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Let 𝑋 be a completely regular Hausdorff space and let (𝐸, ‖ ⋅ ‖
𝐸
) and (𝐹, ‖ ⋅ ‖

𝐹
) be Banach spaces. Let 𝐶

𝑏
(𝑋, 𝐸) be the space of all

𝐸-valued bounded, continuous functions on𝑋, equipped with the strict topology 𝛽
𝜎
. We study the relationship between important

classes of (𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 (strongly bounded, unconditionally converging, weakly

completely continuous, completely continuous, weakly compact, nuclear, and strictly singular) and the corresponding operator
measures given by Riesz representing theorems. Some applications concerning the coincidence among these classes of operators
are derived.

1. Introduction and Terminology

Throughout the paper let (𝐸, ‖⋅‖
𝐸
) and (𝐹, ‖⋅‖

𝐹
) be real Banach

spaces and let 𝐸 and 𝐹 denote the Banach duals of 𝐸 and 𝐹,
respectively. By 𝐵

𝐹
 and 𝐵

𝐸
we denote the closed unit ball in

𝐹
 and 𝐸, respectively. ByL(𝐸, 𝐹) we denote the space of all

bounded linear operators from 𝐸 to 𝐹. Given a locally convex
space (𝐿, 𝜉) by (𝐿, 𝜉) or 𝐿

𝜉
wewill denote its topological dual.

We denote by 𝜎(𝐿,𝐾) the weak topology on 𝐿with respect to
a dual pair ⟨𝐿,𝐾⟩. Let𝐹(N) stand for the collection of all finite
subsets of the set N of all natural numbers.

Assume that 𝑋 is a completely regular Hausdorff space.
By Z (resp., P) we will denote the family of all zero sets
(resp., of cozero sets) in 𝑋, respectively. Let 𝐶

𝑏
(𝑋, 𝐸) stand

for the Banach space of all bounded continuous functions
𝑓 : 𝑋 → 𝐸, equipped with the uniform norm ‖ ⋅ ‖. We
write 𝐶

𝑏
(𝑋) instead of 𝐶

𝑏
(𝑋,R). By 𝐶

𝑏
(𝑋, 𝐸)

 we denote the
Banach dual of 𝐶

𝑏
(𝑋, 𝐸). For 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) let 𝑓(𝑡) = ‖𝑓(𝑡)‖

𝐸

for 𝑡 ∈ 𝑋.
LetB (resp.,B𝑎) stand for the algebra (resp., 𝜎-algebra)

of Baire sets in𝑋, respectively. Let 𝐵(B, 𝐸) (resp., 𝐵(B𝑎, 𝐸))
stand for the Banach space of all totallyB-measurable (resp.,
totallyB𝑎-measurable) functions 𝑓 : 𝑋 → 𝐸 (see [1, 2]).

The strict topology 𝛽
𝜎
(called also a superstrict topology

anddenoted by𝛽
1
) on𝐶

𝑏
(𝑋) and𝐶

𝑏
(𝑋, 𝐸) is of importance in

the topological measure theory (see [3–9] for definitions and
more details). 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

is a closed subspace of the Banach
space 𝐶

𝑏
(𝑋, 𝐸)

 and 𝛽
𝜎
-bounded sets in 𝐶

𝑏
(𝑋, 𝐸) are ‖ ⋅ ‖-

bounded. It is known that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸)

if one of the following conditions holds (see [6, Theorems 5.1
and 5.2]):

(i) 𝑋 has a 𝜎-compact dense subset (e.g., 𝑋 separable).
(ii) 𝑋 is a𝐷-space (see [10]).
(iii) 𝐸 is a𝐷-space.

Remark 1. Throughout the paper we will assume that𝐶
𝑏
(𝑋)⊗

𝐸 is 𝛽
𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

For 𝑋 being a locally compact Hausdorff space, by
𝐶
𝑜
(𝑋, 𝐸) we denote the Banach space of all continuous

functions 𝑓 : 𝑋 → 𝐸 tending to zero at infinity, equipped
with the uniform norm. If 𝑋 is a compact Hausdorff space,
then 𝛽

