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Wewill investigate properties of functions in theWiener class𝐵𝑉𝑝[𝑎, 𝑏]with 0 < 𝑝 < 1.We prove that any function in𝐵𝑉𝑝[𝑎, 𝑏] (0 <
𝑝 < 1) can be expressed as the difference of two increasing functions in 𝐵𝑉𝑝[𝑎, 𝑏]. We also obtain the explicit form of functions in
𝐵𝑉𝑝[𝑎, 𝑏] and show that their derivatives are equal to zero a.e. on [𝑎, 𝑏].

1. Introduction

Let 0 < 𝑝 < ∞. We say that a real valued function 𝑓 on [𝑎, 𝑏]
is of bounded 𝑝-variation and is denoted by 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏], if

𝑉𝑝𝑓 = sup
𝑇

(

𝑛

∑

𝑘=1

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)

𝑝
)

1/𝑝

< ∞, (1)

where the supremum is taken over all partitions 𝑇 : 𝑎 = 𝑥0 <

𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑏.When𝑝 = 1, we get thewell-known Jordan
bounded variation 𝐵𝑉[𝑎, 𝑏]; and when 1 < 𝑝 < ∞, we get
Wiener’s definition of bounded 𝑝-variation. There are many
other generalizations of 𝐵𝑉, such as bounded Φ-variation
in the sense of Young (see [1]) and Waterman’s Λ-bounded
variation (see [2]). The class 𝐵𝑉𝑝 and generalizations of 𝐵𝑉
have been studied mainly because of their applicability to
the theory of Fourier series and some good approximative
properties (see, e.g., [1–7]).

However, it should be mentioned that results of most
papers deal mostly with the case 𝑝 ≥ 1.This is because that in
this case 𝐵𝑉𝑝[𝑎, 𝑏] is a Banach space with the norm 𝑓

𝐵𝑉𝑝
=

|𝑓(𝑎)| +𝑉𝑝𝑓 (see, e.g., [3]). In the case 0 < 𝑝 < 1, 𝐵𝑉𝑝[𝑎, 𝑏] is
no longer a Banach space and has not been studied as far aswe
know. Nevertheless, functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) have
many interesting properties; for example, their derivatives are
equal to zero a.e. on [𝑎, 𝑏].

In this paper, we will investigate properties of functions
in the class 𝐵𝑉𝑝[𝑎, 𝑏] with 0 < 𝑝 < 1. We will show that
𝐵𝑉𝑝[𝑎, 𝑏] is a Frechet space with the quasinorm

𝑞 (𝑓) =
𝑓 (𝑎)


𝑝
+ (𝑉𝑝𝑓)

𝑝

. (2)

We will get the Jordan type decomposition theorem which
says that any function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) can be
expressed as the difference of two increasing functions in
𝐵𝑉𝑝[𝑎, 𝑏].We also get the representation theoremwhich gives
the explicit form of functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).

2. Statement of Main Results

Clearly, for any fixed 𝑝 ∈ (0, 1), the Wiener class 𝐵𝑉𝑝[𝑎, 𝑏] is
a linear space. We define the functional 𝑞 on 𝐵𝑉𝑝[𝑎, 𝑏] by

𝑞 (𝑓) =
𝑓 (𝑎)


𝑝
+ (𝑉𝑝𝑓)

𝑝

=
𝑓 (𝑎)


𝑝

+ sup
𝑇

𝑛

∑

𝑘=1

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)

𝑝
,

𝑓 ∈ 𝐵𝑉𝑝 [𝑎, 𝑏] .

(3)

From the inequality (𝑎 + 𝑏)𝑝 ≤ 𝑎
𝑝
+ 𝑏
𝑝
(𝑎, 𝑏 ≥ 0, 0 < 𝑝 < 1),

we get that 𝑞(𝑓 + 𝑔) ≤ 𝑞(𝑓) + 𝑞(𝑔). It then follows that 𝑞 is a
quasinorm on 𝐵𝑉𝑝[𝑎, 𝑏].

Our first result claims that 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1)

equipped with the quasinorm 𝑞 is a Frechet space.
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Theorem 1. TheWiener class 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) equipped
with the quasinorm 𝑞 is a Frechet space.

