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Abstract. 
We prove the infinitely many solutions to a class of sublinear Kirchhoff type equations by using an extension of Clark’s theorem established by Zhaoli Liu and Zhi-Qiang Wang.



1. Introduction and Main Results
In this paper we study the existence and multiplicity of solutions for the following Kirchhoff type equations:where ,  are positive constants.
When  is a smooth bounded domain in , the problemhas been studied in several papers. Perera and Zhang [1] considered the case where  is asymptotically linear at 0 and asymptotically 4-linear at infinity. They obtained a nontrivial solution of the problems by using the Yang index and critical group. Then, in [1] they considered the cases where  is 4-sublinear, 4-superlinear, and asymptotically 4-linear at infinity. By various assumptions on  near 0, they obtained multiple and sign changing solutions. Cheng and Wu [2] and Ma and Rivera [3] studied the existence of positive solutions of (2) and He and Zou [4] obtained the existence of infinitely many positive solutions of (2), respectively; Mao and Luan [5] obtained the existence of signed and sign-changing solutions for problem (2) with asymptotically 4-linear bounded nonlinearity via variational methods and invariant sets of descent flow; Sun and Tang [6] studied the existence and multiplicity results of nontrivial solutions for problem (2) with the weaker monotony and 4-superlinear nonlinearity. For (2), Sun and Liu [7] considered the cases where the nonlinearity is superlinear near zero but asymptotically 4-linear at infinity, and the nonlinearity is asymptotically linear near zero but 4-superlinear at infinity. By computing the relevant critical groups, they obtained nontrivial solutions via Morse theory.
Comparing with (1) and (2),  is in place of the bounded domain . This makes the study of problem (1) more difficult and interesting. Wu [8] considered a class of Schrödinger Kirchhoff type problem in  and a sequence of high energy solutions are obtained by using a symmetric Mountain Pass Theorem. In [9], Alves and Figueiredo study a periodic Kirchhoff equation in ; they get the nontrivial solution when the nonlinearity is in subcritical case and critical case. Liu and He [10] obtained multiplicity of high energy solutions for superlinear Kirchhoff equations in . Li et al. in [11] proved the existence of a positive solution to a Kirchhoff type problem on  by using variational methods and cutoff functional technique.
In [12], Jin and Wu consider the following problem: where constants , ,  or 3, and . By using the Fountain Theorem, they obtained the following theorem.
Theorem A (see [12]).  Assume that the following conditions hold. 
If the following assumptions are satisfied, ()  as  uniformly for any ,()there are constants  and  such that  where ()there exists  such that()      () for each  and for each , where  is the group of orthogonal transformations on ,() for any ,then problem (3) has a sequence  of radial solutions.
Recently, Liu and Wang [13] obtained an extension of Clark’s theorem as follows.
Theorem B (see [13]).  Let  be a Banach space, . Assume  is even and satisfies the (PS) condition, bounded from below, and . If, for any , there exists a -dimensional subspace  of  and  such that , where , then at least one of the following conclusions holds. (i)There exists a sequence of critical points  satisfying  for all  and  as .(ii)There exists  such that for any  there exists a critical point  such that  and .
Theorem A obtained the existence of infinitely many solutions under the case that  is sublinear at infinity in . It is worth noticing that there are few papers concerning the sublinear case up to now. Motivated by the above fact, in this paper our aim is to study the existence of infinitely many solutions for (1) when  satisfies sublinear condition in  at infinity. Our tool is extension of Clark’s theorem established in [13]. Now, we state our main result.
Theorem 1.  Assume that  satisfies () and the following conditions: ()There exist , ,  such that  and .()Consider  uniformly in some ball , where .() is a positive continuous function such that .
Then (1) possesses infinitely many solutions  such that  as .
Remark 2. Throughout the paper we denote by  various positive constants which may vary from line to line and are not essential to the problem.
The paper is organized as follows: in Section 2, some preliminary results are presented. Section 3 is devoted to the proof of Theorem 1.
2. Preliminary
In this section, we will give some notations that will be used throughout this paper.
Let  be the completion of  with respect to the inner product and norm Moreover, we denote the completion of  with respect to the norm by . To avoid lack of compactness, we need to consider the set of radial functions as follows: Here we note that the continuous embedding  is compact for any .
Define a functional by Then we have from () that  is well defined on  and is of , and It is standard to verify that the weak solutions of (1) correspond to the critical points of functional .
3. Proofs of the Main Result
Proof of Theorem 1. Choose  such that  is odd in ,  for  and , and  for  and . In order to obtain solutions of (1) we consider Moreover, (13) is variational and its solutions are the critical points of the functional defined in  by From (), it is easy to check that  is well defined on  and , and Note that  is even, and . For , Hence, it follows from (14) that We now use the same ideas to prove the (PS) condition. Let  be a sequence in  so that  is bounded and . We will prove that  contains a convergent subsequence. By (17), we claim that  is bounded. Assume without loss of generality that  converges to  weakly in . Observe that Hence, we have It is clear that  and  as . In the following, we will estimate , by using (), for any , which implies Therefore,  converges strongly in  and the (PS) condition holds for . By () and (), for any , there exists  such that if  and  then , and it follows from (14) that This implies, for any , if  is a -dimensional subspace of  and  is sufficiently small then , where . Now we apply Theorem B to obtain infinitely many solutions  for (13) such that Finally we show that  as . Let  be a solution of (13) and . Let  and set . Multiplying both sides of (13) with  implies By using the iterating method in [13], we can get the following estimate: where  is a number in  and  is independent of  and . By (23) and Sobolev Imbedding Theorem [14], we derive that  as . Therefore,  are the solutions of (1) as  is sufficiently large. The proof is completed.
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