥) − 𝑥

∗
). This property is true

whenever the space𝑋 is smooth which is the case for
uniformly convex spaces.

(vii) 𝑉(𝑥∗, 𝑥) = 0 if and only if 𝑥∗ = 𝐽(𝑥).

Let 𝑓 : 𝑋 → R ∪ {+∞} be a function and 𝑥 ∈ 𝑋 where 𝑓 is
finite. We recall from [4] that the 𝑉-proximal subdifferential
𝜕
𝜋
𝑓(𝑥) (called in [4] the analytical proximal subdifferential)

is the set of all 𝑥∗ ∈ 𝑋∗ for which there exists 𝜎 > 0 such that

⟨𝑥
∗
, 𝑥
󸀠
−𝑥⟩ ≤ 𝑓 (𝑥

󸀠
) −𝑓 (𝑥) + 𝜎𝑉 (𝐽 (𝑥) , 𝑥

󸀠
) , (5)

for all𝑥󸀠 around𝑥. Recall also [4] that the𝑉-proximal normal
cone (called in [4] the proximal normal cone) of a nonempty
closed subset 𝑆 in𝑋 at𝑥 ∈ 𝑆 is defined by𝑁𝜋(𝑆; 𝑥) = 𝜕

𝜋
𝜓
𝑆
(𝑥),

where 𝜓
𝑆
is the indicator function of 𝑆. It has been proved in

[4] that𝑁𝜋(𝑆; 𝑥) coincides with the normal cone in the sense
of convex analysis 𝑁(𝑆; 𝑥) given by 𝑁(𝑆; 𝑥) = {𝑥

∗
∈ 𝑋
∗
:

⟨𝑥
∗
, 𝑦 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆}.
Based on the functional 𝑉, a set 𝜋

𝑆
(𝑥
∗
) of generalized

projections of 𝑥∗ ∈ 𝑋∗ onto 𝑆 is defined as follows (see [1]).

Definition 1. Let 𝑆 be a nonempty subset of 𝑋 and 𝑥∗ ∈ 𝑋
∗.

If there exists a point 𝑥 ∈ 𝑆 satisfying

𝑉 (𝑥
∗
, 𝑥) = inf

𝑥∈𝑆

𝑉 (𝑥
∗
, 𝑥) , (6)

then 𝑥 is called a generalized projection of 𝑥∗ onto 𝑆. The set
of all such points is denoted by 𝜋

𝑆
(𝑥
∗
).

The following lemma is needed in our proofs and for its
proof we refer to [1].

Lemma 2. If 𝐸 is a uniformly convex Banach space, then the
inequality

𝑉 (𝐽 (𝑥) , 𝑦) ≥ 8𝐶2
𝛿
𝐸
(

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

4𝐶
) (7)

holds for all 𝑥 and 𝑦 in 𝐸, where 𝐶 = √(‖𝑥‖
2
+ ‖𝑦‖
2
)/2.

We end this section with the following important result
proved in [4]. It proves the density of the set dom(𝜕𝜋𝑓) in
dom𝑓, that is, the set of points 𝑥 in dom𝑓 at which 𝜕𝜋𝑓(𝑥) ̸=

0 is dense in dom𝑓.

Theorem 3. Let 𝑝 ≥ 2, let 𝑞 ∈ (0, 2], let 𝑋 be a 𝑝-uniformly
convex and 𝑞-uniformly smoothBanach space, and let𝑓 : 𝑋 →

R∪{+∞} be a lower semicontinuous function. Let 𝑥0 ∈ dom𝑓,
and let 𝜖 > 0 be given. Then there exists a point 𝑦 ∈ 𝑥0 +
𝜖B satisfying 𝜕𝜋𝑓(𝑦) ̸= 0 and 𝑓(𝑥0) − 𝜖 ≤ 𝑓(𝑦) ≤ 𝑓(𝑥0).
Consequently, dom(𝜕𝜋𝑓) is dense in dom𝑓.

3. Minimization Principles in Banach Spaces

Given a lower semicontinuous function 𝑓 : 𝑋 → R ∪ {+∞}

that is bounded below and 𝛼 > 0, we define two functions
𝑓
𝛼
: 𝑋 → R and 𝑓∗

𝛼
: 𝑋
∗
→ R by

𝑓
𝛼 (
𝑥) := inf

𝑦∈𝑋

{𝑓 (𝑦) + 𝛼𝑉 (𝐽 (𝑦) , 𝑥)} , (8)

𝑓
∗

𝛼
(𝑥
∗
) := inf
𝑦∈𝑋

{𝑓 (𝑦) + 𝛼𝑉 (𝑥
∗
, 𝑦)} . (9)
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These functions 𝑓
𝛼
and 𝑓∗

𝛼
coincide, in Hilbert spaces, with

the inf-convolution of the function 𝑓 and the function 𝑥 󳨃→

𝛼‖𝑥‖
2, which is due to the relation 𝑉(𝐽(𝑦), 𝑥) = 𝑉(𝐽(𝑥), 𝑦) =

‖𝑦 − 𝑥‖
2 in Hilbert spaces. In [4], the authors studied the

function 𝑓
𝛼
and they derived some minimization principles

in 𝑝-uniformly convex and 𝑞-uniformly smooth Banach
spaces. In this section, we establish similar results for the
function 𝑓∗

𝛼
that will be used to prove our main theorem in

this paper.We start with the following theorem proved in [4].