From the inequality

(

∞

∑

𝑖=1

𝑎
𝑝2
𝑖
)

1/𝑝2

≤ (

∞

∑

𝑖=1

𝑎
𝑝1
𝑖
)

1/𝑝1

, 𝑎𝑖 ≥ 0, 0 < 𝑝1 ≤ 𝑝2 < ∞,

(4)

we get that, for any 𝑓 ∈ 𝐵𝑉𝑝1
[𝑎, 𝑏],

𝑉𝑝2
𝑓 ≤ 𝑉𝑝1

𝑓, (5)

which means that 𝐵𝑉𝑝1[𝑎, 𝑏] ⊆ 𝐵𝑉𝑝2
[𝑎, 𝑏]. Specially, for 0 <

𝑝 < 1, 𝐵𝑉𝑝[𝑎, 𝑏] ⊆ 𝐵𝑉1[𝑎, 𝑏] ≡ 𝐵𝑉[𝑎, 𝑏]. This implies
that 𝐵𝑉𝑝[𝑎, 𝑏] functions are bounded, and the discontinuities
of a 𝐵𝑉𝑝[𝑎, 𝑏] function are simple and, therefore, at most
denumerable (see [8, Theorem 13.7 and Lemma 13.2]). By
the Jordan decomposition theorem, we know that every
function 𝑓 in 𝐵𝑉[𝑎, 𝑏] can be expressed as the difference
of two increasing functions 𝑔 and ℎ defined on [𝑎, 𝑏] (see
[8, Corollary 13.6]). If 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] ⊆ 𝐵𝑉[𝑎, 𝑏], we can
require that the above increasing functions 𝑔 and ℎ are still
in 𝐵𝑉𝑝[𝑎, 𝑏]. This is our next theorem.

Theorem 2 (Jordan type decomposition theorem). Any func-
tion in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) can be expressed as the difference
of two increasing functions in 𝐵𝑉𝑝[𝑎, 𝑏].

Let 𝑡 ∈ [𝑎, 𝑏], 𝑑 > 0, and 0 ≤ 𝑑

≤ 𝑑. We set

ℎ𝑡,𝑑,𝑑 (𝑥) =

{{

{{

{

0, 𝑥 < 𝑡,

𝑑

, 𝑥 = 𝑡,

𝑑, 𝑥 > 𝑡.

(6)

Then ℎ𝑡,𝑑,𝑑(𝑥) is increasing on [𝑎, 𝑏] with only one disconti-
nuity point 𝑡. Also, (ℎ𝑡,𝑑,𝑑 (𝑥))


= 0 for 𝑥 ̸= 𝑡.

Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).
Denote by 𝐴 ≡ 𝐴(𝑓) the set of points of discontinuity of 𝑓.
Then𝐴 is atmost countable (see [8,Theorem 2.17]). Since𝑓 is
increasing, we get that, for any 𝑡 ∈ 𝐴, the right and left limits
𝑓(𝑡 + 0) and 𝑓(𝑡 − 0) of the function 𝑓 at 𝑡 exist, 𝑓(𝑡 + 0) −

𝑓(𝑡 − 0) > 0, and 0 ≤ 𝑓(𝑡) −𝑓(𝑡 − 0) ≤ 𝑓(𝑡 + 0) −𝑓(𝑡 − 0). For
𝑡 ∈ 𝐴, we define

ℎ̃𝑡 (𝑥) ≡ ℎ̃𝑡,𝑓 (𝑥) = ℎ𝑡,𝑓(𝑡+0)−𝑓(𝑡−0),𝑓(𝑡)−𝑓(𝑡−0) (𝑥) . (7)

Our next theorem characterizes the form of an increasing
function in 𝐵𝑉𝑝[𝑎, 𝑏]. Any increasing function 𝑓 in 𝐵𝑉𝑝[𝑎, 𝑏]
must be as follows:

𝑓 (𝑥) =

𝑁

∑

𝑛=1

ℎ𝑡𝑛 ,𝑑𝑛,𝑑

𝑛
(𝑥) + 𝑐, (8)

where𝑁 ≤ ∞, 𝑡𝑛 ∈ [𝑎, 𝑏], 𝑑𝑛 > 0, 𝑑
𝑛
∈ [0, 𝑑𝑛], and∑

𝑁

𝑛=1
𝑑
𝑝

𝑛
<

∞.

