
Research Article
A Simple Repairable System with Warning Device

Xiao Zhang1 and Lina Guo2

1Key Laboratory of Highway Construction and Maintenance Technology in Loess Region, Shanxi Transportation Research Institute,
Taiyuan 030006, China
2Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

Correspondence should be addressed to Xiao Zhang; xiaozhang2008@gmail.com

Received 3 December 2014; Revised 23 April 2015; Accepted 28 April 2015

Academic Editor: Jaeyoung Chung

Copyright © 2015 X. Zhang and L. Guo.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers a simple repairable system with a warning device which can signal an alarm when the system is not in good
condition and a repairman who can have delayed-multiple vacations. By using Markov renewal process theory and the probability
analysismethod, the system is first described into a group of integrodifferential equations.Then the unique existence and asymptotic
stability, especially the exponential stability of the system dynamic solution, are studied by using the strongly continuous semigroup
theory or 𝐶

0
semigroup theory and the spectrum theory. The reliability indices and some applications (such as the comparisons of

some indexes and profit of systems with and without warning device) as well as numerical examples are presented at the end of the
paper.

1. Introduction

A repairable system is a systemwhich, after failing to perform
one or more of its functions satisfactorily, can be restored
to fully satisfactory performance by any method rather
than the replacement of the entire system. Since the 1960s,
various repairable system models have been established and
researched, such as one-unit, series, parallel, series-parallel,
redundance, 𝑘-out-of-𝑛, multiple-state, human-machine, and
software systems.

In traditional repairable systems, it is assumed that the
repairman or server remains idle until a failed component
presents. However, as Mobley [1] pointed out, one-third of all
maintenance costs were wasted as the result of unnecessary
or improper maintenance activities. Today, the role of main-
tenance tends to be a “profit contributor.” Therefore, much
more profit can be produced when the repairman in a system
might take a sequence of vacations in the idle time. During
vacation, the repairman is not in the system or may take
another assigned job. From the perspective of rational use
of human resources, the introduction of repairman’s vacation
makes modeling of the repairable system more realistic and
flexible. This is due to the fact that, in practice, the vast

majority of small- and medium-sized enterprisers (SMEs)
cannot afford to hire a full-time repairman. So, the repairman
in SMEs usually plays two roles: one for looking after the units
and the other for other duties. Under normal circumstances,
if the system is found to be failed, the repairman repairs it
immediately after the end of vacation; otherwise, the repair-
man leaves the system for other duties or for another vacation.

Vacation model originally arises in queueing theory and
has been well studied in the past three decades and success-
fully applied in many areas such as manufacturing/service
and computer/communication network systems. Excellent
surveys on the earlier works of vacation models have been
reported by Doshi [2], Takagi [3], and Tian and Zhang [4].
Ke et al. [5] provided a summary of the most recent research
works on vacation queueing systems in the past 10 years,
in which a wide class of vacation policies for governing the
vacation mechanism is presented.

In the past decade, inspired by the vacation queueing
theory, some researchers introduced vacation model into
repairable systems. The available references concerning
repairman vacation in repairable systems can be classified
into two categories: one focuses on system indices and the
other deals with optimization problems.
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For the first category, Jain and Rakhee [6] considered
a bilevel control policy for a machining system with two
repairmen. One starts to work when queue size of failed
units reaches a preassigned level. The other’s provision in
case of long queue of failed units may help to reduce the
backlog. The steady state queue size distribution is obtained
by applying the recursive method. Hu et al. [7] studied the
steady-state availability and the mean uptime of a series-
parallel repairable system, which consists of one master
control unit and two slave units and a single repairman runs
single vacation via themethod of supplementary variable and
the vector Markov process theory. Q. T. Wu and S. M. Wu
[8] analyzed some reliability indices of a cold standby system
consisting of two repairable units, a switch and a repairman
who may not always be on the job site while taking vacation.
Yuan [9] and Yuan and Cui [10] studied a 𝑘-out-of-𝑛: 𝐺

system and a consecutive-𝑘-out-of-𝑛: 𝐹 system, respectively,
with 𝑅 repairmen who can take multiple vacations and
by using Markov model, the analytical solution of some
reliability indexes was discussed. Yuan and Xu [11] studied
a deteriorating system with one repairman who can have
multiple vacations. By means of the geometric process and
the supplementary variable techniques, a group of partial
differential equations of the system was presented and some
reliability indices were derived. Ke and Wu [12] studied
a multiserver machine repair model with standbys and
synchronous multiple vacation, and the stationary proba-
bility vectors were obtained by using the matrix-analytical
approach and the technique of matrix recursive.

For the second category, Ke and Wang [13] studied a
machine repair problem consisting of 𝑀 operating machines
with two types of spare machines and 𝑅 servers (repairmen)
who can take different vacation policies. The steady-state
probabilities of the number of failed machines in the system
as well as the performance measures were derived by using
the matrix geometric theory and a direct search algorithm
was used to determine the optimal values of the number
of two types of spares and the number of servers while
maintaining a minimum specified level of system availability.
Jia and Wu [14] considered a replacement policy for a
repairable system that cannot be repaired “as good as new”
with a repairman who can have multiple vacations. By using
geometric processes, the explicit expression of the expected
cost rate was derived, and the corresponding optimal policy
was determined analytically or numerically. Yuan and Xu
[15, 16] considered, respectively, a deteriorating repairable
system and a cold standby repairable system with two
different components of different priority in use, both with
one repairman who can take multiple vacations. The explicit
expression of the expected cost rate was given and an optimal
replacement policy was discussed. Yu et al. [17] analyzed a
phase-type geometric process repair model with spare device
procurement lead time and repairman’s multiple vacations.
Employing the theory of renewal reward process, the explicit
expression of the long-run average profit rate for the system
was derived, and the optimal maintenance policy was also
numerically determined.

A survey of the current research effort suggests that
steady behavior (the steady-state indices or the steady-state

optimization problems) of the systems is widely explored,
which is because the transient solution of a system is difficult
or sometimes impossible to obtain. Therefore, researchers
usually substitute the steady-state solution for the instanta-
neous one of a system since the steady-state solution can be
easily obtained by Laplace transform and a limit theorem.
Whereas, Laplace transform is based on two hypotheses;
namely, the instantaneous solution of the interested system
exists and the instantaneous solution is stable. Whether the
hypotheses held or not is still an open question and should
be justified. Moreover, the substitution of the steady-state
solution for the instantaneous one is not always rational.
Readers are referred to [18, 19] for detailed information or
explanations. Thus the study of time-dependent solution of
a system as well as its stability is indispensable.

Warning systems emerging in the background of
repairable systems are stepping into the times of requiring
both advanced warning and real-time fault detection.
The so-called warning system is able to send emergency
signals and report dangerous situations prior to disasters,
catastrophes, and/or other dangers which need to watch out
based on previous experiences and/or observed possible
omens. Real-time warning systems play an important
role in fault management in banking, telecommunications,
securities, electric power, and other industries. If the warning
is prompted during system operation, operating staff can
choose whether to shut down the system, operate carefully,
or repair the system. Warning systems can help users to
achieve the 24-hour uninterrupted real-time monitoring
and alerting during running of various types of network
infrastructure sand application services. Accordingly, the
study of repairable systems with warning device is important
in both theory and practice. However, repairable systems
with warning device are seldom reported in the current
literatures.

To this end, this paper considers a simple repairable sys-
tem (which includes one unit and a repairman) with a warn-
ing device. The warning device can signal an alarm once the
system fails. Considering the practice situation, we also
assume that it may signal an alarm when not necessary,
which is called a false alarm. The repairman in the consid-
ered system follows delayed-multiple vacations policy. The
delayed-multiple vacation means that the repairman will not
leave for a vacation immediately if no component failed.
However, there is a stochastic vacation-preparing period in
which if a failed component appears the repairman will stop
the vacation preparing and serve it immediately; otherwise
the repairman will take a rest at the end of the vacation-
preparing period. When a vacation ends, the repairman will
either deal with the failed components waiting in the system
or prepare for another vacation. In this paper, we are devoted
to studying the asymptotic behavior of the system by strongly
continuous semigroup theory and make comparisons of
reliability indexes (such as reliability, availability, and the
probability of the repairman’ vacation) and profit of the two
systems with and without warning device.

The paper is structured as follows. The coming section
introduces the system model specifically and expresses it as
a group of integrodifferential equations by Markov renewal
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process theory and the probability analysis method. Section 3
discusses the asymptotic behavior of the system by strongly
continuous semigroup theory or 𝐶0 semigroup theory.
Section 4 presents some reliability indices of the system, and
the steady-state indexes are discussed from the viewpoint
of eigenfunction of the system operator. In Section 5, com-
parisons of indexes and profit of systems with and without
warning device are made. A brief conclusion is offered in
Section 6.

2. System Formulation

The system model of interest is a simple repairable system
(i.e., a repairable system with a unit and a repairman) with
repairman vacation and a warning device. It is described
specifically as follows: at the initial time 𝑡 = 0, the unit is new;
the system begins to work and the repairman starts to prepare
for the vacation. The warning device may signal true alarms
(when the system needs to be repaired) or false alarms
(when the system does not need to be repaired). In order
to distinguish true or false alarms, the system is inspected
after the warning device sends an alarm. The distributions
of time duration of the distinguishing process for false and
true alarm follow exponential distributions with parameters
𝜆1 and 𝜆2, respectively. If the warning device sends an alarm
in the delayed-vacation period, the repairman will either deal
with the unit if it is a true alarm and the delayed-vacation is
terminated or leave for a vacation after the delayed-vacation
period ends if it is a false alarm. Whenever the repairman
returns from a vacation, he or she either prepares for the next
vacation if the unit is working or deals with the failed unit
immediately or stays in the system if the warning device has
sent an alarm. And assume that the time repairman returning
to the system cannot be late than the time warning device
sending next alarm. The repair facility is neither failed nor
deteriorated. The unit is repaired as good as new. Further we
assume the following:

(1) The distribution function of the delayed-vacation
time length of the repairman is 𝐷(𝑡) = 1 − 𝑒

−𝜀𝑡, 𝑡 ≥ 0,
and 𝜀 is a positive constant and the distribution func-
tion of its vacation time length is𝑉(𝑡) = 1−𝑒

−∫
𝑡

0 𝑟(𝑥)d𝑥,
and ∫

∞

0 𝑡d𝑉(𝑡) = 1/𝑟.
(2) The distribution function of time interval between

warning device’s beginning to work and its first send-
ing alarm as well as the distribution function of time
interval of two successive alarms is 𝑈(𝑡) = 1 − 𝑒

−𝛼0𝑡,
𝑡 ≥ 0, and 𝛼0 is a positive constant.

(3) The distribution function of the repair time length of
the system is 𝐺(𝑡) = 1 − 𝑒

−∫
𝑡

0 𝜇(𝑥)d𝑥, and ∫
∞

0 𝑡d𝐺(𝑡) =

1/𝜇.
(4) The above stochastic variables are independent of

each other.

Set all the possible states at time 𝑡 as follows.

0: the system is working and the repairman is prepar-
ing for the vacation.

1: the system is working and the repairman is on vaca-
tion.
2: the system is warning and the repairman is in the
system.
21: the warning is distinguished as a false alarm and
the repairman is in the system.
22: the warning is distinguished as a true alarm and
the unit is repaired by the repairman.
3: the system is warning and the repairman is on vaca-
tion.
31: the warning is distinguished as a false alarm while
the repairman is on vacation.
32: the warning is distinguished as a true alarm and
the unit needs to be repaired while the repairman is
on vacation.

