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Abstract. 
Shifting, scaling, modulation, and variational properties for Fourier-Feynman transform of functionals in a Banach algebra  are given. Cameron and Storvick's translation theorem can be obtained as a corollary of our result. We also study shifting, scaling, and modulation properties for the convolution product of functionals in .



1. Introduction
Let  denote the Wiener space, that is, the space of real valued continuous functions  on  with . The concept of  analytic Fourier-Feynman transform for functionals on Wiener space was introduced by Brue in [1]. In [2], Cameron and Storvick introduced  analytic Fourier-Feynman transform. In [3], Johnson and Skoug developed  analytic Fourier-Feynman transform for  that extended the results in [2].
In [4, 5], Huffman et al. defined a convolution product for functionals on Wiener space and showed that the Fourier-Feynman transform of a convolution product is a product of Fourier-Feynman transforms. Recently Kim et al. [6] obtained change of scale formulas for Wiener integrals related to Fourier-Feynman transform and convolution. For a detailed survey of the previous work on Fourier-Feynman transform and related topics, see [7].
Let  denote the class of all Wiener measurable subsets of  and let  denote Wiener measure. Then  is a complete measure space and we denote the Wiener integral of a functional  by
A subset  of  is said to be scale-invariant measurable [8] provided  is measurable for each , and a scale-invariant measurable set  is said to be scale-invariant null provided  for each . A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).
Let  and  denote the sets of complex numbers with positive real part and the complex numbers with nonnegative real part, respectively. Let  be a complex valued measurable functional on  such that the Wiener integral exists as a finite number for all . If there exists a function  analytic in  such that  for all , then  is defined to be the analytic Wiener integral of  over  with parameter , and for  we write If the following limit exists for nonzero real , then we call it the analytic Feynman integral of  over  with parameter  and we writewhere  approaches  through .
Now we will introduce the class of functionals that we work with in this paper. The Banach algebra , which was introduced by Cameron and Storvick [9], consists of functionals expressible in the formfor s-a.e.  in , where the associated measure  is a complex Borel measure on  and  denote the Paley-Wiener-Zygmund stochastic integral .
In this paper, we study shifting, scaling, modulation, and variational properties for Fourier-Feynman transform of functionals in . Shifting properties are some of the important properties of Fourier transform. In Section 2, we develop shifting properties for Fourier-Feynman transform. For example, time shifting, frequency shifting, scaling, and modulation properties for Fourier-Feynman transform are given.
In Section 3, we study variational properties for Fourier-Feynman transform of functionals in  and in the last section we develop shifting, scaling, and modulation properties for convolution product of functionals in .
The Banach algebra  is a very rich class of functionals. It is known that important functionals in quantum mechanics and Feynman integration theory belong to . For example, functionals of the formwere discussed in the book by Feynman and Hibbs [10] on path integrals and in Feynman’s original paper [11]. For appropriate , functionals of form (6) are known to belong to  [12]. Hence the results in this paper can be immediately applied to many functionals of form (6).
2. Shifting Properties for Fourier-Feynman Transform
In this section we develop some of the important properties relevant to shifting (translating) and computational rules for Fourier-Feynman transform of functionals in the Banach algebra . Let us begin with the definition of the Fourier-Feynman transform of functionals on Wiener space.
Let  and let  be a nonzero real number throughout this paper.
Definition 1. Let  be a functional on . For  and , letFor , we define  analytic Fourier-Feynman transform  of  on  by the formula whenever this limit exists; that is, for each , where . We define  analytic Fourier-Feynman transform  of  by for s-a.e. , whenever this limit exists [2–5].
Since  is linear, obviously  is linear; that is,for all constants ,  and functionals ,  on , whenever each transform exists.
By Definition (4) of the analytic Feynman integral and  analytic Fourier-Feynman transform (10), it is easy to see thatIn particular, if , then  is analytic Feynman integrable and
Huffman et al. established the existence of Fourier-Feynman transform on  for functionals in .
Theorem 2 (Theorem 3.1 of [5]).  Let  be given by (5). Then for all  for s-a.e. . Moreover the Fourier-Feynman transform  exists, belongs to , and is given by for s-a.e. .
The Fourier transform  turns a function  into a new function . Because the transform is used in signal analysis, we usually use  for time as the variable with  and  as the variable of the transform ; that is, Engineers refer to the variable  in the transformed function as the frequency of the signal  [13].
We will use the same convention in this paper; that is, for a Fourier-Feynman transform  of , we call the variable  a time and the variable  a frequency.