Theorem 3. (1) If 𝑓(𝑥) = 𝑐 + ∑
𝑁

𝑛=1
ℎ𝑡𝑛 ,𝑑𝑛,𝑑


𝑛
(𝑥), where𝑁 ≤ ∞,

𝑡𝑛 ∈ [𝑎, 𝑏], 𝑑𝑛 > 0, and 𝑑
𝑛
∈ [0, 𝑑𝑛], then 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 <

𝑝 < 1) if and only if ∑𝑁
𝑛=1

𝑑
𝑝

𝑛
< ∞. In this case,

(

𝑁

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

≤ 𝑉𝑝 (𝑓) ≤ (2

𝑁

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

. (9)

(2) Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1). Then 𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) + 𝑐, where 𝑐 is a constant, 𝐴 is the
set of points of discontinuity of 𝑓, and ℎ̃𝑡(𝑥) is defined by (7).

Finally, for an increasing function𝑓 in𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1), by Theorem 3 we have 𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) + 𝑐, where 𝐴 is
the set of points of discontinuity of 𝑓 and at most countable.
Since (ℎ̃𝑡 (𝑥))



= 0, a.e. 𝑥 ∈ [𝑎, 𝑏], by the Fubini term by
termdifferentiation theorem (see [9, Proposition 4.6]), we get
𝑓

(𝑥) = 0, a.e. 𝑥 ∈ [𝑎, 𝑏]. By Theorem 2, any function 𝑓 in

𝐵𝑉𝑝[𝑎, 𝑏] can be expressed as the difference of two increasing
functions𝑔(𝑥) and 𝑟(𝑥) in𝐵𝑉𝑝[𝑎, 𝑏]. ApplyingTheorem 3, we
get the representation theorem of functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 <
𝑝 < 1) as follows.

Corollary 4. Let 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1). Then 𝑓 can be
expressed in the following form:

𝑓 (𝑥) = 𝑔 (𝑥) − 𝑟 (𝑥) = ∑

𝑡∈𝐴1

ℎ̃𝑡,𝑔 (𝑥) − ∑

𝑡∈𝐴2

ℎ̃𝑡,𝑟 (𝑥) + 𝑐, (10)

where 𝑐 is a constant, 𝑔(𝑥), 𝑟(𝑥) are increasing functions in
𝐵𝑉𝑝[𝑎, 𝑏], ℎ̃𝑡,𝑔(𝑥) and ℎ̃𝑡,𝑟 are defined by (7), 𝐴1, 𝐴2 ⊆ 𝐴, and
𝐴1, 𝐴2, 𝐴 are the sets of points of discontinuity of 𝑔, 𝑟, and 𝑓,
respectively. Furthermore, 𝑓(𝑥) = 0, a.e. 𝑥 ∈ [𝑎, 𝑏].

3. Proofs of Theorems 1–3

Proof of Theorem 1. It suffices to prove that 𝐵𝑉𝑝[𝑎, 𝑏] is com-
plete. Let {𝑓𝑛} be a Cauchy sequence in 𝐵𝑉𝑝[𝑎, 𝑏]; that is,
𝑞(𝑓𝑛−𝑓𝑚) = |𝑓𝑛(𝑎)−𝑓𝑚(𝑎)|

𝑝
+(𝑉𝑝(𝑓𝑛−𝑓𝑚))

𝑝
→ 0 as 𝑛,𝑚 →

∞. For any 𝜉 ∈ [𝑎, 𝑏], using the partition𝑇 : 𝑎 ≤ 𝜉 ≤ 𝑏 and the
definition of𝑉𝑝𝑓, we get that {𝑓𝑛(𝜉)} is a Cauchy sequence in
R and converges to a number denoted by 𝑓(𝜉). For any 𝜀 > 0,
there exists an integer𝑁 such that 𝑞(𝑓𝑛−𝑓𝑚) ≤ 𝜀 for𝑚, 𝑛 > 𝑁.
Let 𝑇 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑘 = 𝑏 be an arbitrary partition
of [𝑎, 𝑏]. Then

𝑓𝑚 (𝑎) − 𝑓𝑛 (𝑎)

𝑝

+

𝑘

∑

𝑖=1

(𝑓𝑚 − 𝑓𝑛) (𝑥𝑖) − (𝑓𝑚 − 𝑓𝑛) (𝑥𝑖−1)

𝑝

≤ 𝑞 (𝑓𝑛 − 𝑓𝑚) ≤ 𝜀.

