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In (Iida and Kasuga 2013), the authors described multiplicative (but not necessarily linear) isometries of𝑀𝑝(𝑋) onto𝑀𝑝(𝑋) in the
case of positive integer 𝑝 ∈ N, where𝑀𝑝(𝑋) (𝑝 ≥ 1) is included in the Smirnov class𝑁∗(𝑋). In this paper, we will generalize the
result to arbitrary (not necessarily positive integer) value of the exponents 0 < 𝑝 < ∞.

1. Introduction

Let 𝑛 be a positive integer. The space of 𝑛-complex variables
𝑧 = (𝑧1, . . . , 𝑧𝑛) is denoted by C𝑛. The unit polydisk {𝑧 ∈ C𝑛 :

|𝑧𝑗| < 1, 1 ≤ 𝑗 ≤ 𝑛} is denoted by 𝑈𝑛 and the distinguished
boundary T𝑛 is {𝑧 ∈ C𝑛 : |𝑧𝑗| = 1, 1 ≤ 𝑗 ≤ 𝑛}. The unit
ball {𝑧 ∈ C𝑛 : ∑

𝑛

𝑗=1 |𝑧𝑗|
2
< 1} is denoted by 𝐵𝑛 and 𝑆𝑛 is

its boundary. In this paper𝑋 denotes the unit polydisk or the
unit ball for 𝑛 ≥ 1 and 𝜕𝑋 denotes T𝑛 for𝑋 = 𝑈

𝑛 or 𝑆𝑛 for𝑋 =

𝐵𝑛. The normalized (in the sense that 𝜎(𝜕𝑋) = 1) Lebesgue
measure on 𝜕𝑋 is denoted by 𝑑𝜎.

The Hardy space on𝑋 is denoted by𝐻𝑞(𝑋) (0 < 𝑞 ≤ ∞)

and ‖ ⋅ ‖𝑞 denotes the norm on𝐻𝑞(𝑋) (1 ≤ 𝑞 ≤ ∞).
The Nevanlinna class 𝑁(𝑋) on 𝑋 is defined as the set of

all holomorphic functions 𝑓 on𝑋 such that

sup
0≤𝑟<1

∫
𝜕𝑋

log (1+ 𝑓 (𝑟𝑧)
) 𝑑𝜎 (𝑧) < ∞ (1)

holds. It is known that 𝑓 ∈ 𝑁(𝑋) has a finite nontangential
limit, also denoted by 𝑓, almost everywhere on 𝜕𝑋.

The Smirnov class 𝑁∗(𝑋) is defined as the set of all 𝑓 ∈

𝑁(𝑋) which satisfy the equality

sup
0≤𝑟<1

∫
𝜕𝑋

log (1+ 𝑓 (𝑟𝑧)
) 𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

log (1+ 𝑓 (𝑧)
) 𝑑𝜎 (𝑧) .

(2)

Define a metric

𝑑𝑁
∗
(𝑋) (𝑓, 𝑔) = ∫

𝜕𝑋

log (1+ 𝑓 (𝑧) − 𝑔 (𝑧)
) 𝑑𝜎 (𝑧) (3)

for 𝑓, 𝑔 ∈ 𝑁∗(𝑋). With the metric 𝑑𝑁
∗
(𝑋)(⋅, ⋅) the Smirnov

class 𝑁∗(𝑋) is an 𝐹-algebra. Recall that an 𝐹-algebra is
a topological algebra in which the topology arises from a
complete metric. Complex-linear isometries on the Smirnov
class are characterized by Stephenson in [1].

The Privalov class 𝑁𝑝(𝑋), 1 < 𝑝 < ∞, is defined as the
set of all holomorphic functions 𝑓 on𝑋 such that

sup
0≤𝑟<1

∫
𝜕𝑋

(log (1 + 𝑓 (𝑟𝑧)
))
𝑝
𝑑𝜎 (𝑧) < ∞ (4)
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holds. It is well-known that𝑁𝑝(𝑋) is a subalgebra of𝑁∗(𝑋);
hence, every 𝑓 ∈ 𝑁

𝑝
(𝑋) has a finite nontangential limit

almost everywhere on 𝜕𝑋. Under the metric defined by

𝑑𝑁𝑝(𝑋) (𝑓, 𝑔)

= (∫
𝜕𝑋

(log (1+ 𝑓 (𝑧) − 𝑔 (𝑧)
))
𝑝
𝑑𝜎 (𝑧))

1/𝑝 (5)

for 𝑓, 𝑔 ∈ 𝑁
𝑝
(𝑋), 𝑁𝑝(𝑋) becomes an 𝐹-algebra (cf. [2]).