Our first result in this section shows that the time shifting of the Fourier-Feynman transform is equal to the frequency shifting of the Fourier-Feynman transform.
Theorem 3.  Let  be a functional on  and let . Then one has if all sides exist.
Proof. For all  and for s-a.e. ,if the Wiener integral exists. Hence we have the result.
The following theorem is reminiscent of the time shifting theorem for the Fourier transform. Hence we call the following theorem the time shifting formula for Fourier-Feynman transform on Wiener space. It says that if we shift back  and replace  by , then the Fourier-Feynman transform of this shifted function is equal to the Fourier-Feynman transform of  multiplied by an exponential factor.
Theorem 4 (time shifting).  Let  be given by (5) and let . Then one has for s-a.e. .
Proof. Let . Using (5) we write  aswhere  for a Borel subset  of ; that is,  also belongs to . Now by Theorem 2, we haveFinally by Theorem 2 again we haveand so by (17) the proof is complete.
Cameron and Storvick [14] presented a new translation theorem for the analytic Feynman integral on Wiener space. Moreover Ahn et al. [15] gave a simple proof of an abstract Wiener space version of the translation theorem. Taking  and  in (19) and considering (13) we obtain Cameron and Storvick’s translation theorem as follows. Hence Theorem 4 can be viewed as Cameron and Storvick’s translation theorem for the Fourier-Feynman transform.
Corollary 5.  Let  be given by (5) and let . Then one has 
Next theorem is reminiscent of the frequency shifting theorem for the Fourier transform. Using Theorem 3 we have the following property for the frequency shifting of the Fourier-Feynman transform.
Theorem 6 (frequency shifting).  Let  be given by (5) and let . Then one has for s-a.e. .
The following theorem is called a scaling theorem because we want the transform not of , but of , in which  can be thought of as a scaling factor.
Theorem 7 (scaling).  Let  be given by (5) and let  be a nonzero real number. Then one has for s-a.e. .
Proof. Let  for . Using (5) we can write  aswhere  for each Borel subset  of . By Theorem 2, we havefor s-a.e. . Finally by Theorem 2 again we obtain the result.
Our next corollary follows immediately from the scaling theorem above by putting . This result is called time reversal because we replace  by  in  to get . The transform of this new functional is obtained by simply replacing  by  in the transform of .
Corollary 8 (time reversal).  Let  be given by (5). Then one has for s-a.e. .
Our next theorem is useful in obtaining the Fourier-Feynman transforms of new functionals from the Fourier-Feynman transforms of old functionals for which we know their Fourier-Feynman transform.
Theorem 9 (modulation).  Let  be given by (5) and let . Then one has where for s-a.e. .
Proof. Put  and use the linearity of the Fourier-Feynman transform  to getFinally by the time shifting theorem or frequency shifting theorem we obtain (29). Using  the second conclusion is proved similarly.
Since the Dirac measure concentrated at  in  is a complex Borel measure, the constant function  belongs to . Hence we have the following corollary.
Corollary 10.  Let . Then one has  for s-a.e. .
Proof. Since  for , by the modulation property, Theorem 9, and Euler’s formula, (33) and (34) follow immediately.
3. Variational Properties for Fourier-Feynman Transform
In using the Fourier transform to solve differential equations, we need an expression relating the transform of  to that of . In this section we develop similar relationships for Fourier-Feynman transform on Wiener space; that is, we provide variational properties for Fourier-Feynman transform of functionals in the Banach algebra .
Definition 11. Let  be a functional on  and let . Then(if it exists) is called the first variation of . The higher order variations of  are defined inductively. For example, the 2nd order variation of  is the first variation of  with respect to  and is defined byand th order variation is defined byfor . If , then we denote  as .
Theorem 12.  Let  be given by (5) with . Then for s-a.e.  and  in ,  exists, is an element of  as a function of , and is given by the formula where  is a complex Borel measure on  defined by for each Borel subset  of .
Proof. We will prove thatfor s-a.e.  and ,  in . Using Lemma 3.1 of [16], we haveNow the result follows if we can pass the differentiation under the integral sign. But this is done because by the Fubini theorem which is finite and so  for s-a.e. ,  in . Now by mathematical induction we obtain general result (38).
If  in Theorem 12, then we have the following corollary.
Corollary 13.  Let  be given by (5) with . Then for s-a.e.  and  in ,  exists, is an element of  as a function of , and is given by the formula where  is the complex Borel measure on  defined by for each Borel subset  of .