Then by using stochastic process theory and probability
analysis method, the repairable system model described
above can be expressed by a group of integrodifferential
equations with integral boundaries as below:

(
d
d𝑡

+ 𝜀 + 𝛼0) 𝑃0 (𝑡)

= ∫

∞

0
𝑟 (𝑥) 𝑃1 (𝑡, 𝑥) d𝑥 + ∫

∞

0
𝜇 (𝑦) 𝑃22 (𝑡, 𝑦) d𝑦,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛼0 + 𝑟 (𝑥)] 𝑃1 (𝑡, 𝑥) = 0,

(
d
d𝑡

+ 𝜆1 + 𝜆2) 𝑃2 (𝑡)

= 𝛼0𝑃0 (𝑡) + ∫

∞

0
𝑟 (𝑥) 𝑃3 (𝑡, 𝑥) d𝑥,

(
d
d𝑡

+ 𝜀) 𝑃21 (𝑡) = 𝜆1𝑃2 (𝑡) + ∫

∞

0
𝑟 (𝑥) 𝑃31 (𝑡, 𝑥) d𝑥,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇 (𝑦)] 𝑃22 (𝑡, 𝑦) = 0,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆1 + 𝜆2 + 𝑟 (𝑥)] 𝑃3 (𝑡, 𝑥) = 𝛼0𝑃1 (𝑡, 𝑥) ,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝑟 (𝑥)] 𝑃3𝑖 (𝑡, 𝑥) = 𝜆

𝑖
𝑃3 (𝑡, 𝑥) , 𝑖 = 1, 2.

(1)

The boundary conditions are

𝑃1 (𝑡, 0) = 𝜀 (𝑃0 (𝑡) + 𝑃21 (𝑡)) ,

𝑃22 (𝑡, 0) = 𝜆2𝑃2 (𝑡) + ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑡, 𝑥) d𝑥,

𝑃3 (𝑡, 0) = 𝑃3𝑖 (𝑡, 0) = 0, 𝑖 = 1, 2.

(2)

The initial conditions are

𝑃0 (0) = 1, the others equal to 0. (3)
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Here𝑃
𝑖
(𝑡) represents the probability that the system is in state

𝑖 at time 𝑡, 𝑖 = 0, 2, 21. 𝑃
𝑗
(𝑡, 𝑥)d𝑥 represents the probability

that the system is in state 𝑗with elapsed vacation time lying in
[𝑥, 𝑥+d𝑥) at time 𝑡, 𝑗 = 1, 3, 31, 32. 𝑃22(𝑡, 𝑦)d𝑦 represents the
probability that the system is in state 22 with elapsed repair
time lying in [𝑦, 𝑦 + d𝑦) at time 𝑡.

Concerning the practical background,we can assume that
𝑟(𝑥) and 𝜇(𝑦) are nonnegative functions satisfying

𝑟 = sup
𝑥∈[0,∞)

𝑟 (𝑥) < ∞,

𝜇 = sup
𝑦∈[0,∞)

𝜇 (𝑦) < ∞.

(4)

3. Stability of System Solution

In this section, we will discuss the stability, especially the
exponential stability of the system solution by 𝐶0 semigroup
theory. For this purpose, we first translate the system equa-
tions (1)–(3) into an abstract Cauchy problem in a suitable
Banach space. Then some primary properties of system
operator and its adjoint operator are presented. With the
preparation, the unique existence and asymptotic stability
of system solution can be derived readily. Further, the
exponential stability of the system solution is also studied by
constructing proper operators.

3.1. System Transformation. In this section, we translate the
system equations (1)–(3) into an abstract Cauchy problem in
a suitable Banach space.

Firstly, choose the state space to be

𝑋 = {𝑃 = (𝑃0, 𝑃1 (𝑥) , 𝑃2, 𝑃21, 𝑃22 (𝑦) , 𝑃3 (𝑥) , 𝑃31 (𝑥) ,

𝑃32 (𝑥))
T

: 𝑃
𝑖
∈R, 𝑃

𝑗
∈ 𝐿

1
(R

+
) , 𝑖 = 0, 2, 21; 𝑗

= 1, 22, 3, 31, 32}

(5)

endowed with norm
‖𝑃‖ = ∑

𝑖=0,2,21

𝑃𝑖
 + ∑

𝑗=1,22,3,31,32


𝑃
𝑗

𝐿1(R+)
, (6)

where R+ denotes the set of nonnegative real numbers. It is
obvious that 𝑋 is a Banach space.

Next, define system operator in state space 𝑋 as
𝐴𝑃

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

− (𝜀 + 𝛼0) 𝑃0 + ∫

∞

0
𝑟 (𝑥) 𝑃1 (𝑥) d𝑥 + ∫

∞

0
𝜇 (𝑦) 𝑃22 (𝑦) d𝑦

−𝑃


1 (𝑥) − [𝛼0 + 𝑟 (𝑥)] 𝑃1 (𝑥)

− (𝜆1 + 𝜆2) 𝑃2 + 𝛼0𝑃0 + ∫

∞

0
𝑟 (𝑥) 𝑃3 (𝑥) d𝑥

−𝜀𝑃21 + 𝜆1𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃31 (𝑥) d𝑥

−𝑃


22 (𝑦) − 𝜇 (𝑦) 𝑃22 (𝑦)

−𝑃


3 (𝑥) − [𝜆1 + 𝜆2 + 𝑟 (𝑥)] 𝑃3 (𝑥) + 𝛼0𝑃1 (𝑥)

−𝑃


31 (𝑥) − 𝑟 (𝑥) 𝑃31 (𝑥) + 𝜆1𝑃3 (𝑥)

−𝑃


32 (𝑥) − 𝑟 (𝑥) 𝑃32 (𝑥) + 𝜆2𝑃3 (𝑥)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

(7)

with domain

𝐷 (𝐴) = {𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T

∈ 𝑋 : 𝑃


𝑗

∈ 𝐿
1

(R
+
)

are absolutely continuous functions satisfying 𝑃1 (0)

= 𝜀 (𝑃0 + 𝑃21) , 𝑃22 (0) = 𝜆2𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑥) d𝑥,

𝑃3 (0) = 𝑃3𝑖 (0) = 0, 𝑗 = 1, 22, 3, 3𝑖, 𝑖 = 1, 2} .

(8)

Thus the system equations (1)–(3) can be rewritten as an
abstract Cauchy problem in the Banach space 𝑋:

d𝑃 (𝑡, ⋅)

d𝑡
= 𝐴𝑃 (𝑡, ⋅) , 𝑡 ≥ 0,

𝑃 (𝑡, ⋅) = (𝑃0 (𝑡) , 𝑃1 (𝑡, 𝑥) , 𝑃2 (𝑡) , 𝑃21 (𝑡) , 𝑃22 (𝑡, 𝑦) ,

𝑃3 (𝑡, 𝑥) , 𝑃31 (𝑡, 𝑥) , 𝑃32 (𝑡, 𝑥))
T

,

𝑃 (0, ⋅) = (1, 0, 0, . . . , 0)
T
1×8 .

(9)

3.2. Properties of System Operator 𝐴. In this section, we
present some concerned properties of system operator 𝐴

including the distribution of its spectrum.

Lemma 1. The system operator𝐴 is a densely closed dissipative
operator.

Lemma 2. For any 𝛾 ∈ C satisfying Re 𝛾 > 0 𝑜𝑟 𝛾 = 𝑖𝑎, 𝑎 ∈

R \ {0}, 𝛾 is a regular point of the system operator 𝐴.

Lemma 3. 0 is an eigenvalue of the system operator 𝐴 with
algebraic multiplicity one.

3.3. Properties of Adjoint Operator 𝐴
∗. In this section, we

present some properties of 𝐴
∗, the adjoint operator of system

operator 𝐴, including its spectrum distribution.
The dual space of 𝑋 is

𝑋
∗

= R× 𝐿
∞

(R
+
) ×R

2
× (𝐿

∞
(R

+
))

4
. (10)

For 𝑄 = (𝑄0, 𝑄1(𝑥), 𝑄2, 𝑄21, 𝑄22(𝑦), 𝑄3(𝑥), 𝑄31(𝑥),
𝑄32(𝑥))

T
∈ 𝑋

∗, its norm is defined by

‖𝑄‖ = sup {
𝑄𝑖

 ,

𝑄
𝑗

𝐿∞(R+)
, 𝑖 = 0, 2, 21, 𝑗

= 1, 22, 3, 31, 32} .

(11)

For any 𝑃 ∈ 𝐷(𝐴) and 𝑄 ∈ 𝑋
∗, the equality ⟨𝐴𝑃, 𝑄⟩ =

⟨𝑃, 𝐴
∗
𝑄⟩ follows the expression of 𝐴

∗, the adjoint operator
of system operator 𝐴, and its domain as below:
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𝐴
∗
𝑄 =

(
(
(
(
(
(
(
(
(
(
(
(

(

− (𝜀 + 𝛼0) 𝑄0 + 𝜀𝑄1 (0) + 𝛼0𝑄2

𝑄


1 (𝑥) − [𝛼0 + 𝑟 (𝑥)] 𝑄1 (𝑥) + 𝑟 (𝑥) 𝑄0 + 𝛼0𝑄3 (𝑥)

− (𝜆1 + 𝜆2) 𝑄2 + 𝜆1𝑄21 + 𝜆2𝑄22 (0)

−𝜀𝑄21 + 𝜀𝑄1 (0)

𝑄


22 (𝑦) − 𝜇 (𝑦) 𝑄22 (𝑦) + 𝜇 (𝑦) 𝑄0

𝑄


3 (𝑥) − (𝜆1 + 𝜆2) 𝑄3 (𝑥) + 𝜆1𝑄31 (𝑥) + 𝜆2𝑄32 (𝑥) + 𝑟 (𝑥) [𝑄2 − 𝑄3 (𝑥)]

𝑄


31 (𝑥) − 𝑟 (𝑥) 𝑄31 (𝑥) + 𝑟 (𝑥) 𝑄21

𝑄


32 (𝑥) − 𝑟 (𝑥) 𝑄32 (𝑥) + 𝑟 (𝑥) 𝑄22 (0)

)
)
)
)
)
)
)
)
)
)
)
)

)

≜ (𝐶 + 𝐷) 𝑄

𝐷 (𝐴
∗
) = {𝑄 = (𝑄0, 𝑄1, 𝑄2, 𝑄21, 𝑄22, 𝑄3, 𝑄31, 𝑄32)

T
∈ 𝑋

∗
: 𝑄



𝑗

∈ 𝐿
∞

(R
+
) are absolutely continuous functions satisfying 𝑄

𝑗
(∞) < ∞, 𝑗 = 1, 22, 3, 31, 32} .

(12)

Here

𝐶 = diag(− (𝜀 + 𝛼0) ,
d
d𝑥

− [𝛼0 + 𝑟 (𝑥)] , − (𝜆1 + 𝜆2) , − 𝜀,
d
d𝑦

− 𝜇 (𝑦) ,
d
d𝑥

− [𝜆1 + 𝜆2 + 𝑟 (𝑥)] ,
d
d𝑥

− 𝑟 (𝑥) ,
d
d𝑥

− 𝑟 (𝑥)) ,

𝐷 =

(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 𝜀𝜃1 (⋅) 𝛼0 0 0 0 0 0

𝑟 (𝑥) 0 0 0 0 𝛼0 0 0

0 0 0 𝜆1 𝜆2𝜃22 (⋅) 0 0 0

0 𝜀𝜃1 (⋅) 0 0 0 0 0 0

𝜇 (𝑦) 0 0 0 0 0 0 0

0 0 𝑟 (𝑥) 0 0 0 𝜆1 𝜆2

0 0 0 𝑟 (𝑥) 0 0 0 0

0 0 0 0 𝑟 (𝑥) 𝜃22 (⋅) 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)

)

(13)

and 𝜃
𝑘
(⋅) = 𝐿

∞
(R+

) → C satisfying 𝜃
𝑘
(𝑓) = 𝑓(0), 𝑘 = 1, 22.