Theorem 4. Let 𝑝󸀠 ≥ 2, let 𝑞󸀠 ∈ (1, 2], let 𝐸 be a 𝑝󸀠-uniformly
convex and 𝑞

󸀠-uniformly smooth Banach space, and let 𝑓 :

𝐸 → R ∪ {+∞} be a proper lower semicontinuous function.
Suppose that 𝑓 is bounded below by some constant 𝑐. Then 𝑓

𝛼

is bounded below by 𝑐 and is Lipschitz on each bounded subset
of 𝐸. Furthermore, suppose that 𝑥 ∈ 𝐸 is such that 𝜕𝜋𝑓

𝛼
(𝑥)

is nonempty. Then there exists a point 𝑦 ∈ 𝐸 satisfying the
following:

(i) If {𝑦
𝑖
} is a minimizing sequence in 𝐸 for the infimum in

(8), then lim
𝑖→+∞

𝑦
𝑖
= 𝑦.

(ii) The infimum in (8) is attained uniquely at 𝑦.

Let 𝑋 be a 𝑝-uniformly convex and 𝑞-uniformly smooth
Banach space with 𝑝 ≥ 2 and 𝑞 ∈ (0, 2]. Then 𝑋 is reflexive;
that is, 𝑋∗∗ = 𝑋, and 𝐽 is one-to-one from 𝑋 to 𝑋

∗ with
𝐽
−1
= 𝐽
∗. Thus, observe that the function 𝑓∗

𝛼
can be rewritten

as follows:
𝑓
∗

𝛼
(𝑥
∗
) = inf
𝑦∈𝑋

{𝑓 (𝑦) + 𝛼𝑉 (𝑥
∗
, 𝑦)}

= inf
𝑦
∗
∈𝑋
∗

{𝑓 (𝐽
∗
(𝑦
∗
)) + 𝛼𝑉 (𝑥

∗
, 𝐽
∗
(𝑦
∗
))}

= inf
𝑦
∗
∈𝑋
∗

{(𝑓 ∘ 𝐽
∗
) (𝑦
∗
) + 𝛼𝑉

∗
(𝐽
∗
(𝑦
∗
) , 𝑥
∗
)}

= inf
𝑦
∗
∈𝑋
∗

{𝐹 (𝑦
∗
) + 𝛼𝑉

∗
(𝐽
∗
(𝑦
∗
) , 𝑥
∗
)}

= 𝐹
𝛼
(𝑥
∗
) ,

(10)

where 𝐹 : 𝑋
∗
→ R is defined by 𝐹 := 𝑓 ∘ 𝐽

∗ and 𝑉
∗
: 𝑋
∗∗

×

𝑋
∗
→ R is defined by

𝑉
∗
(𝐽
∗
(𝑦
∗
) , 𝑥
∗
) =

󵄩
󵄩
󵄩
󵄩
𝐽
∗
(𝑦
∗
)
󵄩
󵄩
󵄩
󵄩

2
− 2 ⟨𝐽

∗
(𝑦
∗
) ; 𝑥
∗
⟩

+
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2
.

(11)

Using this observation together withTheorem 4 with 𝐸 =

𝑋
∗ and 𝐹 playing the role of 𝑓 we can prove the following

theorem.

Theorem 5. Let 𝑝 ≥ 2, let 𝑞 ∈ (1, 2], let 𝑋 be a 𝑝-uniformly
convex and 𝑞-uniformly smoothBanach space, and let𝑓 : 𝑋 →

R ∪ {+∞} be a proper lower semicontinuous function which
is bounded below by some constant 𝑐. Then 𝑓

∗

𝛼
is bounded

below by 𝑐 and is Lipschitz on each bounded subset of 𝑋∗.
Furthermore, for any 𝑥∗ ∈ 𝑋∗ with 𝜕𝜋𝑓∗

𝛼
(𝑥
∗
) ̸= 0 there exists

a point 𝑦 ∈ 𝑋 satisfying the following:

(𝑖)
∗ If {𝑦

𝑖
} is a minimizing sequence in 𝑋 for the infimum

in (9), then lim
𝑖→+∞

𝑦
𝑖
= 𝑦.

(𝑖𝑖)
∗ The infimum in (9) is attained uniquely at 𝑦 ∈ 𝑋; that
is,

𝑓
∗

𝛼
(𝑥
∗
) = 𝑓 (𝑦) + 𝛼𝑉 (𝑥

∗
, 𝑦) . (12)

Proof. Let 𝐸 = 𝑋
∗ and 𝐹 = 𝑓 ∘ 𝐽

∗. Clearly 𝐹 is a proper l.s.c.
function on 𝐸 and is bounded below by the same constant
𝑐. Then by Theorem 4 the function 𝐹

𝛼
= 𝑓
∗

𝛼
is bounded

below by 𝑐 and is Lipschitz on each bounded subset in 𝑋
∗.

Furthermore, for any 𝑥
∗

∈ 𝑋
∗ with 𝜕

𝜋
𝑓
∗

𝛼
(𝑥
∗
) ̸= 0, we

have 𝜕𝜋𝐹
𝛼
(𝑥
∗
) ̸= 0 and so by Theorem 4 there exists a point

𝑧
∗
∈ 𝑋
∗ such that

(i) if {𝑦
∗

𝑛
} is a minimizing sequence in 𝑋

∗ for the
infimum in

𝐹
𝛼
(𝑥
∗
) = inf
𝑦
∗
∈𝑋
∗

{𝐹 (𝑦
∗
) + 𝛼𝑉

∗
(𝐽
∗
(𝑦
∗
) , 𝑥
∗
)} , (13)

then lim
𝑖→+∞

𝑦
∗

𝑛
= 𝑧
∗;

(ii) the infimum in (13) is attained uniquely at 𝑧∗ ∈ 𝑋
∗;

that is,

𝐹
𝛼
(𝑥
∗
) = 𝐹 (𝑧

∗
) + 𝛼𝑉

∗
(𝐽
∗
(𝑧
∗
) , 𝑥
∗
) . (14)

The proof will be complete by taking𝑦 := 𝐽
∗
(𝑧
∗
) and by using

the fact that 𝐽∗ is continuous in smooth Banach spaces.