In our next theorem, for functionals in  we establish a relationship between the Fourier-Feynman transform of the variation and the variation of the Fourier-Feynman transform. Also see Corollary 4.3 of [15] for a similar result.
Theorem 14.  Let  be given by (5) with . Then one has for s-a.e.  and  in . Also, both of the expressions in (45) are given by the expression  for s-a.e.  and  in .
Proof. By (38) and Theorem 2, we have for s-a.e.  and  in . Now by (39) we know that the last expression can be rewritten as (46). On the other hand, by the same method as in the proof of Theorem 12, we see that the right hand side of (45) is also expressed as (46).
Letting  in Theorem 14 we have the following corollary.
Corollary 15.  Let  be given by (5) with . Then one has for s-a.e.  and  in .
The following theorem involves an iterated Fourier-Feynman transform of th order variation.
Theorem 16.  Let  be given by (5) with . Then one has for s-a.e.  and  in .
Proof. Let . For , we obtainfor s-a.e.  and  in . Since , the Fubini theorem enables us to conclude that Since the right hand side of the last expression is independent of , we have for s-a.e.  and  in .
Now considering Theorem 12 and applying repeatedly the first part of this proof, we obtainfor s-a.e.  and  in . Finally by Theorem 12 again the proof is complete.
4. Shifting Properties for Convolution Product
We developed in Section 2 some properties relevant to shifting and computational rules for the Fourier-Feynman transform of functionals in the Banach algebra . In this section we study similar properties for the convolution product of functionals in . Let us begin with the definition of the convolution product of functionals on Wiener space.
Definition 17. Let  and  be functionals on . For  and , one defines the convolution product (if it exists) by
Obviously the convolution is bilinear in the sense that for all functionals ,  on  for , whenever each convolution exists.
Huffman et al. established the existence of the convolution product on  for functionals in .
Theorem 18 (Theorem 3.2 of [5]).  Let  and  be elements of  with corresponding finite Borel measures  and , respectively. Then their convolution product  exists and is given by the formula for s-a.e. .
Our first result in this section is a relationship between time shifting and frequency shifting of the convolution product on Wiener space.
Theorem 19.  Let  and  be functionals on  and let . Then one has if each side exists.
Proof. For all  and for s-a.e. , we haveif the Wiener integrals exist. Hence we have the result.
The following theorem is reminiscent of the time shifting theorem for Fourier-Feynman transform (Theorem 4) in Section 2. But in this theorem we have to shift back  for  and shift front  for  to obtain a concrete form of a time shifting formula for the convolution product.
Theorem 20 (time shifting).  Let  and  be given as in Theorem 18 and let . Then one has for s-a.e. .
Proof. Let  and . By (5) we have where  and  for a Borel subset  of . Then, by Theorem 18, the left hand side of (60) is given by for s-a.e. .
To consider the right hand side of (60), letwhere  and  for a Borel subset  of . Then, by Theorem 18, we havefor s-a.e. . Since , we havefor s-a.e.  and this completes the proof.
Considering the second part of the proof of Theorem 20 above, we see that, for  and  given as in Theorem 18,for s-a.e. .
The following is a scaling theorem for the convolution product.
Theorem 21 (scaling).  Let  and  be given as in Theorem 18. If  is a nonzero real number, then for s-a.e. .
Proof. By the same method as used in the proof of Theorem 7 we have  for s-a.e. . Hence by Theorem 18 we obtain the result.
Our next corollary follows immediately from the scaling theorem above by putting . This result is called time reversal because we replace  by  in  and  to get  and , respectively. The convolution of these new functionals is obtained by simply replacing  by  in the convolution of  and .
Corollary 22 (time reversal).  Let  and  be given as in Theorem 18. Then one has for s-a.e. .
Our next theorem is useful to obtain the convolution product of new functionals from the convolution product of old functionals when we know their convolution product.
Theorem 23 (modulation).  Let  and  be given as in Theorem 18 and let . Then where  for s-a.e. .
Proof. Put  and use bilinearity (56) of the convolution product to get Finally by (60) and (68) we obtain (72). Using  the other conclusions are proved similarly.
Since the Dirac measure concentrated at  in  is a complex Borel measure, the constant function  belongs to . Hence we have the following corollary.
Corollary 24.  Let . Then one has for s-a.e. .
Proof. Since  for , by the modulation property, Theorem 23, and Euler’s formula, the results follow immediately.
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