Lemma 4. For any 𝛾 ∈ C satisfying

sup{
𝜀 + 𝛼0

𝛾 + 𝜀 + 𝛼0


,
𝛼0 + 𝑀

Re 𝛾 + 𝛼0 + 𝑀
,

𝜆1 + 𝜆2
𝛾 + 𝜆1 + 𝜆2



,

𝜀

𝛾 + 𝜀


,
𝜆1 + 𝜆2 + 𝑀

Re 𝛾 + 𝜆1 + 𝜆2 + 𝑀
,

𝑀

Re 𝛾 + 𝑀
} < 1,

(14)

𝛾 ∈ 𝜌(𝐴
∗
), the resolvent set of 𝐴

∗, where 𝑀 = sup{𝑟, 𝜇} and
𝑟, 𝜇 are defined in (4).

The following result of eigenvalue 0 of 𝐴
∗ can also be

obtained with the same method of Lemma 3.

Lemma 5. 0 is an eigenvalue of operator 𝐴
∗ with algebraic

multiplicity one.

3.4. Stability of System Solution. In this section, we will
present the asymptotic stability, especially the exponential
stability of the system solution, by using𝐶0 semigroup theory.

According to Phillips Theorem (see [20]) combining
Lemmas 1 and 2, we can obtain the following result.

Theorem 6. The system operator 𝐴 generates a positive 𝐶0
semigroup of contraction 𝑇(𝑡).

Theorem 6 can readily derive the existence and unique-
ness of system solution according to [21].

Theorem 7. The system (9) has a unique nonnegative time-
dependent solution 𝑃(𝑡, ⋅) with expression as

𝑃 (𝑡, ⋅) = 𝑇 (𝑡) 𝑃0, ∀𝑡 ∈ [0, ∞) . (15)

Remark 8. Because the initial condition 𝑃0 of system (9) is
not in the domain of system operator 𝐴, then the solution
𝑃(𝑡, ⋅) obtained by Theorem 7 is the mild solution of system
(9). However, it can be proved that it is the classical solution
of system (9) for 𝑡 > 0 with pure analysis method [22].

Noting that the 𝐶0 semigroup 𝑇(𝑡) generated by 𝐴 is
uniformly bounded because it is contractive according to
Theorem 6, then according to [21] combining Lemmas 2, 3, 4,
and 5, the asymptotic stability of system (9) can be deduced
readily as follows.

Theorem 9. Let �̂� be the nonnegative eigenfunction corre-
sponding to eigenvalue 0 of the system operator 𝐴 satisfying
‖�̂�‖ = 1 and 𝑄

∗
= (1, 1, 1, 1, 1, 1, 1, 1)

T
∈ 𝑋

∗; then the time-
dependent solution 𝑃(𝑡, ⋅) of system (9) converges to the
nonnegative steady-state solution �̂�. That is

lim
𝑡→∞

𝑃 (𝑡, ⋅) = ⟨𝑃0, 𝑄
∗
⟩ �̂� = �̂�, (16)

where 𝑃0 is the initial value of the system.

Theorem 9 presented the asymptotic stability of the sys-
tem solution. In the following, we will study a better stability
behavior, that is, the exponential stability of the system
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solution, which is helpful to settle problems such that the
convergence rate and the behavior of system solution.

For simplicity, we will divide the system operator 𝐴 into
two operators. The first one is a compact operator 𝐵, and the

other 𝐴 generates a quasi-compact 𝐶0 semigroup. Then, by
the perturbation of compact operator, the system operator 𝐴

also generates a quasi-compact 𝐶0 semigroup. Therefore, the
system solution is exponentially stable.

For convenience, we first introduce several operators as
follows:

𝐵𝑃 = (∫

∞

0
𝑟 (𝑥) 𝑃1 (𝑥) d𝑥 + ∫

∞

0
𝜇 (𝑦) 𝑃22 (𝑦) d𝑦, 0, 𝛼0𝑃0 + ∫

∞

0
𝑟 (𝑥) 𝑃3 (𝑥) d𝑥, 𝜆1𝑃2

+ ∫

∞

0
𝑟 (𝑥) 𝑃31 (𝑥) d𝑥, 0, 𝛼0𝑃1 (𝑥) , 𝜆1𝑃3 (𝑥) , 𝜆2𝑃3 (𝑥))

T
with 𝐷 (𝐵) = 𝑋

𝐴 = 𝐴 − 𝐵

with 𝐷 (𝐴) = {𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T

∈ 𝑋 : 𝑃
𝑗

∈ 𝐿
1

(R
+
) are absolutely continuous functions, 𝑗 = 1, 22, 3, 31, 32} .

𝐴0 = 𝐴 with 𝐷 (𝐴0) = {𝑃 ∈ 𝐷 (𝐴) | 𝑃
𝑗
(0) = 0, 𝑗 = 1, 22, 3, 31, 32} .

(17)

It is not difficult to know that 𝐴 and 𝐴0 are both closed
operators with dense domains in 𝑋. And by the perturbation
of 𝐶0 semigroup, it can be known that 𝐴 also generates a 𝐶0
semigroup 𝑆(𝑡) fromTheorem 6.

Lemma 10. Assume that

0 < 𝑟 = lim
𝑥→∞

1
𝑥

∫

𝑥

0
𝑟 (𝑠) d𝑠,

𝜇 = lim
𝑦→∞

1
𝑦

∫

𝑦

0
𝜇 (𝑠) d𝑠 < ∞.

(18)

Then 𝐴0 generates a quasi-compact semigroup 𝑇0(𝑡).

To get the desired result of this section, we need a little
preparation. For 𝛾 > 0, 𝑃 ∈ 𝑋, let

(Φ
𝛾 (𝑃)) (𝑥, 𝑦) = [diag(0, 𝜀𝑃0 + 𝜀𝑃21, 0, 0, 𝜆2𝑃2

+ ∫

∞

0
𝑟 (𝑠) 𝑃32 (𝑠) d𝑠, 0, 0, 0)] ⋅ 𝐸

𝛾
(𝑥, 𝑦) ,

(19)

where 𝐸
𝛾
(𝑥, 𝑦) = (0, 𝑒

−∫
𝑥

0 (𝛾+𝛼0+𝑟(𝑠))d𝑠, 0, 𝑒
−∫
𝑥

0 (𝛾+𝜆1+𝜆2+𝑟(𝑠))d𝑠,
𝑒
−∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠, 𝑒−∫
𝑥

0 (𝛾+𝑟(𝑠))d𝑠, 𝑒−∫
𝑥

0 (𝛾+𝑟(𝑠))d𝑠)T ∈ Ker(𝛾𝐼 − 𝐴). It
is not hard to see that Φ

𝛾
is a compact operator with the

property that 𝐼 + Φ
𝛾
is a bijection from 𝐷(𝐴0) to 𝐷(𝐴) and

[𝛾𝐼 − (𝐴 − 𝐵)] (𝐼 + Φ
𝛾
) = 𝛾𝐼 − 𝐴0. (20)

Lemma 11. 𝑆(𝑡) − 𝑇0(𝑡) is a nonnegative compact operator, for
any 𝑡 ≥ 0.

With the above preparation, the main results of this sec-
tion will be presented as follows.

Theorem 12. 𝐶0 semigroup 𝑇(𝑡) generated by the system oper-
ator 𝐴 is quasi-compact.

Theorem 13. The time-dependent solution of the system (1)–
(3) strongly converges to its steady-state solution, and there exist
𝐶 > 0 and 𝛿 > 0 such that


𝑃 (𝑡, ⋅) − �̂�


≤ 𝐶𝑒

−𝛿𝑡
. (21)

Here �̂� is defined in Theorem 9.

4. Reliability Indices

In this section, we will discuss some reliability indices of the
system, namely, the reliability and failure frequency of the
system, the probabilities of the repairman in vacation, and
the system in warning state. Noting that the eigenfunction
corresponding to eigenvalue 0 of the system operator𝐴 is just
the steady-state solution of system (1)–(3), the corresponding
steady-state indices of the system can be presented from the
point of eigenfunction.

Let 𝜙 = ∫
∞

0 𝜙(𝛼)d𝛼; then from (A.28), we can deduce that

𝑃1 = ∫

∞

0
𝑃1 (𝑥) d𝑥 =

[𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1] 𝑔

𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔
𝑃0,

𝑃2 =
𝛼0 [(𝜆1 + 𝜆2) (1 + 𝜀ℎ) + 𝛼0𝜆1 (ℎ − 𝑔) − 𝛼0 (1 + 𝜀𝑔)]

(𝜆1 + 𝜆2 − 𝛼0) (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)

⋅ 𝑃0,

𝑃3 = ∫

∞

0
𝑃3 (𝑥) d𝑥 =

𝛼0 (𝑔 − ℎ) [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1]

(𝜆1 + 𝜆2 − 𝛼0) (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)

⋅ 𝑃0,

𝑃21 =
𝛼0𝜆1 (1 + 𝜀𝑔)

𝜀 (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)
𝑃0,

𝑃22 = ∫

∞

0
𝑃22 (𝑦) d𝑦 =

𝛼0𝜆2𝑘 (1 + 𝜀𝑔)

𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔
𝑃0,
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𝑃3𝑖 = ∫

∞

0
𝑃3𝑖 (𝑥) d𝑥

=
𝛼0𝜆𝑖

[𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1]

(𝜆1 + 𝜆2 − 𝛼0) (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)
(

𝑓 − 𝑔

𝛼0

+
ℎ − 𝑓

𝜆1 + 𝜆2
) 𝑃0, 𝑖 = 1, 2,

(22)

where

𝑓 = ∫

∞

0
𝑒
−∫
𝑥

0 𝑟(𝑠)d𝑠d𝑥,

𝑔 = ∫

∞

0
𝑒
−∫
𝑥

0 [𝛼0+𝑟(𝑠)]d𝑠d𝑥,

ℎ = ∫

∞

0
𝑒
−∫
𝑥

0 [𝜆1+𝜆2+𝑟(𝑠)]d𝑠d𝑥,

𝑘 = ∫

∞

0
𝑒
−∫
𝑦

0 𝜇(𝑠)d𝑠d𝑦.

(23)

And set

𝑆 =

3
∑

𝑖=0
𝑃
𝑖
+

2
∑

𝑗=1
(𝑃2𝑗 + 𝑃3𝑗)

= [
(1 + 𝜀𝑔) [𝜀 (𝜆1 + 𝜆2) + 𝛼0 (𝜀 + 𝜆1 + 𝜀𝑘𝜆2)]

𝜀 (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)

+
𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1

(𝜆1 + 𝜆2 − 𝛼0) (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)
[(𝜆1 + 𝜆2)

⋅ (𝑓 − 𝑔) + 𝛼0 (ℎ − 𝑓)]] 𝑃0.