𝜎
coincides with the uniform norm topology on

𝐶
𝑏
(𝑋, 𝐸). In this case we write simply 𝐶(𝑋, 𝐸) instead of

𝐶
𝑏
(𝑋, 𝐸).
Let 𝑀(𝑋) stand for the Banach lattice of all Baire

measures on B, provided with the norm ‖]‖ = |]|(𝑋) (=
the total variation of ]). Due to the Alexandrov representa-
tion theorem 𝐶

𝑏
(𝑋)

 can be identified with 𝑀(𝑋) through
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the lattice isomorphism 𝑀(𝑋) ∋ ] → 𝜑] ∈ 𝐶
𝑏
(𝑋)

, where
𝜑](𝑢) = ∫

𝑋
𝑢 𝑑] for 𝑢 ∈ 𝐶

𝑏
(𝑋), and ‖𝜑]‖ = ‖]‖ (see [4,

Theorem 5.1]).
By 𝑀(𝑋, 𝐸


) we denote the set of all finitely additive

measures 𝜇 : B → 𝐸
 with the following properties:

(i) for each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B → R defined by

𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) belongs to𝑀(𝑋);

(ii) |𝜇|(𝑋) < ∞, where |𝜇|(𝐴) stands for the variation of
𝜇 on 𝐴 ∈ B.

Let 𝐶
𝑟𝑐
(𝑋, 𝐸) denote the Banach space of all continuous

functions ℎ : 𝑋 → 𝐸 such that ℎ(𝑋) is a relatively
compact set in 𝐸, equipped with the uniform norm ‖ ⋅ ‖. Then
𝐶
𝑏
(𝑋) ⊗ 𝐸 ⊂ 𝐶

𝑟𝑐
(𝑋, 𝐸) ⊂ 𝐵(B, 𝐸). In view of [11, Theorem

2.5] 𝐶
𝑟𝑐
(𝑋, 𝐸)

 can be identified with 𝑀(𝑋, 𝐸

) through the

linear mapping 𝑀(𝑋, 𝐸

) ∋ 𝜇 → Φ

𝜇
∈ 𝐶

𝑟𝑐
(𝑋, 𝐸)

, where
Φ
𝜇
(ℎ) = ∫

𝑋
ℎ 𝑑𝜇 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸) and ‖Φ

𝜇
‖ = |𝜇|(𝑋).

Then one can embed𝐵(B, 𝐸) into𝐶
𝑟𝑐
(𝑋, 𝐸)

 by themapping
𝜋 : 𝐵(B, 𝐸) → 𝐶

𝑟𝑐
(𝑋, 𝐸)

, where, for 𝑔 ∈ 𝐵(B, 𝐸),

𝜋 (𝑔) (Φ
𝜇
) := ∫

𝑋

𝑔𝑑𝜇 for 𝜇 ∈ 𝑀(𝑋, 𝐸

) . (1)

Assume that 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is a bounded linear

operator. Then we can define the corresponding operator
measure 𝑚 : B → L(𝐸, 𝐹


) (called the representing

measure of 𝑇) by setting

𝑚(𝐴) (𝑥) := ((𝑇|
𝐶
𝑟𝑐
(𝑋,𝐸)

)


∘ 𝜋) (1
𝐴
⊗ 𝑥)

for 𝐴 ∈ B, 𝑥 ∈ 𝐸.

(2)

Here (𝑇|
𝐶
𝑟𝑐
(𝑋,𝐸)

)


: 𝐶
𝑟𝑐
(𝑋, 𝐸)


→ 𝐹

 stand for the
biconjugate of 𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

. Then �̃�(𝑋) < ∞, where the
semivariation �̃�(𝐴) of 𝑚 on 𝐴 ∈ B is defined by �̃�(𝐴) :=
sup ‖Σ𝑚(𝐴

𝑖
)(𝑥

𝑖
)‖
𝐹
 , where the supremum is taken over all

finite B-partitions (𝐴
𝑖
) of 𝐴 and 𝑥

𝑖
∈ 𝐵

𝐸
for each 𝑖. For

𝑦

∈ 𝐹

 let us put

𝑚
𝑦
 (𝐴) (𝑥) := (𝑚 (𝐴) (𝑥)) (𝑦


) for 𝐴 ∈ B, 𝑥 ∈ 𝐸. (3)

Let |𝑚
𝑦
 |(𝐴) stand for the variation of𝑚

𝑦
 on𝐴. Then (see [1,

§4, Proposition 5])

�̃� (𝐴) = sup {𝑚𝑦



(𝐴) : 𝑦


∈ 𝐵

𝐹
} . (4)

By𝑀(𝑋,L(𝐸, 𝐹

))wedenote the set of all operatormeasures

𝑚 : B → L(𝐸, 𝐹

) such that �̃�(𝑋) < ∞ and 𝑚

𝑦
 ∈

𝑀(𝑋, 𝐸

) for each 𝑦 ∈ 𝐹.