Complex-linear isometries on𝑁𝑝(𝑋) are investigated by Iida
andMochizuki [3] for one-dimensional case and by Subbotin
[2, 4] for a general case.

Now we define the class𝑀𝑝(𝑋). For 0 < 𝑝 < ∞, the class
𝑀
𝑝
(𝑋) is defined as the set of all holomorphic functions 𝑓

on𝑋 such that

∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1

𝑓 (𝑟𝑧)
))

𝑝

𝑑𝜎 (𝑧) < ∞. (6)

The class 𝑀𝑝(𝑋) with 𝑝 = 1 in the case where 𝑛 = 1 was
introduced by Kim in [5]. As for 𝑝 > 0 and 𝑛 > 1, the class
was considered in [6, 7]. For 𝑓, 𝑔 ∈ 𝑀

𝑝
(𝑋), define a metric

𝑑𝑀𝑝(𝑋) (𝑓, 𝑔)

= {∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1

𝑓 (𝑟𝑧) − 𝑔 (𝑟𝑧)
))

𝑝

𝑑𝜎 (𝑧)}

𝛼
𝑝
/𝑝

,

(7)

where 𝛼𝑝 = min(1, 𝑝). With this metric 𝑀𝑝(𝑋) is also an
𝐹-algebra (see [2]). Complex-linear surjective isometries on
𝑀
𝑝
(𝑋) are investigated by Subbotin [2, 4, 8].
It is well-known that the following inclusion relations

hold:

𝐻
𝑞
(𝑋) ⊊ 𝑁

𝑝
(𝑋) ⊊ 𝑀

1
(𝑋) ⊊ 𝑁∗ (𝑋)

(0 < 𝑞 ≤ ∞, 𝑝 > 1) .
(8)

Moreover, it is known that 𝑁(X) ⊊ 𝑀
𝑝
(𝑋) (0 < 𝑝 < 1) [8].

As shown in [6], for any 𝑝 > 1 the class 𝑀𝑝(𝑋) coincides
with the class 𝑁𝑝(𝑋) and the metrics 𝑑𝑀𝑝(𝑋) and 𝑑𝑁𝑝(𝑋)
are equivalent. Therefore, the topologies induced by these
metrics are identical on the set 𝑀𝑝(𝑋) = 𝑁

𝑝
(𝑋). But we

note that in [4, Theorems 1 and 4] it is implied that the sets
of linear isometries on 𝑀

𝑝
(𝑋) and 𝑁

𝑝
(𝑋) are different.

It is known that 𝐻∞(𝑋) is a dense subalgebra of 𝑀𝑝(𝑋).
The convergence in the metric is stronger than uniform
convergence on compact subsets of𝑋.

In [9], the authors described multiplicative (but not
necessarily linear) isometries of 𝑀𝑝(𝑋) onto 𝑀𝑝(𝑋) in the
case of positive integer𝑝 ∈ N. In this paper, we will generalize
the result to arbitrary (not necessarily positive integer) value
of the exponents 0 < 𝑝 < ∞.

2. The Results

Proposition 1. Let 𝑛 be a positive integer and let 𝑋 be either
𝐵𝑛 or 𝑈𝑛. Let 0 < 𝑝 < ∞ and suppose that 𝐴 : 𝑀

𝑝
(𝑋) →

𝑀
𝑝
(𝑋) is a surjective isometry. If 𝐴 is 2-homogeneous in

the sense that 𝐴(2𝑓) = 2𝐴(𝑓) holds for every 𝑓 ∈ 𝑀
𝑝
(𝑋),

then either

𝐴 (𝑓) = 𝛼𝑓 ∘Φ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑓 ∈ 𝑀
𝑝
(𝑋) (9)

or

𝐴 (𝑓) = 𝛼𝑓 ∘ Φ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑓 ∈ 𝑀
𝑝
(𝑋) , (10)

where 𝛼 is a complex number with the unit modulus and
for 𝑋 = 𝐵𝑛, Φ is a unitary transformation; for 𝑋 = 𝑈

𝑛,
Φ(𝑧1, . . . , 𝑧𝑛) = (𝜆1𝑧𝑖1 , . . . , 𝜆𝑛𝑧𝑖𝑛), where |𝜆𝑗| = 1, 1 ≤ 𝑗 ≤

𝑛 and (𝑖1, . . . , 𝑖𝑛) is some permutation of the integers from 1
through 𝑛.