(24)

Theorem 14. The steady-state availability of the system is

𝐴V =
1
𝑁

[(𝜆1 + 𝜆2 − 𝛼0) (1+ 𝜀𝑔)

⋅ [𝜀 (𝜆1 + 𝜆2) + 𝛼0 (𝜀 + 𝜆1)]

+ 𝛼0𝜆1𝜀 [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1]

⋅ (
𝑓 − 𝑔

𝛼0
+

ℎ − 𝑓

𝜆1 + 𝜆2
)] ,

(25)

where 𝑁 = (1 + 𝜀𝑔)(𝜆1 + 𝜆2 − 𝛼0)[𝜀(𝜆1 + 𝜆2) + 𝛼0(𝜀 + 𝜆1 +

𝜀𝑘𝜆2)] + 𝜀[𝜀(𝜆1 + 𝜆2) + 𝛼0𝜆1][(𝜆1 + 𝜆2)(𝑓 − 𝑔) + 𝛼0(ℎ − 𝑓)].

Theorem 15. The steady-state probability of the repairman in
vacation is

𝑃V =
𝜀𝑓 (𝜆1 + 𝜆2 − 𝛼0) [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1]

𝑁
, (26)

where 𝑁 is defined in Theorem 14.

Theorem 16. The steady-state probability of the system in
warning state is

𝑃
𝑤

=
𝛼0𝜀 (1 + 𝜀𝑔) (𝜆1 + 𝜆2 − 𝛼0)

𝑁
, (27)

where 𝑁 is defined in Theorem 14.

Theorem 17. The steady-state failure frequency of the system
is

𝑊
𝑓

=
𝜆2𝛼0𝜀 (1 + 𝜀𝑔) (𝜆1 + 𝜆2 − 𝛼0)

𝑁
, (28)

where 𝑁 is defined in Theorem 14.

5. Applications and Numerical Examples

In [23], we have discussed the effects of repairman vacation
policies on a system. That is, the longer the delayed-vacation
time and the shorter the vacation time, the larger the
reliability and failure frequency of a system. In this section,
we mainly concentrate on that how the warning device will
affect the system. Specifically, wewill compare the availability,
failure frequency, and profit of the system with warning
device and those of the system without warning device and
present corresponding numerical examples.

With the method of Section 4, the steady-state indices
(specifically, the reliability 𝐴V, failure frequency �̃�

𝑓
, and the

probability of the repairman in vacation �̃�V) of the system
without warning device corresponding to system (1)–(3) can
be obtained as follows:

𝐴V =
1 + 𝜀𝑚

1 + 𝜀𝑓 + (1 + 𝜀𝑚) 𝑘𝜆
, (29)

�̃�
𝑓

=
𝜆 [(1 + 𝜀𝑚) 𝑘𝜆 + 𝜀 (𝑓 − 𝑚)]

1 + 𝜀𝑓 + (1 + 𝜀𝑚) 𝑘𝜆
, (30)

�̃�V =
𝜀𝑓

1 + 𝜀𝑓 + (1 + 𝜀𝑚) 𝑘𝜆
, (31)

where 𝑚 = ∫
∞

0 𝑒
−∫
𝑥

0 [𝜆+𝑟(𝑠)]d𝑠d𝑥.
For simplicity, we assume that 𝑟(𝑥) ≡ 𝑟 and 𝜇(𝑦) ≡ 𝜇,

where 𝑟 and 𝜇 can be found in Section 2. Then by comparing
the two groups of (25) and (29) and (28) and (30), we can
deduce the following results:

(i) The steady-state availability of the system with warn-
ing device (i.e., systems (1)–(3)) 𝐴V is larger than that
of the system without warning device 𝐴V.

(ii) The steady-state failure frequency of the system with
warning device 𝑊

𝑓
is less than that of the system

without warning device �̃�
𝑓
.

Let 𝐼 and 𝐼, respectively, be the total profit of the system
with and without warning device in steady state. That is

𝐼 = 𝑐1𝐴V − 𝑐2𝑊𝑓
+ 𝑐3𝑃V,

𝐼 = 𝑐1𝐴V − 𝑐2�̃�𝑓
+ 𝑐3�̃�V.

(32)
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Figure 1: Instantaneous availabilities of the system with warning
device with different 𝜇.

Here 𝑐1, 𝑐2, and 𝑐3 represent the income of the system for
working unit per unit time, the loss of the system for failed
unit per unit time, and the income of the system for the
repairman vacation per unit time, respectively. We can
deduce the estimation that 𝐷 = 𝐼 − 𝐼 > 0 for 𝑐1 > 𝑐2𝛼0 and
𝑐2𝜆

2
> (𝑐1 + 𝑐2𝜆)𝜇.
In the following, we will present some numerical exam-

ples to compare availabilities, failure frequencies, and total
profits of systems with and without warning device by
choosing 𝜀 = 1, 𝜆 = 0.01, 𝜆1 = 𝜆2 = 2, 𝑟 = 0.5.

(1) Figures 1 and 2, respectively, present the instanta-
neous availabilities of the systems with and without
warning device with 𝛼0 = 0.2 and 𝜇 = 1, 0.5, 0.3, 0.1.
It can be seen that both the availabilities of the systems
with and without warning device are decreasing with
the decreasing of 𝜇. Moreover, the availabilities of
system with warning device are greater than that of
the system without warning device.

(2) Figures 3 and 4, respectively, present the instanta-
neous failure frequencies of the systems with and
without warning device with 𝛼0 = 0.2 and 𝜇 = 1, 0.5,

0.3, 0.1. It can be seen that both the failure frequencies
of the systems with and without warning device are
decreasing with the decreasing of 𝜇. However the
failure frequencies of system with warning device are
less than that of the system without warning device.

(3) Figures 5 and 6, respectively, present the instanta-
neous availabilities and failure frequencies of the sys-
tems with device with 𝜇 = 0.5 and 𝛼0 = 1, 0.5, 0.3, 0.1.
It can be seen that the availabilities of the system
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Figure 2: Instantaneous availabilities of the systemwithout warning
device with different 𝜇.
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Figure 3: Instantaneous failure frequencies of the system with
warning device with different 𝜇.

withwarning device are increasingwhile the its failure
frequencies are decreasing with the decreasing of 𝛼0.

(4) Choose 𝑐1 = 𝑐2 = 𝑐3 = 1. Figures 7 and 8 present the
total profit differences of the systemswith andwithout
warning device in steady state with variables 𝜆 and
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Figure 4: Instantaneous failure frequencies of the system without
warning device with different 𝜇.
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Figure 5: Instantaneous availabilities of the system with warning
device with different 𝛼0.

𝜇 and with 𝛼0 = 0.2 and 0.1, respectively. It can be
deduced from the figures that the profit of system
with warning device can be more than that of system
withoutwarning device by giving suitable parameters.

6. Conclusion

In this paper, we propose a simple repairable system with
a warning device which can send alarms when the system
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Figure 6: Instantaneous failure frequencies of the systemwithwarn-
ing device with different 𝛼0.
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Figure 7: Profit difference of systems with and without warning
device with 𝛼0 = 0.2.

does not work properly. Because the study of well-posedness
of the time-dependent solution of a system is in demand
in terms of theory and practice due to the two hypotheses
used for Laplace transform in order to obtain the steady-
state solution of a repairable system in traditional reliability
research that needs to be verified, and the substitution of
steady-state solution for the dynamic one should be based
on some conditions, we then discuss and obtain the unique
existence and the stability, especially the exponential stability
of the system solution by 𝐶0 semigroup theory. Because
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Figure 8: Profit difference of systems with and without warning
device with 𝛼0 = 0.1.

the stable solution of the system is just the eigenfunction
corresponding to eigenvalue 0 of the system operator, we also
present some reliability indices, especially steady state
indexes, such as reliability, failure frequency, probabilities of
repairman in vacation, and system in warning state of the
system in the viewpoint of eigenfunction. At the end of the
paper, we also discuss the advantages anddisadvantages of the
systems with and without warning device theoretically and
numerically. Because the availability or failure frequency of
the systemwith warning device is greater or less than those of
the systemwithoutwarning device, and it can be controlled to
ensure that the total profit of the system with warning device
is more than that of the system without warning device, we
get the conclusion that the system with a warning device is
better than the corresponding systemwithout warning device
in practice.

Appendix

Proof of Lemma 1. Firstly, we prove that𝐴 is a closed operator.
Choose 𝑃

𝑛
= (𝑃

𝑛

0 , 𝑃
𝑛

1 , 𝑃
𝑛

2 , 𝑃
𝑛

21, 𝑃
𝑛

22, 𝑃
𝑛

3 , 𝑃
𝑛

31, 𝑃
𝑛

32)
T

∈ 𝐷(𝐴). Let
𝑃
𝑛

→ 𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T
, 𝐴𝑃

𝑛
→ 𝑄 =

(𝑄0, 𝑄1, 𝑄2, 𝑄21, 𝑄22, 𝑄3, 𝑄31, 𝑄32)
T
, 𝑛 → ∞. According to

Proposition 1 ([24, II.2.10]), the differential operator D is
the infinitesimal generator of a left translation semigroup
{𝑇

𝑙
(𝑡)}

𝑡≥0 defined on

𝐷 (D) = {𝑓 ∈ 𝐿
1

(R
+
) |

𝑓 is absolutely continuous satisfying 𝑓


∈ 𝐿
1

(R
+
)} .

(A.1)

Then𝑃
𝑗

∈ 𝐷(D)due to𝐷(D) is closed and𝑃
𝑛

𝑗
∈ 𝐷(D), which

is equivalent to 𝑃


𝑗
∈ 𝐿

1
(R+

), is absolutely continuous,

𝑗 = 1, 3, 22, 31, 32. Furthermore, 𝑃
𝑛

1 (0) = 𝜀𝑃
𝑛

0 + 𝜀𝑃
𝑛

21 →

𝜀𝑃0 + 𝜀𝑃21 = 𝑃1(0), 𝑃
𝑛

22(0) = 𝜆2𝑃
𝑛

2 + ∫
∞

0 𝑟(𝑥)𝑃
𝑛

32(𝑥)d𝑥 →

𝜆2𝑃2 + ∫
∞

0 𝑟(𝑥)𝑃32(𝑥)d𝑥 = 𝑃22(0), 𝑛 → ∞. Thus 𝑃 ∈ 𝐷(𝐴).
Noting the boundedmeasurable of 𝑟(𝑥), 𝜇(𝑦), it is not hard to
deduce that 𝐴𝑃 = 𝑄. This implies that 𝐴 is a closed operator.

Next, we prove that 𝐷(𝐴), the domain of operator 𝐴, is
dense in 𝑋. Choose 𝐹 = (𝐹0, 𝐹1, 𝐹2, 𝐹21, 𝐹22, 𝐹3, 𝐹31, 𝐹32)

T
∈

𝑋. Let 𝑃0 = 𝐹0, 𝑃2 = 𝐹2, 𝑃21 = 𝐹21. Because 𝐹
𝑗

∈ 𝐿
1
(R+

), then
for any 𝜎 > 0, there exist 𝛿

𝑗
> 0 and𝐺

𝑗
> 0, 𝑗 = 1, 3, 22, 31, 32

such that

∫

𝛿
𝑗

0


𝐹
𝑗 (𝛼)


d𝛼 <

𝜎

30
,

∫

∞

𝐺
𝑗


𝐹
𝑗
(𝛼)


d𝛼 <

𝜎

15
.