By taking different forms of the function 𝑓
∗

𝛼
, we can

obtain various types ofminimization principles.We state here
the two following types.The first one is Stegall’s minimization
principle and the second one is a variant of the smooth
Borwein-Preiss variational principle in Banach spaces (see
[4] for different variants in Banach spaces and see [12] for
those principles in Hilbert spaces).

Theorem 6. Let 𝑞 ∈ (1, 2] and 𝑝 ≥ 2, let 𝑋 be a 𝑝-uniformly
convex and 𝑞-uniformly smooth Banach space, and let 𝑓 :

𝑋 → R be a lower semicontinuous function. Suppose that 𝑓
is bounded below on the bounded closed set 𝑆 ⊂ 𝑋, with
𝑆 ∩ dom𝑓 ̸= 0. Then, for any 𝜖 > 0, there exists 𝑥∗ ∈ 𝑋∗ with
‖𝑥
∗
‖ < 𝜖 such that the function 𝑦 󳨃→ 𝑓(𝑦) + ⟨𝑥

∗
, 𝑦⟩ attains a

unique minimum over 𝑆.

Proof. Define on𝑋∗ the function

𝑔 (𝑥
∗
)

:= inf
𝑦∈𝑋

{𝑓 (𝑦) +𝜓
𝑆
(𝑦) −

1
2
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2
+

1
2
𝑉 (𝑥
∗
, 𝑦)} ,

(15)

which is of the form ℎ
∗

𝛼
with ℎ = 𝑓 + 𝜓

𝑆
− (1/2)‖ ⋅ ‖2 and

𝛼 = 1/2. Furthermore, expression (15) for 𝑔 can be rewritten
as

𝑔 (𝑥
∗
) = inf
𝑦∈𝑆

{𝑓 (𝑦) − ⟨𝑥
∗
, 𝑦⟩} +

1
2
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2
. (16)

Let 𝜖 > 0 and let 𝑧 ∈ 𝑆 ∩ dom𝑓. Then for any 𝑥∗ ∈ 𝑋
∗ we

have

𝑔 (𝑥
∗
) ≤ 𝑓 (𝑧) − ⟨𝑥

∗
, 𝑧⟩ +

1
2
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2
< ∞; (17)
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that is, dom𝑔 = 𝑋
∗. Now, by the density theorem of the

𝑉-proximal subdifferential in Theorem 3, there exists 𝑦∗ ∈

dom 𝜕
𝜋
𝑔; that is, 𝜕𝜋𝑔(𝑦∗) ̸= 0 with ‖𝑦∗‖ < 𝜖 and

inf
𝑦∈𝑆

𝑓 (𝑦) − 𝜖 = 𝑔 (0) − 𝜖 ≤ 𝑔 (𝑦
∗
) ≤ 𝑔 (0) = inf

𝑦∈𝑆

𝑓 (𝑦) . (18)

Using nowTheorem 4(ii), we deduce that the infimum in (15)
and (16) is attained at a unique point 𝑦 ∈ 𝑆; that is,

𝑔 (𝑥
∗
) = 𝑓 (𝑦) − ⟨𝑥

∗
, 𝑦⟩ +

1
2
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2
. (19)

Therefore, by taking 𝑥∗ = −𝑦
∗, we obtain ‖𝑥∗‖ < 𝜖 and the

function 𝑦 󳨃→ 𝑓(𝑦) + ⟨𝑥
∗
, 𝑦⟩ attains a unique minimum over

𝑆 at 𝑦 ∈ 𝑆 and so the proof is complete.

The following theorem is a different variant of the smooth
Borwein-Preiss variational principle in which the perturba-
tion is given in terms of the functional 𝑉.

Theorem 7. Let 𝑝 ≥ 2, let 𝑞 ∈ (1, 2], let 𝑋 be a 𝑝-uniformly
convex and 𝑞-uniformly smoothBanach space, and let𝑓 : 𝑋 →

R be a lower semicontinuous function bounded below, and 𝜖 >
0. Suppose that 𝑥 is a point satisfying 𝑓(𝑥) < inf

𝑥∈𝑋
𝑓(𝑥) + 𝜖.

Then for any 𝜆 > 0 there exist points 𝑦 ∈ 𝑋 and 𝑧∗ ∈ 𝑋∗ such
that

(i) ‖𝑧∗ − 𝐽(𝑥)‖ < 𝜆, 𝑉(𝑧∗, 𝑦) < 𝜆, 𝑓(𝑦) ≤ 𝑓(𝑥),
(ii) 𝑓 + (𝜖/𝜆)𝑉(𝑧

∗
; ⋅) has a unique minimum at 𝑦.