To prove Proposition 1, we need the following lemmas.

Lemma 2 (see [4]). Let 𝑓 ∈ 𝐻
𝑝
(𝑋), 𝑝 ≥ 1. Then the norm

𝑓
𝐻𝑝
𝑚

:= {∫
𝜕𝑋

sup
0≤𝑟<1

𝑓 (𝑟𝑧)

𝑝
𝑑𝜎 (𝑧)}

1/𝑝
(11)

is equivalent to the standard norm in𝐻𝑝(𝑋).

Lemma 3 (see [4]). Let 0 < 𝑝 < ∞. Then

lim
𝜀→ 0+

1
𝜀𝑝+1

{(𝜀𝑡)
𝑝
− (log (1 + 𝜀𝑡))𝑝} =

𝑝

2
𝑡
𝑝+1

, 𝑡 ≥ 0. (12)

We recall that the function 𝜑(𝑥) on the interval (0, +∞) is
said to be completely monotone if it is infinitely differentiable
on (0, +∞) and

(−1)𝑛 𝜑(𝑛) (𝑥) ≥ 0, 𝑥 > 0, 𝑛 ∈ Z+. (13)

Lemma 4 (see [8]). The functions ((log(1 + 𝑥))/𝑥)
𝑝 are

completely monotone for all 𝑝 > 0.

Lemma 5 (see [8]). If a completelymonotone function 𝜑(𝑥) on
(0, +∞) can be continued to an infinitely differentiable function
on [0, +∞), then the inequality

(−1)𝑛

𝑥𝑛
{𝜑 (𝑥) − 𝜑 (0) − 𝜑 (0) 𝑥 − ⋅ ⋅ ⋅

−
𝜑
(𝑛−1)

(0)
(𝑛 − 1)!

𝑥
𝑛−1

} ≥ 0, 𝑥 > 0,

(14)

holds for any 𝑛 ∈ N and 𝜑(𝑛)(0) ̸= 0 if only 𝜑 is not constant.

Lemma 6. Let 𝐶 be a cone of measurable functions on a
measurable space with a measure (𝐺, 𝜇), and let 𝐴 be a
mapping from 𝐶 to the set of measurable functions. Suppose
that 𝐴 is homogeneous with positive coefficients and

∫
𝐺

(log (1+ 𝐴𝑓 (𝑥)
))
𝑝
𝜇 (𝑑𝑥)

= ∫
𝐺

(log (1+ 𝑓 (𝑥)
))
𝑝
𝜇 (𝑑𝑥) , 𝑓 ∈ 𝐶,

(15)
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for some 𝑝 > 0. Then

∫
𝐺

𝐴𝑓 (𝑥)

𝑞
𝜇 (𝑑𝑥) = ∫

𝐺

𝑓 (𝑥)

𝑞
𝜇 (𝑑𝑥) , 𝑓 ∈ 𝐶, (16)

for all 𝑞 = 𝑝 + 𝑙, where 𝑙 ∈ Z+.

Proof. We follow [2, Lemma 2]. 𝐴 is homogeneous with
positive coefficients, so we have, using (15),

∫
𝐺

(log (1 + 𝑡 𝐴𝑓 (𝑥)
))
𝑝

𝑡𝑝
𝜇 (𝑑𝑥)

= ∫
𝐺

(log (1 + 𝑡 𝑓 (𝑥)
))
𝑝

𝑡𝑝
𝜇 (𝑑𝑥) , 𝑓 ∈ 𝐶,

(17)

for any 𝑡 > 0. Letting 𝑡 → 0+, we obtain

∫
𝐺

𝐴𝑓 (𝑥)

𝑝
𝜇 (𝑑𝑥) = ∫

𝐺

𝑓 (𝑥)

𝑝
𝜇 (𝑑𝑥) , 𝑓 ∈ 𝐶. (18)

Next we argue by induction. Let 𝑘 ∈ N and suppose that (16)
holds for 𝑞 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑝 + 𝑘 − 1. Then, for any 𝑡 > 0
and any function 𝑓 ∈ 𝐶, we have