(A.2)

Take 𝛿 = min{𝛿1, 𝛿3, 𝛿22, 𝛿31, 𝛿32, 𝜎/6[𝜀𝑃0 + 𝜀𝑃21 + 𝜆2𝑃2 +

∫
∞

0 𝑟(𝑥)𝑃32(𝑥)d𝑥]}, and define

𝑃1 (𝑥) =

{{{{

{{{{

{

𝜀𝑃0 + 𝜀𝑃21, 0 ≤ 𝑥 < 𝛿

𝑔1 (𝑥) , 𝛿 ≤ 𝑥 ≤ 𝐺1

0, 𝐺1 < 𝑥 < ∞,

𝑃3 (𝑥) =

{{{{

{{{{

{

0, 0 ≤ 𝑥 < 𝛿

𝑔3 (𝑥) , 𝛿 ≤ 𝑥 ≤ 𝐺3

0, 𝐺3 < 𝑥 < ∞

𝑃22 (𝑦)

=

{{{{{

{{{{{

{

𝜆2𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑥) d𝑥, 0 ≤ 𝑦 < 𝛿

𝑔22 (𝑦) , 𝛿 ≤ 𝑦 ≤ 𝐺22

0, 𝐺22 < 𝑦 < ∞,

𝑃3𝑖 (𝑥) =

{{{{

{{{{

{

0, 0 ≤ 𝑥 < 𝛿

𝑔3𝑖 (𝑥) , 𝛿 ≤ 𝑥 ≤ 𝐺3𝑖

0, 𝐺3𝑖 < 𝑥 < ∞.

𝑖 = 1, 2.

(A.3)

Here 𝑔
𝑗
are continuously differentiable functions on [𝛿, 𝐺

𝑗
],

𝑗 = 1, 3, 22, 31, 32 satisfying

𝑔
𝑗
(𝐺

𝑗
) = 0,

𝑔1 (𝛿) = 𝜀𝑃0 + 𝜀𝑃21,

𝑔3 (𝛿) = 𝑔3𝑖 (𝛿) = 0, 𝑖 = 1, 2

𝑔22 (𝛿) = 𝜆2𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑥) d𝑥,

∫

𝐺
𝑗

𝛿


𝑃
𝑗 (𝑥) − 𝑔

𝑗 (𝑥)

d𝑥 <

𝜎

15
.

(A.4)
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Take 𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T. Then 𝑃 ∈ 𝐷(𝐴),

and

‖𝐹 − 𝑃‖ = ∫

∞

0

𝐹1 (𝑥) − 𝑃1 (𝑥)
 d𝑥 + ∫

∞

0

𝐹3 (𝑥)

− 𝑃3 (𝑥)
 d𝑥 + ∫

∞

0

𝐹22 (𝑦) − 𝑃22 (𝑦)
 d𝑦

+

2
∑

𝑖=1
∫

∞

0

𝐹3𝑖 (𝑥) − 𝑃3𝑖 (𝑥)
 d𝑥 ≤ ∫

𝛿

0

𝐹1 (𝑥)
 d𝑥

+ ∫

𝛿

0

𝑃1 (𝑥)
 d𝑥 + ∫

𝐺1

𝛿

𝐹1 (𝑥) − 𝑃1 (𝑥)
 d𝑥

+ ∫

∞

𝐺1

𝐹1 (𝑥)
 d𝑥 + ∫

𝛿

0

𝐹3 (𝑥)
 d𝑥 + ∫

𝛿

0

𝑃3 (𝑥)
 d𝑥

+ ∫

𝐺3

𝛿

𝐹3 (𝑥) − 𝑃3 (𝑥)
 d𝑥 + ∫

∞

𝐺3

𝐹3 (𝑥)
 d𝑥

+ ∫

𝛿

0

𝐹22 (𝑦)
 d𝑦 + ∫

𝛿

0

𝑃22 (𝑦)
 d𝑦

+ ∫

𝐺22

𝛿

𝐹22 (𝑦) − 𝑃22 (𝑦)
 d𝑦 + ∫

∞

𝐺22

𝐹22 (𝑦)
 d𝑦

+

2
∑

𝑖=1
(∫

𝛿

0

𝐹3𝑖 (𝑥)
 d𝑥 + ∫

𝛿

0

𝑃3𝑖 (𝑥)
 d𝑥

+ ∫

𝐺3𝑖

𝛿

𝐹3𝑖 (𝑥) − 𝑃3𝑖 (𝑥)
 d𝑥 + ∫

∞

𝐺3𝑖

𝐹3𝑖 (𝑥)
 d𝑥)

<
5𝜎

6
+ 𝛿 [𝜀𝑃0 + 𝜀𝑃21 + 𝜆2𝑃2

+ ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑥) d𝑥] < 𝜎.

(A.5)

This implies that 𝐷(𝐴) is dense in 𝑋.
It remains to be proven that 𝐴 is a dissipative operator.

In fact, For any 𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T

∈ 𝐷(𝐴),
set 𝑄

𝑘
= ‖𝑃‖sgn(𝑃

𝑘
), 𝑘 = 0, 1, 2, 21, 22, 31, 32, and take 𝑄 =

(𝑄0, 𝑄1, 𝑄2, 𝑄21, 𝑄22, 𝑄3, 𝑄31, 𝑄32)
T. Clearly, 𝑄 ∈ 𝑋

∗
= R ×

𝐿
∞

(R+
) × R × (𝐿

∞
(R+

))
4, the duel space of 𝑋. Moreover, it

is easy to know that ⟨𝑃, 𝑄⟩ = ‖𝑃‖
2

= ‖𝑄‖
2 and ⟨𝐴𝑃, 𝑄⟩ ≤ 0.

This manifests that 𝐴 is a dissipative operator.

Proof of Lemma 2. For any 𝐺 = (𝐺0, 𝐺1, 𝐺2, 𝐺21, 𝐺22, 𝐺3, 𝐺31,

𝐺32)
T

∈ 𝑋, consider the resolvent equation (𝛾𝐼 − 𝐴)𝑃 = 𝐺.
That is

(𝛾 + 𝜀 + 𝛼0) 𝑃0

= 𝐺0 + ∫

∞

0
𝑟 (𝑥) 𝑃1 (𝑥) d𝑥

+ ∫

∞

0
𝜇 (𝑦) 𝑃22 (𝑦) d𝑦,

(A.6)

𝑃


1 (𝑥) + [𝛾 + 𝛼0 + 𝑟 (𝑥)] 𝑃1 (𝑥) = 𝐺1 (𝑥) , (A.7)

(𝛾 + 𝜆1 + 𝜆2) 𝑃2 = 𝐺2 + 𝛼0𝑃0 + ∫

∞

0
𝑟 (𝑥) 𝑃3 (𝑥) d𝑥, (A.8)

(𝛾 + 𝜀) 𝑃21 = 𝐺21 + 𝜆1𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃31 (𝑥) d𝑥, (A.9)

𝑃


22 (𝑦) + (𝛾 + 𝜇
𝑖
(𝑦)) 𝑃22 (𝑦) = 𝐺22 (𝑦) , (A.10)

𝑃


3 (𝑥) + [𝛾 + 𝜆1 + 𝜆2 + 𝑟 (𝑥)] 𝑃3 (𝑥)

= 𝐺3 (𝑥) + 𝛼0𝑃1 (𝑥) ,

(A.11)

𝑃


3𝑖 (𝑥) + (𝛾 + 𝑟 (𝑥)) 𝑃3𝑖 (𝑥) = 𝐺3𝑖 (𝑥) + 𝜆
𝑖
𝑃3 (𝑥) ,

𝑖 = 1, 2,

(A.12)

𝑃1 (0) = 𝜀𝑃0 + 𝜀𝑃21,

𝑃3 (0) = 𝑃3𝑖 (0) = 0, 𝑖 = 1, 2,

(A.13)

𝑃22 (0) = 𝜆2𝑃2 + ∫

∞

0
𝑟 (𝑥) 𝑃32 (𝑥) d𝑥. (A.14)

Solving (A.7) and (A.10)–(A.12) with the help of (A.13) and
(A.14) yields

𝑃1 (𝑥) = (𝜀𝑃0 + 𝜀𝑃21) 𝑒
−∫
𝑥

0 (𝛾+𝛼0+𝑟(𝑠))d𝑠 + 𝑌1 (𝑥) , (A.15)

𝑃3 (𝑥) =

𝛼0 (𝜀𝑃0 + 𝜀𝑃21) (1 − 𝑒
−(𝛼0−𝜆1−𝜆2)𝑥)

𝛼0 − 𝜆1 − 𝜆2

⋅ 𝑒
−∫
𝑥

0 (𝛾+𝜆1+𝜆2+𝑟(𝑠))d𝑠 + 𝑌3 (𝑥) ,

(A.16)

𝑃3𝑖 (𝑥) =
𝜆
𝑖
𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

𝛼0 − 𝜆1 − 𝜆2

⋅ 𝑒
−∫
𝑥

0 (𝛾+𝑟(𝑠))d𝑠 [
1 − 𝑒

−(𝜆1+𝜆2)𝑥

𝜆1 + 𝜆2
−
1 − 𝑒

−𝛼0𝑥

𝛼0
]

+ 𝑌3𝑖 (𝑥) , 𝑖 = 1, 2,

(A.17)

𝑃22 (0) = 𝜆2𝑃2 + 𝜆2𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

⋅ ∫

∞

0
𝑓
𝛾 (𝑥) 𝜙 (𝑥) d𝑥 + 𝑌22,

(A.18)

𝑃22 (𝑦) = 𝑃22 (0) 𝑒
−∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠 + 𝑌22 (𝑦) . (A.19)

Here

𝑌1 (𝑥) = ∫

𝑥

0
𝐺1 (𝜏) 𝑒

−∫
𝑥

𝜏
(𝛾+𝛼0+𝑟(𝑠))d𝑠d𝜏,

𝑌3 (𝑥)

= ∫

𝑥

0
[𝛼0𝑌1 (𝜏) + 𝐺3 (𝜏)] 𝑒

−∫
𝑥

𝜏
(𝛾+𝜆1+𝜆2+𝑟(𝑠))d𝑠d𝜏,

𝑌22 (𝑦) = ∫

𝑦

0
𝐺22 (𝜏) 𝑒

−∫
𝑦

𝜏
(𝛾+𝜇(𝑠))d𝑠d𝜏,

𝑌3𝑖 (𝑥) = ∫

𝑥

0
[𝜆

𝑖
𝑌3 (𝜏) + 𝐺3𝑖 (𝜏)] 𝑒

−∫
𝑥

𝜏
(𝛾+𝑟(𝑠))d𝑠d𝜏,
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𝑌22 = ∫

∞

0
𝑟 (𝑥) 𝑌32 (𝑥) d𝑥,

𝑓
𝛾

(𝑥) = 𝑟 (𝑥) 𝑒
−∫
𝑥

0 (𝛾+𝑟(𝑠))d𝑠,

𝜙 (𝑥)

=
1

𝛼0 − 𝜆1 − 𝜆2
[
1 − 𝑒

−(𝜆1+𝜆2)𝑥

𝜆1 + 𝜆2
−
1 − 𝑒

−𝛼0𝑥

𝛼0
] .