(11)

Letting𝑚 → ∞, we get that

𝑓 (𝑎) − 𝑓𝑛 (𝑎)

𝑝
+

𝑘

∑

𝑖=1

(𝑓 − 𝑓𝑛) (𝑥𝑖) − (𝑓 − 𝑓𝑛) (𝑥𝑖−1)

𝑝
≤ 𝜀.

(12)



Journal of Function Spaces 3

Taking the supremum over all partitions 𝑇, we have 𝑞(𝑓 −

𝑓𝑛) ≤ 𝜀 for 𝑛 > 𝑁. This means that 𝑓 = (𝑓 − 𝑓𝑛) +

𝑓𝑛 ∈ 𝐵𝑉𝑝[𝑎, 𝑏], and 𝑞(𝑓 − 𝑓𝑛) → 0 as 𝑛 → ∞. Hence,
𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) is complete. Theorem 1 is proved.

Proof of Theorem 2. Suppose that 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).
Since𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] ⊂ 𝐵𝑉[𝑎, 𝑏], by the Jordan decomposition
theorem (see [8, Corollary 13.6]), we have𝑓(𝑥) = 𝑔(𝑥)−𝑟(𝑥),
where 𝑔(𝑥), 𝑟(𝑥) are increasing functions on [𝑎, 𝑏]. Indeed,
we can choose 𝑔(𝑥) to be 𝑉𝑥

𝑎
(𝑓), the total variation function

of 𝑓 defined by

𝑉
𝑥

𝑎
(𝑓) = sup

𝑇

{

𝑛

∑

𝑖=1

𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)
} , (13)

where the supremum is taken over all partitions 𝑇 : 𝑎 = 𝑥0 <

𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑥 of [𝑎, 𝑥], 𝑟(𝑥) = 𝑉
𝑥

𝑎
(𝑓) − 𝑓(𝑥). It suffices to

show that 𝑔(𝑥) = 𝑉
𝑥

𝑎
(𝑓) ∈ 𝐵𝑉𝑝[𝑎, 𝑏]. For any fixed partition

𝑇 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑏, we note that
𝑔 (𝑥𝑖) − 𝑔 (𝑥𝑖−1)


𝑝
=

𝑉
𝑥𝑖
𝑥𝑖−1

𝑓


𝑝

= sup
𝑇𝑖

(

𝑚𝑖

∑

𝑗=1


𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)


)

𝑝

≤ sup
𝑇𝑖

𝑚𝑖

∑

𝑗=1


𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)



𝑝

,

(14)

where the supremum is taken over all partitions 𝑇𝑖 : 𝑥𝑖−1 =
𝜉𝑖,1 < 𝜉𝑖,2 < ⋅ ⋅ ⋅ < 𝜉𝑖,𝑚𝑖

= 𝑥𝑖 of [𝑥𝑖−1, 𝑥𝑖]. It follows that

𝑛

∑

𝑖=1

𝑔 (𝑥𝑖) − 𝑔 (𝑥𝑖−1)

𝑝
≤

𝑛

∑

𝑖=1

sup
𝑇𝑖

𝑚𝑖

∑

𝑗=1


𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)



𝑝

= sup
𝑇𝑖 , 1≤𝑖≤𝑛

𝑛

∑

𝑖=1

𝑚𝑖

∑

𝑗=1


𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)



𝑝

≤ (𝑉𝑝𝑓)
𝑝

,

(15)

which implies 𝑔 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]. This completes the proof of
Theorem 2.

To proveTheorem 3, we introduce the next lemma.

Lemma 5. If 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]⋂𝐶[𝑎, 𝑏] (0 < 𝑝 < 1), then 𝑓 is a
constant function.

Proof. It suffices to show that, for any 𝑑 ∈ [𝑎, 𝑏], 𝑓(𝑑) = 𝑓(𝑎).
Assume that there exists 𝑑 ∈ (𝑎, 𝑏] such that 𝑓(𝑑) ̸= 𝑓(𝑎).
Without loss of generality, we assume that𝑓(𝑎) < 𝑓(𝑑). Since
𝑓 ∈ 𝐶[𝑎, 𝑏], there exist 𝑛 − 1 points 𝜉1, 𝜉2, . . . , 𝜉𝑛−1 such that
𝑎 = 𝜉0 < 𝜉1 < ⋅ ⋅ ⋅ < 𝜉𝑛−1 < 𝜉𝑛 = 𝑑 and 𝑓(𝜉𝑖) = 𝑓(𝑎) + ((𝑓(𝑑)−