Proof. Let 𝜖 > 0 be as in the statement of Theorem 7 and let
𝜆 > 0. Put 𝛼 = 𝜖/𝜆 and consider the function

𝑓
∗

𝛼
(𝑥
∗
) := inf
𝑦∈𝑋

{𝑓 (𝑦) +

𝜖

𝜆

𝑉 (𝑥
∗
, 𝑦)} . (20)

Since𝑓∗
𝛼
is l.s.c. on𝑋∗ and by the density result inTheorem 3,

there exists 𝑧∗ ∈ 𝐽(𝑥)+𝜆B satisfying𝑓∗
𝛼
(𝐽(𝑥))−𝜖 ≤ 𝑓

∗

𝛼
(𝑧
∗
) ≤

𝑓
∗

𝛼
(𝐽(𝑥)) ≤ 𝑓(𝑥) with 𝜕𝜋𝑓∗

𝛼
(𝑧
∗
) ̸= 0. By Theorem 5 there is a

unique point 𝑦 ∈ 𝑋 satisfying

𝑓
∗

𝛼
(𝑧
∗
) = 𝑓 (𝑦) +

𝜖

𝜆

𝑉 (𝑧
∗
; 𝑦) ≤ 𝑓 (𝑥) < inf

𝑥∈𝑋

𝑓 (𝑥) + 𝜖 (21)

and so
𝜖

𝜆

𝑉 (𝑧
∗
; 𝑦) ≤ inf

𝑥∈𝑋

𝑓 (𝑥) −𝑓 (𝑦) + 𝜖 < 𝜖 (22)

and so

𝑉 (𝑧
∗
; 𝑦) < 𝜆. (23)

Thus,

𝑓 (𝑦) +

𝜖

𝜆

𝑉 (𝑧
∗
; 𝑦) = 𝑓

∗

𝛼
(𝑧
∗
) ≤ 𝑓 (𝑥) +

𝜖

𝜆

𝑉 (𝑧
∗
; 𝑥) ,

∀𝑥 ∈ 𝑋,

(24)

and so the function 𝑥 󳨃→ 𝑓(𝑥) + (𝜖/𝜆)𝑉(𝑧
∗
; 𝑥) has a unique

minimum at 𝑥 = 𝑦.

4. Generalized Projections on
Closed Nonconvex Sets

Let us start with the following example showing that 𝜋
𝐾
(𝜑)

may be empty for nonconvex closed sets in uniformly convex
and uniformly smooth Banach spaces.

Example 8. Let𝑋 = ℓ
𝑝
(𝑝 ≥ 1), let 𝜃 = (0, . . . , 0, . . .) ∈ 𝑙

𝑝
, and

let 𝑆 := {𝑒1, 𝑒2, . . . , 𝑒𝑛, . . .} with 𝑒𝑗 = (0, . . . , 0, (𝑗 + 1)/𝑗, 0, . . .).
Then 𝑆 is a closed nonconvex subset in𝑋 with 𝜋

𝑆
(𝜃) = 0.

Proof. Clearly 𝑆 is closed and not convex. Let 𝑥 be any
element in {𝑒1, 𝑒2, . . . , 𝑒𝑛, . . .}; that is, 𝑥 = 𝑒

𝑛
for some 𝑛 ≥ 1,

‖𝑥‖ = ‖𝑒
𝑛
‖ = 1 + (1/𝑛) > 1. Then for any 𝑥 ∈ 𝑆 we have

‖𝑥‖ > 1 and so 𝑉(𝜃, 𝑥) = ‖𝑥‖
2
> 1, ∀𝑥 ∈ 𝑆; that is,

1 ≤ inf
𝑥∈𝑆

𝑉 (𝜃, 𝑥) ≤ lim inf
𝑛→∞

𝑉 (𝜃, 𝑒
𝑛
) = lim inf
𝑛→∞

(1+ 1
𝑛

)

= 1
(25)

and so
inf
𝑥∈𝑆

𝑉 (𝜃, 𝑥) = 1. (26)

This ensures that 𝜋
𝑆
(𝜃) = 0.

From the previous example, we see that even in uniformly
convex and uniformly smooth Banach spaces the generalised
projection 𝜋

𝐾
(𝑥
∗
) may be empty for closed nonconvex

sets and so there is no hope of getting the conclusion of
Theorem 2.1 in [3] saying that 𝜋

𝐾
(𝑥
∗
) ̸= 0, ∀𝑥∗ ∈ 𝑋

∗,
whenever the set 𝑆 is closed convex in reflexive Banach spaces.
However, we are going to prove that, for closed nonconvex
sets, the set of points 𝑥∗ ∈ 𝑋∗ for which 𝜋

𝑆
(𝑥
∗
) ̸= 0 is dense

in𝑋∗. We are going to prove our main result in the following
theorem. It is an analogue result to Lau’s theorem for metric
projections in reflexive Banach spaces [13].

Theorem 9. Let 𝑝 ≥ 2 and 𝑞 ∈ (1, 2], let 𝑋 be a 𝑝-uniformly
convex and 𝑞-uniformly smooth Banach space, and let 𝑆 be any
closed nonempty set of 𝑋. Then there is a dense set of points
in𝑋∗ admitting unique generalised projection on 𝑆; that is, for
any 𝑥∗ ∈ 𝑋∗, there exists 𝑥∗

𝑛
→ 𝑥
∗ with 𝜋

𝑆
(𝑥
∗

𝑛
) ̸= 0, ∀𝑛.