(A.20)

Substituting (A.15)–(A.17) and (A.19) into (A.6), (A.8), and
(A.9), respectively, yields

(𝛾 + 𝜀 + 𝛼0) 𝑃0

= (𝜀𝑃0 + 𝜀𝑃21) ∫

∞

0
𝑔
𝛾

(𝑥) d𝑥

+ 𝑃22 (0) ∫

∞

0
𝑘
𝛾2 (𝑦) d𝑦 + 𝑌0,

(A.21)

(𝛾 + 𝜆1 + 𝜆2) 𝑃2

= 𝛼0𝑃0

+
𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾
(𝑥) − 𝑔

𝛾
(𝑥)) d𝑥

+ 𝑌2,

(A.22)

(𝛾 + 𝜀) 𝑃21

= 𝜆1𝑃2 + 𝜆1𝛼0 (𝜀𝑃0 + 𝜀𝑃21) ∫

∞

0
𝑓
𝛾 (𝑥) 𝜙 (𝑥) d𝑥

+ 𝑌22,

(A.23)

where

𝑔
𝛾

(𝑥) = 𝑟 (𝑥) 𝑒
−∫
𝑥

0 (𝛾+𝛼0+𝑟(𝑠))d𝑠,

ℎ
𝛾

(𝑥) = 𝑟 (𝑥) 𝑒
−∫
𝑥

0 (𝛾+𝜆1+𝜆2+𝑟(𝑠))d𝑠,

𝑘
𝛾

(𝑦) = 𝜇 (𝑦) 𝑒
−∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠,

𝑌0 = 𝐺0 + ∫

∞

0
𝑟 (𝑥) 𝑌1 (𝑥) d𝑥

+ ∫

∞

0
𝜇 (𝑦) 𝑌22 (𝑦) d𝑦,

𝑌2 = 𝐺2 + ∫

∞

0
𝑟 (𝑥) 𝑌3 (𝑥) d𝑥,

𝑌21 = 𝐺21 + ∫

∞

0
𝑟 (𝑥) 𝑌31 (𝑥) d𝑥.

(A.24)

Combing (A.21)–(A.23) and (A.18) yields the following
matrix equation:

(
(
(
(
(
(
(
(
(

(

𝛾 + 𝜀 + 𝛼0 − 𝜀 ∫

∞

0
𝑔
𝛾

(𝑥) d𝑥 0 −𝜀 ∫

∞

0
𝑔
𝛾

(𝑥) d𝑦 − ∫

∞

0
𝑘
𝛾

(𝑦) d𝑦

−𝛼0 −
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾 (𝑥) − 𝑔
𝛾 (𝑥)) d𝑥 𝛾 + 𝜆1 + 𝜆2 −

𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾 (𝑥) − 𝑔
𝛾 (𝑥)) d𝑥 0

−𝜆1𝛼0𝜀 ∫

∞

0
𝑓
𝛾 (𝑥) 𝜙 (𝑥) d𝑥 −𝜆1 𝛾 + 𝜀 − 𝜆1𝛼0𝜀 ∫

∞

0
𝑓
𝛾 (𝑥) 𝜙 (𝑥) d𝑥 0

−𝜆2𝛼0𝜀 ∫

∞

0
𝑓 (𝑥) 𝜙 (𝑥) d𝑥 −𝜆2 −𝜆2𝛼0𝜀 ∫

∞

0
𝑓
𝛾

(𝑥) 𝜙 (𝑥) d𝑥 1

)
)
)
)
)
)
)
)
)

)

,

(

𝑃0

𝑃2

𝑃21

𝑃22 (0)

) = (

𝑌0

𝑌2

𝑌21

𝑌22

) .

(A.25)

For Re 𝛾 > 0 or 𝛾 = 𝑖𝑎, 𝑎 ∈ R, 𝑎 ̸= 0, and noting the
assumption (4), it is not hard to know that

𝛾 + 𝜆1 + 𝜆2
 > 𝜆1 + 𝜆2,

∫

∞

0
𝑘
𝛾

(𝑦) d𝑦 < 1,



−𝛼0 −
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾 (𝑥) − 𝑔
𝛾 (𝑥)) d𝑥



+

2
∑

𝑖=1



−𝜆
𝑖
𝛼0𝜀 ∫

∞

0
𝑓
𝛾

(𝑥) 𝜙 (𝑥) d𝑥



= 𝛼0

+
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾
(𝑥) − 𝑔

𝛾
(𝑥)) d𝑥

+

2
∑

𝑖=1
𝜆
𝑖
𝛼0𝜀 ∫

∞

0
𝑓
𝛾

(𝑥) 𝜙 (𝑥) d𝑥 = 𝛼0

+
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾
(𝑥) − 𝑔

𝛾
(𝑥)) d𝑥

+ 𝜀 ∫

∞

0
𝑓
𝛾

(𝑥) d𝑥 −
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
ℎ
𝛾

(𝑥) d𝑥
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+
𝜀 (𝜆1 + 𝜆2)

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
𝑔
𝛾 (𝑥) d𝑥 = 𝛼0

+ 𝜀 ∫

∞

0
𝑓
𝛾 (𝑥) d𝑥 − 𝜀 ∫

∞

0
𝑔
𝛾 (𝑥) d𝑥 < 𝛼0 + 𝜀

− 𝜀 ∫

∞

0
𝑔
𝛾

(𝑥) d𝑥

<



𝛾 + 𝜀 + 𝛼0 − 𝜀 ∫

∞

0
𝑔
𝛾

(𝑥) d𝑥



.

(A.26)

Similarly



−
𝛼0𝜀

𝛼0 − 𝜆1 − 𝜆2
∫

∞

0
(ℎ

𝛾 (𝑥) − 𝑔
𝛾 (𝑥)) d𝑥



+



−𝜆2𝛼0𝜀 ∫

∞

0
𝑓
𝛾 (𝑥) 𝜙 (𝑥) d𝑥



+



−𝜀 ∫

∞

0
𝑔
𝛾

(𝑥) d𝑥



<



𝛾 + 𝜀 − 𝜆1𝛼0𝜀 ∫

∞

0
𝑓
𝛾

(𝑥) 𝜙 (𝑥) d𝑥



.

(A.27)

This means that the coefficient matrix of (A.25) is a column
strictly diagonal dominant matrix. So it is inverse and the
matrix equation (A.25) has a unique solution (𝑃0, 𝑃2, 𝑃21,

𝑃22(0))
T. Then from the expressions (A.15)–(A.19), we can

conclude that (A.6)–(A.14) have a unique solution 𝑃 = (𝑃0,

𝑃1, 𝑃2, 𝑃21, 𝑃22, 𝑃3, 𝑃31, 𝑃32)
T.

Moreover, according to [25], it can be derived that, for
any 𝑡 ≥ 0, ∫

∞

𝑡
𝑟(𝑥)𝑒

−∫
𝑥

𝑡
𝑟(𝑠)d𝑠d𝑥 and ∫

∞

𝑡
𝜇(𝑦)𝑒

−∫
𝑦

𝑡
𝑟(𝑠)d𝑠d𝑦 are

all bounded. Then from (A.15)–(A.19), it is easy to see that
the solution 𝑃 of (A.6)–(A.14) belongs to the domain of the
system operator 𝐴. This manifests that the operator equation
(𝛾𝐼 − 𝐴) is surjective. Because (𝛾𝐼 − 𝐴) is closed and 𝐷(𝐴) is
dense in 𝑋, then for any 𝛾 ∈ C satisfying Re 𝛾 > 0 or 𝛾 = 𝑖𝑎,
𝑎 ∈ R \ {0}, (𝛾𝐼 − 𝐴)

−1 exists and is bounded by the inverse
operator theorem.

Proof of Lemma 3. Consider the operator equation 𝐴𝑃 = 0.
That is repeating the proof process of Lemma 2 with 𝛾 = 0
and 𝐺 = 0, we can obtain

𝑃1 (𝑥) = (𝜀𝑃0 + 𝜀𝑃21) 𝑒
−∫
𝑥

0 (𝛼0+𝑟(𝑠))d𝑠, (A.28)

(𝜆1 + 𝜆2) 𝑃2 = 𝛼0𝑃0 +
𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

𝛼0 − 𝜆1 − 𝜆2

⋅ ∫

∞

0
(ℎ0 (𝑥) − 𝑔0 (𝑥)) d𝑥,

(A.29)

𝜀𝑃21 = 𝜆1𝑃2 + 𝜆1𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

⋅ ∫

∞

0
𝑓
𝛾

(𝑥) 𝜙 (𝑥) d𝑥,

(A.30)

𝑃22 (𝑦) = 𝑃22 (0) 𝑒
−∫
𝑦

0 𝜇(𝑠)d𝑠
, (A.31)

𝑃22 (0) = 𝜆2𝑃2 + 𝜆2𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

⋅ ∫

∞

0
𝑓0 (𝑥) 𝜙 (𝑥) d𝑥,

(A.32)

𝑃3 (𝑥) =

𝛼0 (𝜀𝑃0 + 𝜀𝑃21) (1 − 𝑒
−(𝛼0−𝜆1−𝜆2)𝑥)

𝛼0 − 𝜆1 − 𝜆2

⋅ 𝑒
−∫
𝑥

0 (𝜆1+𝜆2+𝑟(𝑠))d𝑠,

(A.33)

𝑃3𝑖 (𝑥) =
𝜆
𝑖
𝛼0 (𝜀𝑃0 + 𝜀𝑃21)

𝛼0 − 𝜆1 − 𝜆2

⋅ 𝑒
−∫
𝑥

0 𝑟(𝑠)d𝑠
[
1 − 𝑒

−(𝜆1+𝜆2)𝑥

𝜆1 + 𝜆2
−
1 − 𝑒

−𝛼0𝑥

𝛼0
] ,

𝑖 = 1, 2.

(A.34)

This follows readily that 0 is an eigenvalue of the system
operator𝐴with geometricmultiplicity one.Then by recalling
[26], it only needs to be proven that the algebraic index of
eigenvalue 0 is one, which can be easily obtained by using the
reduction to absurdity.

Proof of Lemma 4. For any 𝑊 = (𝑊0, 𝑊1, 𝑊2, 𝑊21, 𝑊22, 𝑊3,

𝑊31, 𝑊32)
T

∈ 𝑋
∗, consider the operator equation (𝛾𝐼−𝐶)𝑄 =

𝐷𝑊. That is

(𝛾 + 𝜀 + 𝛼0) 𝑄0 = 𝜀𝑊1 (0) + 𝛼0𝑊2, (A.35)

d𝑄1 (𝑥)

d𝑥
= [𝛾 + 𝛼0 + 𝑟 (𝑥)] 𝑄1 (𝑥)

− 𝑟 (𝑥) 𝑊0 − 𝛼0𝑊3 (𝑥) ,

(A.36)

(𝛾 + 𝜆1 + 𝜆2) 𝑄2 = 𝜆1𝑊21 + 𝜆2𝑊22 (0) , (A.37)

(𝛾 + 𝜀) 𝑄21 = 𝜀𝑊1 (0) , (A.38)

d𝑄22 (𝑦)

d𝑦
= [𝛾 + 𝜇 (𝑦)] 𝑄22 (𝑦) − 𝜇 (𝑦) 𝑊0, (A.39)

d𝑄3 (𝑥)

d𝑥
= [𝛾 + 𝜆1 + 𝜆2 + 𝑟 (𝑥)] 𝑄3 (𝑥)

− 𝑟 (𝑥) 𝑊2 − 𝜆1𝑊31 (𝑥)

− 𝜆2𝑊32 (𝑥) ,

(A.40)

d𝑄31 (𝑥)

d𝑥
= [𝛾 + 𝑟 (𝑥)] 𝑄31 (𝑥) − 𝑟 (𝑥) 𝑊21, (A.41)

d𝑄32 (𝑥)

d𝑥
= [𝛾 + 𝑟 (𝑥)] 𝑄32 (𝑥)

− 𝑟 (𝑥) 𝑊22 (0) .