∫
𝐺

1
𝑡𝑝+𝑘

{(log (1 + 𝑡 𝐴𝑓 (𝑥)
))
𝑝

−

𝑘−1
∑

𝑙=0
𝑐𝑙 (𝑡

𝐴𝑓 (𝑥)
)
𝑝+𝑙
}𝜇 (𝑑𝑥)

= ∫
𝐺

1
𝑡𝑝+𝑘

{(log (1 + 𝑡 𝑓 (𝑥)
))
𝑝

−

𝑘−1
∑

𝑙=0
𝑐𝑙 (𝑡

𝑓 (𝑥)
)
𝑝+𝑙
}𝜇 (𝑑𝑥) ,

(19)

where 𝑐𝑙 are the Taylor coefficients of the function ((log(1 +
𝑥))/𝑥)

𝑝 at zero.
Assume first that 𝑓 ∈ 𝐿

𝑝+𝑘
(𝐺, 𝜇). It is easy to see that

the integrand on the right-hand side of (19) converges to
𝑐𝑘|𝑓(𝑥)|

𝑝+𝑘 as 𝑡 → 0+; this integrand is of fixed sign
by Lemmas 4 and 5 and is dominated by the function
𝐶𝑘|𝑓(𝑥)|

𝑝+𝑘 with some constant𝐶𝑘. By the Lebesgue theorem
on dominated convergence, the right-hand side of (19)
converges to the integral of 𝑐𝑘|𝑓(𝑥)|

𝑝+𝑘. Therefore, the left-
hand side of (19) has a finite limit and, by the Fatou theorem,
the function 𝑐𝑘|𝐴𝑓(𝑥)|

𝑝+𝑘 is integrable. Since 𝑐𝑘 ̸= 0 for any
𝑘 by Lemmas 4 and 5, we deduce that 𝐴𝑓 ∈ 𝐿

𝑝+𝑘
(𝐺, 𝜇), and

repeating the above arguments, we see that the left-hand side
of (19) converges to the integral of 𝑐𝑘|𝐴𝑓(𝑥)|

𝑝+𝑘 as 𝑡 → 0+.
Therefore, passing to the limit in (19) as 𝑡 → 0+ and dividing
the result by 𝑐𝑘 ̸= 0, we obtain (16) for 𝑞 = 𝑝 + 𝑘. The case
of 𝐴𝑓 ∈ 𝐿

𝑝+𝑘
(𝐺, 𝜇) can be considered in a similar way. For

𝑓,𝐴𝑓 ∉ 𝐿
𝑝+𝑘

(𝐺, 𝜇), relation (16) with 𝑞 = 𝑝 + 𝑘 is trivial.

Proof of Proposition 1. Suppose first that 𝑝 ≥ 1. Let 𝑓, 𝑔 ∈

𝐻
𝑝
(𝑋). We easily confirm that, by utilizing Lemma 2 and

the celebrated theorem of Mazur and Ulam [10], 𝐴|𝐻𝑝(𝑋) is
a real-linear isometry in a way similar to [9, Proposition 1].

Next suppose that 0 < 𝑝 < 1. We define the class
𝐻
𝑝

𝑚
(𝑋) (0 < 𝑝 < 1) as the set of all holomorphic functions 𝑓

on𝑋 such that

𝑑
𝐻
𝑝

𝑚

(𝑓, 0) := ∫
𝜕𝑋

sup
0≤𝑟<1

𝑓 (𝑟𝑧)

𝑝
𝑑𝜎 (𝑧) < ∞ (20)

and define a metric 𝑑
𝐻
𝑝

𝑚

(𝑓, 𝑔) = 𝑑
𝐻
𝑝

𝑚

(𝑓 − 𝑔, 0) for 𝑓, 𝑔 ∈

𝐻
𝑝

𝑚
(𝑋). If𝐴 : 𝑀

𝑝
(𝑋) → 𝑀

𝑝
(𝑋) is a surjective isometry and

𝐴 is 2-homogeneous in the sense that 𝐴(2𝑓) = 2𝐴(𝑓) holds
for every𝑓 ∈ 𝑀

𝑝
(𝑋), we confirm that𝐴 : 𝐻

𝑝

𝑚
(𝑋) → 𝐻

𝑝

𝑚
(𝑋)

is also a surjective isometry.
For 0 < 𝑝 < 1, let 𝑓, 𝑔 ∈ 𝐻

𝑝
(𝑋). We have 𝐴(𝑓)/2𝑚 =

𝐴(𝑓/2𝑚) (𝑚 ∈ N) since 𝐴(2𝑓) = 2𝐴(𝑓). Then the following
equality holds:

∫
𝜕𝑋

sup
0≤𝑟<1



𝑓 (𝑟𝑧)

2𝑚


𝑝

𝑑𝜎 (𝑧)

−∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1



𝑓 (𝑟𝑧)

2𝑚

))

𝑝

𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

sup
0≤𝑟<1



(𝐴𝑓) (𝑟𝑧)

2𝑚


𝑝

𝑑𝜎 (𝑧)

−∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1



(𝐴𝑓) (𝑟𝑧)

2𝑚


))

𝑝

𝑑𝜎 (𝑧) .

(21)

Therefore, it follows that

∫
𝜕𝑋

1
(1/2𝑚)𝑝+1

{(
1
2𝑚

sup
0≤𝑟<1

𝑓 (𝑟𝑧)
)

𝑝

−(log(1 + 1
2𝑚

sup
0≤𝑟<1

𝑓 (𝑟𝑧)
))

𝑝

}𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

1
(1/2𝑚)𝑝+1

{(
1
2𝑚

sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)
)

𝑝

−(log(1 + 1
2𝑚

sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)
))

𝑝

}𝑑𝜎 (𝑧) .

(22)

Using the elementary inequalities log(1 + 𝑥𝑦) ≤ log(1 + 𝑥) +
log(1 + 𝑦) (𝑥 ≥ 0, 𝑦 ≥ 0) and (𝑎 + 𝑏)𝑝 ≤ 2𝑝(𝑎𝑝 + 𝑏𝑝) (𝑎 ≥ 0,
𝑏 ≥ 0, 𝑝 > 0), we confirm that the integrand on the left-
hand side of (22) is dominated by an 𝐿

1
(𝜕𝑋)-function. The

integrand on the right-hand side of (22) is also dominated by
an 𝐿1(𝜕𝑋)-function in the same way. Applying the Lebesgue
theorem on dominated convergence and Lemma 3 on both
sides of (22), we have the equality

∫
𝜕𝑋

𝑝

2
( sup
0≤𝑟<1

𝑓 (𝑟𝑧)
)

𝑝+1

𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

𝑝

2
( sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)
)

𝑝+1

𝑑𝜎 (𝑧) .

(23)
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Hence, we obtain

∫
𝜕𝑋

sup
0≤𝑟<1

𝑓 (𝑟𝑧)

𝑝+1

𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)

𝑝+1

𝑑𝜎 (𝑧) .

(24)

The equivalence of the norms ‖ ⋅ ‖𝑝+1 and ‖ ⋅ ‖𝐻𝑝+1
𝑚

guarantees
that 𝐴 : 𝐻

𝑝+1
(𝑋) → 𝐻

𝑝+1
(𝑋) is a surjective isometry. By

using Mazur-Ulam theorem again, 𝐴|𝐻𝑝+1(𝑋) is a real-linear
isometry since𝐻𝑝+1(𝑋) is a normed vector space and𝐴(0) =
0.

We consider an arbitrary function 𝑓 ∈ 𝑀
𝑝
(𝑋) (0 < 𝑝 <

∞) and the cone 𝐶𝑓 := {𝜆𝑀𝑓(𝜁) | 𝜆 > 0} generated by 𝑓.
Here𝑀𝑓(𝜁) = sup0≤𝑟<1|𝑓(𝑟𝜁)| is the radial maximal function
for𝑓.Moreover, consider the followingmapping on this cone:

𝐴 : 𝜆𝑀𝑓 (𝜁) → 𝜆𝑀(𝐴𝑓) (𝜁) = 𝑀(𝐴 [𝜆𝑓]) (𝜁) ,

𝜁 ∈ 𝜕𝑋, 𝜆 ≥ 0.
(25)

Since𝐴 is isometric with respect to the metric 𝑑𝑀𝑝 , it follows
that the assumptions of Lemma 6 hold on the cone 𝐶𝑓.