Proof. Observe that

𝑑
𝑉

𝑆
(𝑥
∗
) = inf
𝑦∈𝑋

{𝜓
𝑆
(𝑦) +𝑉 (𝑥

∗
, 𝑦)} , (27)

which means that 𝑑𝑉
𝑆
has the form 𝑓

∗

𝛼
with 𝛼 = 1 and 𝑓 = 𝜓

𝑆
.

Since 𝑓 is proper l.s.c. and is bounded below, we can apply
Theorem 5 to get for any 𝑥∗ ∈ 𝑋

∗ with 𝜕
𝜋
𝑑
𝑉

𝑆
(𝑥
∗
) ̸= 0 the

existence of some 𝑦 ∈ 𝑋 satisfying

𝑑
𝑉

𝑆
(𝑥
∗
) = 𝜓
𝑆
(𝑦) +𝑉 (𝑥

∗
, 𝑦) ; (28)

that is, 𝑦 ∈ 𝑆 and 𝑑𝑉
𝑆
(𝑥
∗
) = 𝑉(𝑥

∗
, 𝑦), which means that 𝑦 ∈

𝜋
𝑆
(𝑥
∗
). Using now the density result inTheorem 3, to get the

density of the set dom 𝜕
𝜋
𝑑
𝑉

𝑆
(⋅) in𝑋∗, that is, for any 𝑥∗ ∈ 𝑋∗,

there exists 𝑥∗
𝑛
→ 𝑥
∗ with 𝜕𝜋𝑑𝑉

𝑆
(x∗
𝑛
) ̸= 0. Therefore, by what

precedes, there exists 𝑦
𝑛
∈ 𝜋
𝑆
(𝑥
∗

𝑛
) ∀𝑛; that is, 𝜋

𝑆
(𝑥
∗

𝑛
) ̸= 0, ∀𝑛.

This proves the conclusion of the theorem.
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5. Applications to Nonconvex
Variational Problems

Let 𝑝 ≥ 2 and 𝑞 ∈ (1, 2] and let 𝑋 be a 𝑝-uniformly convex
and 𝑞-uniformly smooth Banach space. Let 𝐹 : 𝑋 󴁂󴀱 𝑋

∗ be
a set-valued mapping and let 𝑆 ⊂ 𝑋 be a nonempty closed
set not necessarily convex. Our aim is to use the main result
in the previous section to study the following nonconvex
variational problem:

Find 𝑥 ∈ 𝑆 such that 𝑁𝜋 (𝑆; 𝑥) ∩ [−𝐹 (𝑥)] ̸= 0. (29)

First we show that in the convex case (29) coincides with
the usual variational inequality

Find 𝑥 ∈ 𝑆, 𝑦
∗
∈ 𝐹 (𝑥)

such that ⟨𝑦∗, 𝑦 − 𝑥⟩ ≥ 0,

∀𝑦 ∈ 𝑆.

(30)

Proposition 10. Whenever 𝑆 is a closed convex set, one has
(29)⇔ (30).

Proof. Theproof follows from the fact that𝑁𝜋(𝑆; 𝑥) coincides
with the convex normal cone which can be characterised as
𝑁(𝑆; 𝑥) = {𝑥

∗
∈ 𝑋
∗
: ⟨𝑥
∗
, 𝑠 − 𝑥⟩ ≤ 0, ∀𝑠 ∈ 𝑆}.

We suggest the following algorithm to solve the proposed
problem (29) under some natural and appropriate assump-
tions on 𝑆 and 𝐹.

Algorithm 11. Let 𝛿
𝑛
↓ 0 with 𝛿0 being too small:

(i) Select 𝑥0 ∈ 𝑆, 𝑦
∗

0 ∈ 𝐹(𝑥0), and 𝜌 > 0.
(ii) For 𝑛 ≥ 0,

(a) compute 𝑧
𝑛+1 := 𝐽

∗
(𝐽(𝑥
𝑛
) − 𝜌𝑦

∗

𝑛
);

(b) choose 𝑢
𝑛+1 ∈ 𝐽

∗
(𝐽(𝑧
𝑛+1) + 𝛿

𝑛
B
∗
) with

𝜋
𝑆
(𝐽(𝑢
𝑛+1)) ̸= 0;

(c) compute 𝑥
𝑛+1 := 𝜋

𝑆
(𝐽(𝑢
𝑛+1)) and 𝑦

∗

𝑛+1 ∈

𝐹(𝑥
𝑛+1).

Since 𝑆 is not necessarily convex, the generalised projection
𝜋
𝑆
does not exist necessarily for any 𝑥∗ ∈ 𝑋∗ \ 𝐽(𝑆). However,

our previous algorithm is well defined as we will prove in the
following proposition.

Proposition 12. Assume that 𝑋 is uniformly convex and
uniformly smooth Banach space. The above algorithm is well
defined.

Proof. Let 𝑛 ≥ 0 and let 𝑥
𝑛
∈ 𝑆 with 𝑦∗

𝑛
∈ 𝐹(𝑥

𝑛
) be given. The

point 𝑧
𝑛+1 is well defined since 𝐽 and 𝐽∗ are well defined and

one-to-one because the space 𝑋 is assumed to be uniformly
convex and uniformly smooth. Now, since the generalised
projection of 𝐽(𝑧

𝑛+1) is not ensured we use our main result
inTheorem 9 to choose some point 𝐽(𝑢

𝑛+1) ∈ 𝑋
∗ too close to

𝐽(𝑧
𝑛+1) so that ‖𝐽(𝑧

𝑛+1) − 𝐽(𝑢𝑛+1)‖ ≤ 𝛿
𝑛
and 𝜋

𝑆
(𝐽(𝑢
𝑛+1)) ̸= 0.