(A.42)
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(A.35), (A.37), and (A.38) derive the following estimations:

𝑄0
 <

𝜀 + 𝛼0
𝛾 + 𝜀 + 𝛼0



‖𝑊‖ ,

𝑄2
 ≤

𝜆1 + 𝜆2
𝛾 + 𝜆1 + 𝜆2



‖𝑊‖ ,

𝑄21
 <

𝜀

𝛾 + 𝜀


‖𝑊‖ .

(A.43)

Solving (A.39) yields

𝑄22 (𝑦) = 𝑒
∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠 (𝑄22 (0)

− ∫

𝑦

0
𝜇 (𝜏) 𝑊0𝑒

−∫
𝜏

0 (𝛾+𝜇(𝑠))d𝑠d𝜏) .

(A.44)

Noting 𝑄22(∞) < ∞, multiply 𝑒
−∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠 in the two sides
of (A.44) and let 𝑦 → ∞; we can get

𝑄22 (0) = ∫

∞

0
𝑊0𝜇 (𝜏) 𝑒

−∫
𝜏

0 (𝛾+𝜇(𝑠))d𝑠d𝜏. (A.45)

Substituting (A.45) into (A.44) yields

𝑄22 (𝑦) = 𝑒
∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠 ∫

∞

𝑦

𝑊0𝜇 (𝜏) 𝑒
−∫
𝜏

0 (𝛾+𝜇(𝑠))d𝑠d𝜏. (A.46)

Then the following estimation is immediate:

𝑄22
𝐿∞[0,∞)

= sup
𝑦∈[0,∞)



𝑒
∫
𝑦

0 (𝛾+𝜇(𝑠))d𝑠 ∫

∞

𝑦

𝑊0𝜇 (𝜏)

⋅ 𝑒
−∫
𝜏

0 (𝛾+𝜇(𝑠))d𝑠d𝜏



≤ ‖𝑊‖

⋅ sup
𝑦∈[0,∞)

𝑒
∫
𝑦

0 (Re 𝛾+𝜇(𝑠))d𝑠 ∫

∞

𝑦

(−𝑒
−Re 𝛾𝜏

) d𝑒
−∫
𝜏

0 𝜇(𝑠)d𝑠

= ‖𝑊‖ sup
𝑦∈[0,∞)

(1−Re 𝛾 ∫

∞

𝑦

𝑒
−∫
𝜏

𝑦
(Re 𝛾+𝜇(𝑠))d𝑠d𝜏)

≤ ‖𝑊‖ sup
𝑦∈[0,∞)

(1−Re 𝛾 ∫

∞

𝑦

𝑒
−∫
𝜏

𝑦
(Re 𝛾+𝑀)d𝑠d𝜏)

=
𝑀

Re 𝛾 + 𝑀
‖𝑊‖ ,

(A.47)

where 𝑀 = sup{𝑟, 𝜇}. With the same method, the following
estimations can be also obtained

𝑄1
𝐿∞[0,∞)

≤
𝛼0 + 𝑀

Re 𝛾 + 𝛼0 + 𝑀
‖𝑊‖ ,

𝑄3𝑖
𝐿∞[0,∞)

≤
𝑀

Re 𝛾 + 𝑀
‖𝑊‖ , 𝑖 = 1, 2,

𝑄3
𝐿∞[0,∞)

≤
𝜆1 + 𝜆2 + 𝑀

Re 𝛾 + 𝜆1 + 𝜆2 + 𝑀
‖𝑊‖ .

(A.48)

Then for 𝛾 ∈ C satisfying sup{(𝜀 + 𝛼0)/|𝛾 + 𝜀 + 𝛼0|, (𝛼0 +

𝑀)/(Re 𝛾 + 𝛼0 + 𝑀), (𝜆1 + 𝜆2)/|𝛾 + 𝜆1 + 𝜆2|, 𝜀/|𝛾 + 𝜀|, (𝜆1 +

𝜆2 + 𝑀)/(Re 𝛾 + 𝜆1 + 𝜆2 + 𝑀), 𝑀/(Re 𝛾 + 𝑀)} < 1, we have

‖𝑄‖ =
𝑄0

 +
𝑄1

 +
𝑄2

 +
𝑄3

 +

2
∑

𝑖=1
(
𝑄2𝑖



+
𝑄3𝑖

) ≤ sup{
𝜀 + 𝛼0

𝛾 + 𝜀 + 𝛼0


,
𝛼0 + 𝑀

R e𝛾 + 𝛼0 + 𝑀
,

𝜆1 + 𝜆2
𝛾 + 𝜆1 + 𝜆2



,
𝜀

𝛾 + 𝜀


,
𝜆1 + 𝜆2 + 𝑀

Re 𝛾 + 𝜆1 + 𝜆2 + 𝑀
,

𝑀

Re 𝛾 + 𝑀
} ‖𝑊‖ < ‖𝑊‖ .

(A.49)

This implies that ‖(𝛾𝐼 − 𝐶)
−1

𝐷‖ < 1. Then [𝐼 − (𝛾𝐼 − 𝐶)
−1

𝐷]

is invertible.Therefore 𝛾𝐼− 𝐴
∗ is invertible and (𝛾𝐼− 𝐴

∗
)
−1

=

[𝛾𝐼 − (𝐶 + 𝐷)]
−1

= [𝐼 − (𝛾𝐼 − 𝐶)
−1

𝐷]
−1

(𝛾𝐼 − 𝐶)
−1.

Proof of Lemma 10. We divide the proof into two steps.

Step 1. We prove that 𝐴0 generates a 𝐶0 semigroup 𝑇0(𝑡).
Consider the following abstract Cauchy problem:

d𝑃 (𝑡, ⋅)

d𝑡
= 𝐴0𝑃 (𝑡, ⋅) , 𝑡 ≥ 0

𝑃 (0, ⋅) = Φ,

(A.50)

where Φ = (Φ0, Φ1(𝑥), Φ2, Φ21, Φ22(𝑦), Φ3(𝑥), Φ31(𝑥),

Φ32(𝑥))
T

∈ 𝑋. That is

(
d
d𝑡

+ 𝜀 + 𝛼0) 𝑃0 (𝑡) = 0, (A.51)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛼0 + 𝑟 (𝑥)] 𝑃1 (𝑡, 𝑥) = 0, (A.52)

(
d
d𝑡

+ 𝜆1 + 𝜆2) 𝑃2 (𝑡) = 0, (A.53)

(
d
d𝑡

+ 𝜀) 𝑃21 (𝑡) = 0, (A.54)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇 (𝑦)] 𝑃22 (𝑡, 𝑦) = 0, (A.55)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆1 + 𝜆2 + 𝑟 (𝑥)] 𝑃3 (𝑡, 𝑥) = 0, (A.56)
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[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝑟 (𝑥)] 𝑃3𝑖 (𝑡, 𝑥) = 0,

𝑖 = 1, 2,

(A.57)

𝑃
𝑗
(𝑡, 0) = 0,

𝑗 = 1, 3, 22, 31, 32,

(A.58)

𝑃
𝑖
(0) = 𝜑

𝑖
,

𝑖 = 0, 2, 21,

(A.59)

𝑃
𝑗
(0, 𝜉) = 𝜑

𝑗
(𝜉) ,

𝑗 = 1, 3, 22, 31, 32.

(A.60)

Solving (A.51), (A.53), and (A.54) with the help of (A.59)
yields

𝑃0 (𝑡) = 𝜑0𝑒
−(𝜀+𝛼0)𝑡,

𝑃2 (𝑡) = 𝜑2𝑒
−(𝜆1+𝜆2)𝑡,

𝑃21 (𝑡) = 𝜑21𝑒
−𝜀𝑡

.

(A.61)

Solving (A.52) and (A.55)–(A.57) with the help of (A.58) and
(A.60) by the method of characteristics yields

𝑃1 (𝑡, 𝑥) =
{

{

{

0, 𝑥 < 𝑡

𝜑1 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
(𝛼0+𝑟(𝑠))d𝑠, 𝑥 ≥ 𝑡

𝑃3 (𝑡, 𝑥) =
{

{

{

0, 𝑥 < 𝑡

𝜑3 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
(𝜆1+𝜆2+𝑟(𝑠))d𝑠, 𝑥 ≥ 𝑡

𝑃22 (𝑡, 𝑦) =
{

{

{

0, 𝑦 < 𝑡

𝜑22 (𝑦 − 𝑡) 𝑒
−∫
𝑦

𝑦−𝑡
𝜇(𝑠)d𝑠

, 𝑦 ≥ 𝑡

𝑃3𝑖 (𝑡, 𝑥) =
{

{

{

0, 𝑥 < 𝑡

𝜑3𝑖 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
𝑟(𝑠)d𝑠

, 𝑥 ≥ 𝑡,

𝑖 = 1, 2

(A.62)

therefore, operator 𝐴0 generates a 𝐶0 semigroup 𝑇0(𝑡) given
by

(𝑇0 (𝑡) Φ) (𝑥, 𝑦)

=
{

{

{

(Φ0, 0, Φ2, Φ21, 0, 0, 0, 0)
T

, 𝑥, 𝑦 < 𝑡

(Φ0, Φ1, Φ2, Φ21, Φ22, Φ3, Φ31, Φ32)
T

, 𝑥, 𝑦 ≥ 𝑡,

(A.63)

where

Φ0 = 𝜑0𝑒
−(𝜀+𝛼0)𝑡,

Φ1 = 𝜑1 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
(𝛼0+𝑟(𝑠))d𝑠,

Φ2 = 𝜑2𝑒
−(𝜆1+𝜆2)𝑡,

Φ3 = 𝜑3 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
(𝜆1+𝜆2+𝑟(𝑠))d𝑠,

Φ21 = 𝜑21𝑒
−𝜀𝑡

,

Φ22 = 𝜑22 (𝑦 − 𝑡) 𝑒
−∫
𝑦

𝑦−𝑡
𝜇(𝑠)d𝑠

,

Φ3𝑖 = 𝜑3𝑖 (𝑥 − 𝑡) 𝑒
−∫
𝑥

𝑥−𝑡
𝑟(𝑠)d𝑠

, 𝑖 = 1, 2.

(A.64)

Step 2. We prove that 𝑇0(𝑡) is quasi-compact. It needs to be
proven that the essential growth bound 𝑊ess(𝐴0) of 𝐴0 is less
than zero.The assumption condition (18) implies that, for any
𝜎 > 0, there exists 𝑡0 > 0 such that

1
𝑡

∫

𝑥

𝑥−𝑡

𝑟 (𝑠) d𝑠 > 𝑟 − 𝜎,

1
𝑡

∫

𝑦

𝑦−𝑡

𝜇 (𝑠) d𝑠 > 𝜇 − 𝜎,

𝑥, 𝑦 ≥ 𝑡 ≥ 𝑡0.