𝑓(𝑎))/𝑛)𝑖. Hence,

(𝑉𝑝𝑓)
𝑝

≥

𝑛

∑

𝑖=1

𝑓 (𝜉𝑖) − 𝑓 (𝜉𝑖−1)

𝑝

= 𝑛
1−𝑝 𝑓 (𝑑) − 𝑓 (𝑎)


𝑝
→ ∞,

(16)

as 𝑛 → ∞, which implies that 𝑓 ∉ 𝐵𝑉𝑝[𝑎, 𝑏]. This leads to a
contradiction. Lemma 5 is proved.

Proof of Theorem 3. (1) Without loss of generality, we may
assume that𝑁 = ∞. Let 𝑇 : 𝑎 = 𝑦0 < 𝑦1 < ⋅ ⋅ ⋅ < 𝑦𝑚 = 𝑏 be a
partition of [𝑎, 𝑏]. For 𝑗, 1 ≤ 𝑗 ≤ 𝑚, we note that


𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)



𝑝

=



∞

∑

𝑛=1

(ℎ𝑡𝑛 ,𝑑𝑛,𝑑

𝑛
(𝑦𝑗) − ℎ𝑡𝑛 ,𝑑𝑛,𝑑


𝑛
(𝑦𝑗−1))



𝑝

=



∑
𝑛

𝑦𝑗−1<𝑡𝑛<𝑦𝑗

𝑑𝑛 + ∑
𝑛
𝑡𝑛=𝑦𝑗−1

(𝑑𝑛 − 𝑑


𝑛
) + ∑
𝑛
𝑡𝑛=𝑦𝑗

𝑑


𝑛



𝑝

≤ ∑
𝑛

𝑦𝑗−1≤𝑡𝑛≤𝑦𝑗

𝑑
𝑝

𝑛
,

(17)

where an empty sum denotes 0. It follows that

𝑚

∑

𝑗=1


𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)



𝑝

≤

𝑚

∑

𝑗=1

( ∑
𝑛

𝑦𝑗−1≤𝑡𝑛≤𝑦𝑗

𝑑
𝑝

𝑛
) ≤ 2

∞

∑

𝑛=1

𝑑
𝑝

𝑛
.

(18)

Taking the supremum over all partitions of [𝑎, 𝑏], we obtain
that

(𝑉𝑝𝑓)
𝑝

≤ 2

∞

∑

𝑛=1

𝑑
𝑝

𝑛
. (19)

On the other hand, for any fixed 𝑚, by renumbering
{𝑡𝑛}
𝑚

𝑛=1
if necessary, we may assume that 𝑎 ≤ 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ <

𝑡𝑚 ≤ 𝑏. We set 𝑦𝑖 = ((𝑡𝑖 + 𝑡𝑖+1)/2) (1 ≤ 𝑖 ≤ 𝑚 − 1). Then
𝑇 : 𝑎 = 𝑦0 < 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑚−1 < 𝑦𝑚 = 𝑏 is a partition of
[𝑎, 𝑏]. It follows that

(𝑉𝑝𝑓)
𝑝

≥

𝑚

∑

𝑗=1


𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)



𝑝

≥

𝑚

∑

𝑗=1

( ∑
𝑛

𝑦𝑗−1<𝑡𝑛<𝑦𝑗

𝑑𝑛)

𝑝

≥

𝑚

∑

𝑗=1

𝑑
𝑝

𝑗
.

(20)

Letting𝑚 → ∞, we get

𝑉𝑝𝑓 ≥ (

∞

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

. (21)

Combining (19) with (21), we get (9). Hence, 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]

(0 < 𝑝 < 1) if and only if ∑∞
𝑛=1

𝑑
𝑝

𝑛
< ∞.

(2) Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1) and 𝐴 the set of points of discontinuity of 𝑓 on [𝑎, 𝑏]. We
set ℎ𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥), where ℎ̃𝑡(𝑥) is defined by (7). Similar
to the proof of (21), we have

∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))
𝑝
≤ (𝑉𝑝𝑓)

𝑝

< ∞. (22)



4 Journal of Function Spaces

Applying the above proved result, we obtain that ℎ𝑓(𝑥) ∈

𝐵𝑉𝑝[𝑎, 𝑏]. We set 𝑔(𝑥) = 𝑓(𝑥) − ℎ𝑓(𝑥); then 𝑔 ∈ 𝐵𝑉𝑝[𝑎, 𝑏].
We will show that 𝑔(𝑥) is continuous on [𝑎, 𝑏].