𝐴 : 𝑀
𝑝
(𝑋) → 𝑀

𝑝
(𝑋) is a surjective isometry, so the

equation

∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1

𝑓 (𝑟𝑧)
))

𝑝

𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

(log(1+ sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)
))

𝑝

𝑑𝜎 (𝑧)

(26)

guarantees the equalities

∫
𝜕𝑋

( sup
0≤𝑟<1

𝑓 (𝑟𝑧)
)

𝑝+𝑙

𝑑𝜎 (𝑧)

= ∫
𝜕𝑋

( sup
0≤𝑟<1

(𝐴𝑓) (𝑟𝑧)
)

𝑝+𝑙

𝑑𝜎 (𝑧)

(27)

for all 𝑙 ∈ Z+.Therefore,𝐴 is isometric in the norm𝐻
𝑝+𝑙

𝑚
(𝑝 >

0, 𝑙 = 0, 1, 2, . . .).
Since 𝑑𝜎 is a finite measure, we verify that

lim
𝑙→∞

𝑓
𝐻𝑝+𝑙
𝑚

=
𝑓
𝐻∞
𝑚

(28)

holds for every 𝑓 ∈ 𝐻
∞
(𝑋), and it is clear that ‖𝑓‖𝐻∞

𝑚

=

‖𝑓‖∞. Moreover, ‖𝑓‖𝑝 = ‖𝐴(𝑓)‖𝑝 for every 𝑓 ∈ 𝐻
∞
(𝑋) and

lim𝑝→∞‖𝐴(𝑓)‖𝑝 = ‖𝐴(𝑓)‖∞, so we have 𝐴(𝑓) ∈ 𝐻
∞
(𝑋)

and ‖𝑓‖∞ = ‖𝐴(𝑓)‖∞ for every 𝑓 ∈ 𝐻
∞
(𝑋). Similarly we

see that 𝑓 ∈ 𝐻
∞
(𝑋) if 𝐴(𝑓) belongs to 𝐻∞(𝑋). Therefore,

𝐴|𝐻∞(𝑋) is a surjective isometry with respect to ‖ ⋅ ‖∞ from
𝐻
∞
(𝑋) onto itself.Wemay suppose that𝐻∞(𝑋) is a uniform

algebra on the maximal ideal space and the maximal ideal
space is connected by the Šilov idempotent theorem; hence,
we see that 𝐴|𝐻∞(𝑋) is complex-linear or conjugate linear by
[11,Theorem]. As for the rest of this proof, we follow the proof
of [9, Proposition 1].

Finally we consider multiplicative isometries from
𝑀
𝑝
(𝑋) (0 < 𝑝 < ∞) onto itself. Recall that 𝐴 : 𝑀

𝑝
(𝑋) →

𝑀
𝑝
(𝑋) is multiplicative if 𝐴(𝑓𝑔) = 𝐴(𝑓)𝐴(𝑔) for every

𝑓, 𝑔 ∈ 𝑀
𝑝
(𝑋).

The following theorem is proved by the same method as
[9, Theorem 2]; therefore, we do not prove it here.

Theorem 7. Let 0 < 𝑝 < ∞ and 𝐴 be a multiplicative (not
necessarily linear) isometry from𝑀

𝑝
(𝑋) onto itself.Then there

exists a holomorphic automorphismΦ on𝑋 such that either of
the following holds:

𝐴 (𝑓) = 𝑓 ∘Φ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑓 ∈ 𝑀
𝑝
(𝑋) (29)

or

𝐴 (𝑓) = 𝑓 ∘ Φ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑓 ∈ 𝑀
𝑝
(𝑋) , (30)

where Φ is a unitary transformation for 𝑋 = 𝐵𝑛;
Φ(𝑧1, . . . , 𝑧𝑛) = (𝜆1𝑧𝑖1 , . . . , 𝜆𝑛𝑧𝑖𝑛) for 𝑋 = 𝑈

𝑛, where |𝜆𝑗| = 1
for every 1 ≤ 𝑗 ≤ 𝑛 and (𝑖1, . . . , 𝑖𝑛) is some permutation of the
integers from 1 through 𝑛.

Remark 8. We note that surjective multiplicative isometries
of the class 𝑀𝑝(𝑋) (0 < 𝑝 < ∞) have the same form as
surjective multiplicative isometries of 𝑀𝑝(𝑋) (𝑝 ∈ N) [9,
Theorem 2], the Smirnov class [12, Theorem 2.2], and the
Privalov class [13, Corollary 3.4].
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