(A.65)

Then the following estimation can be deduced:

𝑇0 (𝑡) Φ
 =

𝜑0
 𝑒

−(𝜀+𝛼0)𝑡 +
𝜑2

 𝑒
−(𝜆1+𝜆2)𝑡

+
𝜑21

 𝑒
−𝜀𝑡

+ ∫

∞

𝑡

𝜑1 (𝑥 − 𝑡)
 𝑒

−∫
𝑥

𝑥−𝑡
(𝛼0+𝑟(𝑠))d𝑠d𝑥

+ ∫

∞

𝑡

𝜑3 (𝑥 − 𝑡)
 𝑒

−∫
𝑥

𝑥−𝑡
(𝜆1+𝜆2+𝑟(𝑠))d𝑠d𝑥

+ ∫

∞

𝑡

𝜑22 (𝑦 − 𝑡)
 𝑒

−∫
𝑦

𝑦−𝑡
𝜇(𝑠)d𝑠d𝑦

+

2
∑

𝑖=1
∫

∞

𝑡

𝜑3𝑖 (𝑥 − 𝑡)
 𝑒

−∫
𝑥

𝑥−𝑡
𝑟(𝑠)d𝑠d𝑥

≤
𝜑0

 𝑒
−(𝜀+𝛼0)𝑡 +

𝜑2
 𝑒

−(𝜆1+𝜆2)𝑡

+
𝜑21

 𝑒
−𝜀𝑡
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+ 𝑒
−(𝛼0+𝑟−𝜎)𝑡 ∫

∞

0

𝜑1 (𝑥)
 d𝑥

+ 𝑒
−(𝜆1+𝜆2+𝑟−𝜎) ∫

∞

0

𝜑3 (𝑥)
 d𝑥

+ 𝑒
−(𝜇−𝜎)𝑡

∫

∞

0

𝜑22 (𝑦)
 d𝑦

+

2
∑

𝑖=1
𝑒
−(𝑟−𝜎)𝑡

∫

∞

0

𝜑3𝑖 (𝑥)
 d𝑥

≤ 𝑒
−min{𝜀,𝜀+𝛼0 ,𝛼0+𝑟−𝜎,𝜆1+𝜆2+𝑟−𝜎,𝜇−𝜎}𝑡 ‖Φ‖ .

(A.66)

Therefore

𝑊ess (𝐴0) ≤ 𝑊 (𝐴0) = lim
𝑡→∞

ln 𝑇0 (𝑡)


𝑡
< 0. (A.67)

This implies that the 𝐶0 semigroup 𝑇0(𝑡) generated by oper-
ator 𝐴0 is quasi-compact.

Proof of Lemma 11. From (20) we know that 𝑅(𝛾, 𝐴 − 𝐵) ≥

𝑅(𝛾, 𝐴0), 𝛾 > 0, which follows 𝑆(𝑡) ≥ 𝑇0(𝑡), 𝑡 ≥ 0 imme-
diately, where𝑅(𝛾, 𝐴) denotes the resolvent of operator𝐴. For
𝑃 ∈ 𝐷(𝐴0), set Ψ(𝑠)𝑃 = 𝑆(𝑡 − 𝑠)(𝐼 + Φ

𝛾
)𝑇0(𝑠)𝑃, 0 ≤ 𝑠 ≤ 𝑡,

𝛾 > 0. Then with the help of (20) we can obtain

Ψ

(𝑠) 𝑃 = − 𝑆 (𝑡 − 𝑠) (𝐴 − 𝐵) (𝐼 + Φ

𝛾
) 𝑇0 (𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) 𝐴0𝑇0 (𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠) [𝛾𝐼 − (𝐴 − 𝐵)] (𝐼 + Φ
𝛾
) 𝑇0 (𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) [−𝛾𝐼 + 𝐴0] 𝑇0 (𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠) (𝛾𝐼 − 𝐴0) 𝑇0 (𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) (−𝛾𝐼 + 𝐴0) 𝑇0 (𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠) Φ
𝛾

(−𝛾𝐼 + 𝐴0) 𝑇0 (𝑠) 𝑃.

(A.68)

Noting [Ψ(𝑡) − Ψ(0)]𝑃 = ∫
𝑡

0 Ψ

(𝑠)𝑃d𝑠, then

[Ψ (𝑡) − Ψ (0)] 𝑃

= ∫

𝑡

0
𝑆 (𝑡 − 𝑠) Φ

𝛾
(−𝛾𝐼 + 𝐴0) 𝑇0 (𝑠) 𝑃d𝑠.

(A.69)

That is

𝑆 (𝑡) 𝑃 − 𝑇0 (𝑡) 𝑃

= − ∫

𝑡

0
𝑆 (𝑡 − 𝑠) Φ

𝛾
(−𝛾𝐼 + 𝐴0) 𝑇0 (𝑠) 𝑃d𝑠

+ Φ
𝛾
𝑇0 (𝑡) 𝑃 − 𝑆 (𝑡) Φ

𝛾
𝑃.

(A.70)

Therefore, 𝑆(𝑡) − 𝑇0(𝑡) (𝑡 ≥ 0) is compact because the right-
hand side of the above equation is the sum of three compact
operators for the compactness of Φ

𝛾
.

Proof ofTheorem 12. According to Proposition 9.20 (see [27])
combing Lemmas 10 and 11, we can deduce that

𝑊ess (𝐴) ≤ 𝑊 (𝐴0) < 0. (A.71)

Because 𝐵 is a compact operator, then according to [28], it is
evident that

𝑊ess (𝐴) = 𝑊ess (𝐴 − 𝐵) = 𝑊ess (𝐴) < 0. (A.72)

This implies that 𝑇(𝑡) is quasi-compact.

Proof of Theorem 13. From Theorem 12 and the results in
Section 3.2 with the help of Theorem 2.10 (see [28]), we
can decompose the 𝐶0 semigroup 𝑇(𝑡) generated by system
operator 𝐴 as 𝑇(𝑡) = 𝑃0 + 𝑅(𝑡), where 𝑃0 is the residue
corresponding to eigenvalue 0 and ‖𝑅(𝑡)‖ ≤ 𝐶𝑒

−𝜀𝑡 for suitable
constants 𝐶 > 0 and 𝛿 > 0.

However, by Theorem 7, the nonnegative solution of the
system (1)–(3) can be expressed as𝑃(𝑡, ⋅) = 𝑇(𝑡)𝑃0, 𝑡 ∈ [0, ∞).
Then combiningTheorem 12.3 in [29], we can derive that

𝑃 (𝑡, ⋅) = 𝑇 (𝑡) 𝑃0 = (𝑃0 + 𝑅 (𝑡)) 𝑃0

= ⟨𝑃0, 𝑄
∗
⟩ �̂� + 𝑅 (𝑡) 𝑃0 = �̂� + 𝑅 (𝑡) 𝑃0,

(A.73)

where𝑄
∗ is defined inTheorem 9. Hence we can get ‖𝑃(𝑡, ⋅)−

�̂�‖ ≤ 𝐶𝑒
−𝛿𝑡.

Proof of Theorem 14. The instantaneous availability of the
system at time 𝑡 is

𝐴V (𝑡) =

3
∑

𝑖=0
𝑃
𝑖 (𝑡) +

3
∑

𝑖=2
𝑃
𝑖1 (𝑡) . (A.74)

Let 𝑡 → ∞; then the steady-state availability of the system is
obtained as follows:

𝐴V =
∑

3
𝑖=0 𝑃

𝑖
+ ∑

3
𝑖=2 𝑃

𝑖1
𝑆

=
1
𝑆

[
(1 + 𝜀𝑔) [𝜀 (𝜆1 + 𝜆2) + 𝛼0 (𝜀 + 𝜆1)]

𝜀 (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)
+

𝛼0𝜆1 [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1] ((𝑓 − 𝑔) /𝛼0 + (ℎ − 𝑓) / (𝜆1 + 𝜆2))

(𝜆1 + 𝜆2 − 𝛼0) (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)
] 𝑃0

=
1
𝑁

[(𝜆1 + 𝜆2 − 𝛼0) (1+ 𝜀𝑔) [𝜀 (𝜆1 + 𝜆2) + 𝛼0 (𝜀 + 𝜆1)] + 𝛼0𝜆1𝜀 [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1] (
𝑓 − 𝑔

𝛼0
+

ℎ − 𝑓

𝜆1 + 𝜆2
)] .

(A.75)
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Proof of Theorem 15. The instantaneous probability of the
repairman in vacation at time 𝑡 is

𝑃V (𝑡) = 𝑃1 (𝑡) + 𝑃3 (𝑡) + 𝑃31 (𝑡) + 𝑃32 (𝑡) . (A.76)

Letting 𝑡 → ∞ derives the steady-state probability of the
repairman in vacation

𝑃V =
𝑃1 + 𝑃3 + 𝑃31 + 𝑃32

𝑆

=
1
𝑆

[𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1] 𝑓

𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔
𝑃0

=
𝜀𝑓 (𝜆1 + 𝜆2 − 𝛼0) [𝜀 (𝜆1 + 𝜆2) + 𝛼0𝜆1]

𝑁
.

(A.77)

Proof of Theorem 16. The instantaneous probability of the
system in warning state at time 𝑡 is

𝑃
𝑤

(𝑡) = 𝑃2 (𝑡) + 𝑃3 (𝑡) . (A.78)

Letting 𝑡 → ∞ derives the steady-state probability of the
system in warning state

𝑃
𝑤

=
𝑃2 + 𝑃3

𝑆

=
(𝛼0 (1 + 𝜀𝑔) / (𝜆1 + 𝜆2 − 𝛼0𝜆1𝑔)) 𝑃0

𝑆

=
𝛼0𝜀 (1 + 𝜀𝑔) (𝜆1 + 𝜆2 − 𝛼0)

𝑁
.

(A.79)

Proof of Theorem 17. Let 𝑃
𝑖
(𝑡) = ∫

∞

0 𝑃
𝑖
(𝑡, 𝛼)d𝛼, 𝑖 = 1, 3,

22, 31, 32; 𝑟
𝑗
(𝑡) = ∫

∞

0 𝑟(𝑥)𝑃
𝑗
(𝑡, 𝑥)d𝑥/𝑃

𝑗
(𝑡), 𝑗 = 1, 3, 31, 32;

and 𝜇22(𝑡) = ∫
∞

0 𝜇(𝑦)𝑃22(𝑡, 𝑦)d𝑦/𝑃22(𝑡). Then the matrix of
the transition probability of the system equations (1)–(3) can
be obtained as follows:

𝑇 =

(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝜀 − 𝛼0 𝑟1 (𝑡) 0 0 0 𝜇22 (𝑡) 0 0

𝜀 −𝛼0 − 𝑟1 (𝑡) 0 0 𝜀 0 0 0

𝛼0 0 −𝜆1 − 𝜆2 𝑟3 (𝑡) 0 0 0 0

0 𝛼0 0 −𝜆1 − 𝜆2 − 𝑟3 (𝑡) 0 0 0 0

0 0 𝜆1 0 −𝜀 0 𝑟31 (𝑡) 0

0 0 𝜆2 0 0 −𝜇22 (𝑡) 0 𝑟32 (𝑡)

0 0 0 𝜆1 0 0 −𝑟31 (𝑡) 0

0 0 0 𝜆2 0 0 0 −𝑟32 (𝑡)

)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (A.80)

Thus by [27] the instantaneous failure frequency of the system
at time 𝑡 can be derived as

𝑊
𝑓

(𝑡) = 𝜆2 (𝑃2 (𝑡) + 𝑃3 (𝑡)) . (A.81)

Let 𝑡 → ∞; then the steady-state failure frequency is imme-
diate

𝑊
𝑓

=
𝜆2 (𝑃2 + 𝑃3)

𝑆
= 𝜆2𝑃𝑤

=
𝜆2𝛼0𝜀 (1 + 𝜀𝑔) (𝜆1 + 𝜆2 − 𝛼0)

𝑁
.

(A.82)
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