Indeed, for 𝑥 ∈ [𝑎, 𝑏], we have

∑

𝑡∈𝐴

ℎ̃𝑡 (𝑥) ≤ ∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))

≤ (∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))
𝑝
)

1/𝑝

≤ 𝑉𝑝𝑓 < ∞.

(23)

By Weierstrass 𝑀-test (see [10, Theorem 7.10]), we get that
the series ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) converges uniformly on [𝑎, 𝑏]. For 𝑥0 ∈
[𝑎, 𝑏]\𝐴, ℎ̃𝑡(𝑥) (𝑡 ∈ 𝐴) is continuous at 𝑥0, so ℎ𝑓(𝑥) =

∑𝑡∈𝐴 ℎ̃𝑡(𝑥) is also continuous at 𝑥0. It follows that 𝑔(𝑥) is
continuous at 𝑥0 for 𝑥0 ∈ [𝑎, 𝑏]\𝐴.

For 𝑥0 ∈ 𝐴, we set 𝑢(𝑥) = ∑𝑡∈𝐴\{𝑥0}
ℎ̃𝑡(𝑥). Then 𝑢(𝑥) is

continuous at 𝑥0 and ℎ𝑓(𝑥) = 𝑢(𝑥) + ℎ̃𝑥0
(𝑥). Hence,

ℎ𝑓 (𝑥0 + 0) = 𝑢 (𝑥0) + (𝑓 (𝑥0 + 0) − 𝑓 (𝑥0 − 0)) ,

ℎ𝑓 (𝑥0 − 0) = 𝑢 (𝑥0) ,

ℎ𝑓 (𝑥0) = 𝑢 (𝑥0) + (𝑓 (𝑥0) − 𝑓 (𝑥0 − 0)) .

(24)

Thus,

𝑔 (𝑥0 + 0) = 𝑔 (𝑥0) = 𝑔 (𝑥0 − 0) = 𝑓 (𝑥0 − 0) − 𝑢 (𝑥0) ,

(25)

from which we can deduce that 𝑔 is continuous at 𝑥0. Hence,
𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏].

Since 𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏]∩𝐵𝑉𝑝[𝑎, 𝑏], it follows from Lemma 5
that 𝑔(𝑥) is a constant 𝑐.Thus𝑓(𝑥) = ℎ𝑓(𝑥)+𝑐 = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥)+

𝑐. The proof of Theorem 3 is complete.
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Rendus de l’Académie des Sciences—Paris, vol. 204, pp. 470–472,
1937.

[2] D. Waterman, “On convergence of Fourier series of functions
of generalized bounded variation,” StudiaMathematica, vol. 44,
pp. 107–117, 1972.

[3] P. B. Pierce and D. J. Velleman, “Some generalizations of
the notion of bounded variation,” The American Mathematical
Monthly, vol. 113, no. 10, pp. 897–904, 2006.

[4] M. Schramm and D. Waterman, “Absolute convergence of
Fourier series of functions of Λ𝐵𝑉(𝑝) and 𝜙Λ𝐵𝑉,” Acta Math-
ematica Academiae Scientiarum Hungarica, vol. 40, no. 3-4, pp.
273–276, 1982.

[5] R. N. Siddiqi, “Generalized absolute continuity of a function of
Wiener’s class,” Bulletin of the Australian Mathematical Society,
vol. 22, no. 2, pp. 253–258, 1980.

[6] D. Waterman, “On the summability of Fourier series of func-
tions of Λ-bounded variation,” Studia Mathematica, vol. 55, pp.
87–95, 1976.

[7] N.Wiener, “Thequadratic variation of a function and its Fourier
coefficients,” Massachusetts Journal of Mathematics, vol. 3, pp.
72–94, 1924.

[8] N. L. Carothers, Real Analysis, Cambridge University Press,
London, UK, 2000.

[9] G. Klambauer, Real Analysis, Dover Publications, Mineola, NY,
USA, 2001.

[10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill,
New York, NY, USA, 1976.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