Then by the same theorem we have the uniqueness of the
generalised projection so we can take 𝑥

𝑛+1 := 𝜋
𝑆
(𝐽(𝑢
𝑛+1)) and

then we are done.

After proving the well definedness of the algorithm
without any additional assumptions on 𝑆 and 𝐹 we add some
natural assumptions on the data to prove the convergence of
the sequence {𝑥

𝑛
}
𝑛
to a solution of (29).

In our analysis we need the following assumptions on 𝑆

and 𝐹:

AssumptionsA
(1) The solution set of (29) is nonempty.
(2) The set 𝑆 is ball compact; that is, any bounded set in 𝑆

is relatively compact.
(3) 𝐹 is bounded on 𝑆 by some constant 𝐿 > 0.
(4) 𝐹 is 𝛽-Lipschitz on 𝑆; that is,

󵄩
󵄩
󵄩
󵄩
𝑦
∗

1 −𝑦
∗

2
󵄩
󵄩
󵄩
󵄩
≤ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑥1 −𝑥2

󵄩
󵄩
󵄩
󵄩
,

∀𝑥
𝑖
∈ 𝑆, ∀𝑦

𝑖
∈ 𝐹 (𝑥

𝑖
) , 𝑖 = 1, 2.

(31)

(5) 𝐹 is 𝛼-𝐽-strongly monotone on 𝑆; that is,

⟨𝐽
∗
(𝑦
∗

1 −𝑦
∗

2 ) ; 𝐽 (𝑥1) − 𝐽 (𝑥2)⟩

≥ 𝛼
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥1) − 𝐽 (𝑥2)

󵄩
󵄩
󵄩
󵄩

2
,

∀𝑥
𝑖
∈ 𝑆, ∀𝑦

∗

𝑖
∈ 𝐹 (𝑥

𝑖
) , 𝑖 = 1, 2.

(32)

(6) There exist some constants 𝜇 > 0 and 𝜉 > 0 such that
󵄩
󵄩
󵄩
󵄩
𝜋
𝑆
(𝑢
∗

1 ) − 𝜋𝑆 (𝑢
∗

2 )
󵄩
󵄩
󵄩
󵄩
≤ 𝜉

󵄩
󵄩
󵄩
󵄩
𝑢
∗

1 −𝑢
∗

2
󵄩
󵄩
󵄩
󵄩
,

∀𝑢
∗

1 , 𝑢
∗

2 ∈ 𝐽 (𝑆) + 𝜇B∗.
(33)

(7) The constants 𝜇, 𝛿0, 𝛼, 𝑐, 𝜉, and 𝛽 satisfy

𝜉𝑐 > 𝛽 (𝜉 − 1) ,

0 < 𝛿0 < 𝜇.

(34)

Theorem 13. Assume that 𝑋 is 2-uniformly smooth. Let
{𝑥
𝑛
}
𝑛
be a sequence generated by Algorithm 11. Assume that

Assumptions A hold and that the parameter 𝜌 satisfies the
inequalities

𝛼

𝛽
2 − 𝜖 < 𝜌 < min{

𝜇 − 𝛿0
𝐿

,

𝛼

𝛽
2 + 𝜖} , (35)

where 𝜖 := √𝛼
2
− 𝛽

2
(1 − 𝑐/𝜉2)/𝛽2. Then there exists a subse-

quence of {𝑥
𝑛
}
𝑛
converging to a solution 𝑥 of (29).

Proof. Let 𝑥 be a solution of (29); that is, there exists 𝑦∗ ∈
𝐹(𝑥) such that −𝑦∗ ∈ 𝑁

𝜋
(𝑆; 𝑥). Hence by definition of the

𝑉-proximal normal cone there exists 𝑟 > 0 such that 𝑥 ∈

𝜋
𝑆
(𝐽(𝑥) − 𝑟𝑦

∗
). Without loss of generality we may assume

that 𝜌 is too small so that 𝜌 ∈ (0, 𝑟]. First we claim that
𝑥 ∈ 𝜋
𝑆
(𝐽(𝑥)−𝜌𝑦

∗
); that is,𝑉(𝐽(𝑥)−𝜌𝑦∗, 𝑥) = inf

𝑠∈𝑆
𝑉(𝐽(𝑥)−

𝜌𝑦
∗
, 𝑠). Let 𝜆 := 𝜌/𝑟 ∈ (0, 1]. Then for any 𝑠 ∈ 𝑆 we have

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩

= 2 ⟨𝜆 (𝐽 (𝑥) − 𝑟𝑦∗) + (1−𝜆) 𝐽 (𝑥) − 𝐽𝑥; 𝑠 − 𝑥⟩

= 2𝜆 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩ .

(36)

We distinguish two cases.
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Case 1. If ⟨(𝐽(𝑥) − 𝑟𝑦∗) − 𝐽(𝑥); 𝑠 − 𝑥⟩ ≤ 0, then obviously we
have

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ ≤ 0 ≤ 𝑉 (𝐽 (𝑥) , 𝑠) . (37)

Case 2. If ⟨(𝐽(𝑥)−𝑟𝑦∗)−𝐽(𝑥); 𝑠−𝑥⟩ ≥ 0, then since 0 < 𝜆 ≤ 1
we have

2𝜆 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩

≤ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩
(38)

and so we obtain

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩

≤ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩

≤
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥) − 𝑟𝑦

∗󵄩
󵄩
󵄩
󵄩

2
− 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) ; 𝑥⟩ + ‖𝑥‖2

+ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) ; 𝑠⟩ − 󵄩󵄩󵄩
󵄩
𝐽 (𝑥) − 𝑟𝑦

∗󵄩
󵄩
󵄩
󵄩

2
− ‖𝑠‖

2

+ ‖𝑠‖
2
− 2 ⟨𝐽 (𝑥) ; 𝑠 − 𝑥⟩ − ‖𝑥‖2

≤ 𝑉 (𝐽 (𝑥) − 𝑟𝑦
∗
, 𝑥) −𝑉 (𝐽 (𝑥) − 𝑟𝑦

∗
, 𝑠)

+𝑉 (𝐽 (𝑥) , 𝑠)

≤ inf
𝑧∈𝑆

𝑉 (𝐽 (𝑥) − 𝑟𝑦
∗
, 𝑧) −𝑉 (𝐽 (𝑥) − 𝑟𝑦

∗
, 𝑠)

+𝑉 (𝐽 (𝑥) , 𝑠) ≤ 𝑉 (𝐽 (𝑥) , 𝑠) .

(39)

Therefore, in both cases, we have

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ ≤ 𝑉 (𝐽 (𝑥) , 𝑠) . (40)

Hence

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ −𝑉 (𝐽 (𝑥) , 𝑠) ≤ 0. (41)

On the other hand, simple decomposition yields

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ −𝑉 (𝐽 (𝑥) , 𝑠)

= 𝑉 (𝐽 (𝑥) − 𝜌𝑦
∗
, 𝑥) −𝑉 (𝐽 (𝑥) − 𝜌𝑦

∗
, 𝑠) .

(42)

Consequently, we have

𝑉 (𝐽 (𝑥) − 𝜌𝑦
∗
, 𝑥) −𝑉 (𝐽 (𝑥) − 𝜌𝑦

∗
, 𝑠) ≤ 0,

for any 𝑠 ∈ 𝑆,
(43)

which means that 𝑥 ∈ 𝜋
𝑆
(𝐽(𝑥) − 𝜌𝑦

∗
). Set 𝑧 := 𝐽

∗
(𝐽(𝑥) −

𝜌𝑦
∗
). Since 𝑋 is 2-uniformly smooth we have the 2-uniform

convexity of the dual space𝑋∗ and so 𝛿
𝑋
∗(𝜏) ≥ 2𝑐𝜏2 for some

constant 𝑐 depending only on the space 𝑋∗. On the other
hand, by Lemma 2, we have

𝑉
∗
(𝐽
∗
𝑥
∗
, 𝑦
∗
) ≥ 8𝐶2

𝛿
𝑋
∗ (

󵄩
󵄩
󵄩
󵄩
𝑥
∗
− 𝑦
∗󵄩󵄩
󵄩
󵄩

4𝐶
) ,

∀𝑥
∗
, 𝑦
∗
∈ 𝑋
∗
,

(44)

where 𝐶 = √(‖𝑥
∗
‖
2
+ ‖𝑦
∗
‖
2
)/2. Hence

𝑉
∗
(𝐽
∗
𝑥
∗
, 𝑦
∗
) ≥ 8𝐶2

𝛿
𝑋
∗ (

󵄩
󵄩
󵄩
󵄩
𝑥
∗
− 𝑦
∗󵄩󵄩
󵄩
󵄩

4𝐶
)

≥ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑥
∗
−𝑦
∗󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥

∗
, 𝑦
∗
∈ 𝑋
∗
.

(45)

Therefore, we obtain

𝑐
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛+1) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

2

= 𝑐
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥) − 𝜌 (𝑦

∗

𝑛
−𝑦
∗
)
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑉
∗
(𝜌𝐽
∗
(𝑦
∗

𝑛
−𝑦
∗
) ; 𝐽 (𝑥

𝑛
) − 𝐽 (𝑥))

≤ 𝜌
2 󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑛
−𝑦
∗󵄩
󵄩
󵄩
󵄩

2

− 2𝜌 ⟨𝐽∗ (𝑦∗
𝑛
−𝑦
∗
) ; 𝐽 (𝑥

𝑛
) − 𝐽 (𝑥)⟩

+
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩

2
.

(46)

Using now the 𝛽-Lipschitz property and the 𝛼-𝐽-strong
monotony of 𝐹, we write

󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛+1) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

2
≤ 𝑐
−1
[
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩

2

− 2𝜌𝛼 󵄩󵄩󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩

2
+𝜌

2
𝛽
2 󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩

2
]

(47)

and so
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛+1) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

≤ √𝑐
−1
(1 − 2𝜌𝛼 + 𝜌2𝛽2

)
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩
.

(48)

Since 𝑥
𝑛
and 𝑥 belong to 𝑆 (by construction) we have 𝐽(𝑥

𝑛
),

𝐽(𝑥) ∈ 𝐽(𝑆) and so by our assumptions on the constants 𝐿, 𝛿0,
and 𝜇 and the choice of 𝜌 we obtain

𝑑
𝐽(𝑆)

(𝐽 (𝑢
𝑛
)) ≤ 𝑑

𝐽(𝑆)
(𝐽 (𝑧
𝑛
)) +

󵄩
󵄩
󵄩
󵄩
𝐽 (𝑢
𝑛
) − 𝐽 (𝑧

𝑛
)
󵄩
󵄩
󵄩
󵄩

≤ 𝜌
󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛿
𝑛
< 𝜌𝐿+ 𝛿0 < 𝜇,

𝑑
𝐽(𝑆) (

𝐽 (𝑧)) = 𝑑
𝐽(𝑆)

(𝐽 (𝑥) − 𝜌𝑦
∗
) ≤ 𝜌

󵄩
󵄩
󵄩
󵄩
𝑦
∗󵄩
󵄩
󵄩
󵄩
< 𝜌𝐿

< 𝜇

(49)

which ensures that 𝐽(𝑢
𝑛
) and 𝐽(𝑧) belong to 𝐽(𝑆) + 𝜇B

∗
.

This yields with the Lipschitz assumption of the generalised
projection on 𝐽(𝑆) + 𝜇B

∗
that

󵄩
󵄩
󵄩
󵄩
𝐽 (𝑥
𝑛
) − 𝐽 (𝑥)

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝐽 (𝜋
𝑆
(𝐽 (𝑢
𝑛
))) − 𝐽 (𝜋

𝑆 (
𝐽 (𝑧)))

󵄩
󵄩
󵄩
󵄩

≤ 𝜉
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑢
𝑛
) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

≤ 𝜉 [
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛
) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑢
𝑛
) − 𝐽 (𝑧

𝑛
)
󵄩
󵄩
󵄩
󵄩
]

≤ 𝜉
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛
) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩
+ 𝜉𝛿
𝑛−1.

(50)
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And consequently inequality (48) becomes
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛+1) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

≤ 𝜉√𝑐
−1
(1 − 2𝜌𝛼 + 𝜌2𝛽2

)
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑧
𝑛
) − 𝐽 (𝑧)

󵄩
󵄩
󵄩
󵄩

+ 𝜉𝛿
𝑛−1√𝑐

−1
(1 − 2𝜌𝛼 + 𝜌2𝛽2

).

(51)

Set 𝜁 := 𝜉√𝑐
−1
(1 − 2𝜌𝛼 + 𝜌2𝛽2

), 𝛿
𝑛

:=

𝜉𝛿
𝑛−1√𝑐

−1
(1 − 2𝜌𝛼 + 𝜌2𝛽2

), and Φ
𝑛

:= ‖𝐽(𝑧
𝑛
) − 𝐽(𝑧)‖.

Then for any 𝑛 ≥ 1 we have

Φ
𝑛+1 ≤ 𝜁Φ

𝑛
+ 𝛿
𝑛
. (52)

By mathematical induction we get

Φ
𝑛+1 ≤

𝑛−1
∑

𝑘=0
𝜁
𝑘
𝛿
𝑛−𝑘

+ 𝜁
𝑛
Φ1 ≤

𝑛−1
∑

𝑘=0
𝜁
𝑘
+ 𝜁
𝑛
Φ1

≤

1 − 𝜁𝑛

1 − 𝜁
+ 𝜁
𝑛
Φ1.

(53)

Our Assumptions A and the choice of 𝜌 ensure that 0 <

𝜁 < 1 and hence the sequence Φ
𝑛
is bounded and so the

sequences {𝑧
𝑛
}
𝑛
and {𝑥

𝑛
}
𝑛
are bounded and since the set 𝑆 is

ball compact then the sequence {𝑥
𝑛
}
𝑛
is compact and hence

there exists a subsequence {𝑥
𝑛
𝑘

}
𝑘
converging to some limit

𝑥 ∈ 𝑆. By Lipschitz property of 𝐹 we can check easily that
the sequence {𝑦

𝑛
𝑘

}
𝑘
is convergent to some limit 𝑦∗ belonging

to 𝐹(𝑥) and so lim
𝑘
𝐽(𝑢
𝑛
𝑘
+1) = lim

𝑘
𝐽(𝑧
𝑛
𝑘
+1) = 𝐽(𝑥) − 𝜌𝑦

∗. Set
𝑧̃ := 𝐽

∗
(𝐽(𝑥) − 𝜌𝑦

∗
). To complete the proof we have to prove

that 𝑥 is a solution of (29). By Algorithm 11 the subsequence
{𝑥
𝑛
𝑘

}
𝑘
satisfies 𝑥

𝑛
𝑘
+1 = 𝜋

𝑆
(𝐽(𝑢
𝑛
𝑘
+1)) and so by the Lipschitz

property of the generalised projection on the set 𝐽(𝑆) + 𝜇B
∗

we can write
󵄩
󵄩
󵄩
󵄩
𝜋
𝑆 (
𝐽 (𝑧̃)) − 𝑥

󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜋
𝑆 (
𝐽 (𝑧̃)) − 𝜋𝑆

(𝐽 (𝑢
𝑛
𝑘
+1))

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑘
+1 −𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜉

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽 (𝑢
𝑛
𝑘
+1) − 𝐽 (𝑧̃)

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑘+1
−𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0

(54)

and so 𝑥 = 𝜋
𝑆
(𝐽(𝑧̃)) = 𝜋

𝑆
(𝐽(𝑥) − 𝜌𝑦

∗
) which ensures by

definition of the 𝑉-proximal normal cone that

0 = 𝜌
−1
([𝐽 (𝑥) − 𝜌𝑦

∗
] − 𝐽 (𝑥)) + 𝑦

∗

∈ 𝑁
𝜋
(𝑆; 𝑥) + 𝐹 (𝑥) .

(55)

Thus

𝑁
𝜋
(𝑆; 𝑥) ∩ [−𝐹 (𝑥)] ̸= 0; (56)

that is, 𝑥 is a solution of (29).Thus the proof is complete.
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