Let 𝑖
𝐹
: 𝐹 → 𝐹

 denote the canonical embedding; that
is, 𝑖

𝐹
(𝑦)(𝑦


) = 𝑦


(𝑦) for 𝑦 ∈ 𝐹, 𝑦 ∈ 𝐹

. Moreover, let 𝑗
𝐹
:

𝑖
𝐹
(𝐹) → 𝐹 stand for the left inverse of 𝑖

𝐹
; that is, 𝑗

𝐹
∘ 𝑖
𝐹
= 𝑖𝑑

𝐹
.

For 𝑥 ∈ 𝐸 define
𝑇
𝑥 (𝑢) := 𝑇 (𝑢 ⊗ 𝑥) for 𝑢 ∈ 𝐶

𝑏 (𝑋) ,

𝑚
𝑥 (𝐴) := 𝑚 (𝐴) (𝑥) for 𝐴 ∈ B.

(5)

The following Bartle-Dunfor-Schwartz type theorem will
be useful (see [12, Theorem 2], [13, Theorem 5, pages 153-
154]).

Theorem 2. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator and 𝑀(𝑋,L(𝐸, 𝐹

)) be its representing measure.

Then for each 𝑥 ∈ 𝐸 the following statements are equivalent:

(i) 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly compact.

(ii) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹) for each 𝐴 ∈ B and {𝑗

𝐹
(𝑚(𝐴)(𝑥)) :

𝐴 ∈ B} is a relatively weakly compact set in 𝐹.

(iii) 𝑚
𝑥
: B → 𝐹

 is strongly bounded.

Following [14–16] we have the following definition.

Definition 3. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹

is said to be strongly bounded if its representing measure𝑚 ∈

𝑀(𝑋,L(𝐸, 𝐹

)) is strongly bounded; that is, �̃�(𝐴

𝑛
) → 0

whenever (𝐴
𝑛
) is a pairwise disjoint sequence inB.

Note that𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹

)) is strongly bounded if and

only if the family {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is uniformly strongly

additive.
For each 𝑥 ∈ 𝐸, ‖𝑚

𝑥
(𝐴)‖

𝐹
 ≤ �̃�(𝐴)‖𝑥‖

𝐸
for 𝐴 ∈ B. It

follows that if 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is strongly bounded, then

𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly compact, and hence 𝑚(𝐴)(𝑥) ∈

𝑖
𝐹
(𝐹) for 𝐴 ∈ B (see Theorem 2).
For 𝑋 being a compact Hausdorff space (resp., a locally

compact Hausdorff space) different classes of bounded linera
operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 (resp., 𝑇 : 𝐶

0
(𝑋, 𝐸) → 𝐹)

have been studied intensively; see [14–33]. The study of the
relationship between operators 𝑇 : 𝐶(𝑋, 𝐸) → 𝐹 (resp.,
𝑇 : 𝐶

0
(𝑋, 𝐸) → 𝐹) and their representing operator-

valued measures is a central problem in the theory. The main
aim of the present paper is to extend to “the completely
regular setting” some classical results concerning various
classes of bounded operators 𝑇 : 𝐶(𝑋, 𝐸) → 𝐹 (resp.,
𝑇 : 𝐶

0
(𝑋, 𝐸) → 𝐹), where 𝑋 is a compact Hausdorff

space (resp., a locally compact Hausdorff space). In [12] using
the device of embedding the space 𝐵(B, 𝐸) into 𝐶

𝑟𝑐
(𝑋, 𝐸)



we establish general Riesz representation theorems for (𝛽
𝜎
,

‖ ⋅ ‖
𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 with

respect to the representing measures 𝑚 : B → L(𝐸, 𝐹

)

(see Theorems 6 and 8 below). In Section 3 we show that if
𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 is (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and strongly

bounded, then its representing measure𝑚 : B → L(𝐸, 𝐹

)

has its values in L(𝐸, 𝐹) and possesses a unique extension
𝑚 : B𝑎 → L(𝐸, 𝐹) that is variationally semiregular;
that is, the set {|𝑚

𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is uniformly countably

additive (seeTheorem 11 below). In Sections 4–9 we study the
folowing classes of (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 :

𝐶
𝑏
(𝑋, 𝐸) → 𝐹 : unconditionally converging, weakly com-

pletely continuous, completely continuous, weakly compact,
nuclear, and strongly singular. We show that if a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 belongs to any

of these classes of operators, then 𝑇 is strongly bounded and,
for each 𝐴 ∈ B𝑎, the operator 𝑚(𝐴) : 𝐸 → 𝐹 shares the
property of 𝑇 (seeTheorems 17, 23, 26, 29, 34, and 36 below).
We derive some applications concerning to the coincidence
among these classes of (𝛽

𝜎
, ‖ ⋅ ‖)-continuous operators (see

Corollary 13,Theorems 18 and 19, Corollary 27,Theorem 29).
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2. Integral Representation of Continuous
Operators on 𝐶

𝑏
(𝑋,𝐸)

The space of all 𝜎-aditive members of𝑀(𝑋) will be denoted
by𝑀

𝜎
(𝑋) (see [3, 4]).Then (𝐶

𝑏
(𝑋), 𝛽

𝜎
)

= {𝜑] : ] ∈ 𝑀𝜎

(𝑋)}.
Let

𝑀
𝜎
(𝑋, 𝐸


)

:= {𝜇 ∈ 𝑀(𝑋, 𝐸

) : 𝜇

𝑥
∈ 𝑀

𝜎 (𝑋) for each 𝑥 ∈ 𝐸} .

(6)

Then |𝜇| ∈ 𝑀
𝜎
(𝑋) if 𝜇 ∈ 𝑀

𝜎
(𝑋, 𝐸


) (see [5, Proposition 3.9]).

For the integration theory of functions𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸)with

respect to 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸


) we refer the reader to [6, page

197], [5]. The following result will be of importance (see [6,
Theorem 5.3]).

Theorem 4. The following statements hold:

(i) for Φ ∈ 𝐶
𝑏
(𝑋, 𝐸)

 the following conditions are
equivalent:

(a) Φ is 𝛽
𝜎
-continuous;

(b) there exists a unique 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸


) such that

Φ(𝑓) = Φ
𝜇
(𝑓) = ∫

𝑋

𝑓𝑑𝜇 𝑓𝑜𝑟 𝑓 ∈ 𝐶
𝑏 (𝑋, 𝐸) , (7)

and ‖Φ
𝜇
‖ = |𝜇|(𝑋);

(ii) for 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸


), | ∫

𝑋
𝑓𝑑𝜇| ≤ ∫

𝑋
𝑓𝑑|𝜇| for 𝑓 ∈

𝐶
𝑏
(𝑋, 𝐸).

In view of [9, Corollary 5] we have the following char-
acterization of convergence in (𝐶

𝑏
(𝑋, 𝐸), 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋,

𝐸)


𝛽
𝜎

)).

Theorem 5. For a sequence (𝑓
𝑛
) in 𝐶

𝑏
(𝑋, 𝐸) the following

statements are equivalent:

(i) 𝑓
𝑛
→ 0 for 𝜎(𝐶

𝑏
(𝑋, 𝐸),𝑀

𝜎
(𝑋, 𝐸


));

(ii) sup
𝑛
‖𝑓

𝑛
‖ < ∞ and 𝑓

𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸


) for each

𝑡 ∈ 𝑋.

The following theorem gives a characterization of
(𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 in terms

of the corresponding operatormeasures𝑚 : B → L(𝐸, 𝐹

)

(see [12, Theorem 9 and Corollary 7]).

Theorem6. Let𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖⋅‖

𝐹
)-continuous

linear operator and 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹

)) be the representing

measure of 𝑇. Then the following statements hold.

(i) 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)).

(ii) For each 𝑦 ∈ 𝐹, 𝑦(𝑇(𝑓)) = ∫
𝑋
𝑓𝑑𝑚

𝑦
 for 𝑓 ∈ 𝐶

𝑏
(𝑋,

𝐸).
(iii) For each 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) and 𝐴 ∈ B there exists a

unique vector in 𝐹
, denoted by ∫

𝐴
𝑓𝑑𝑚, such that

(∫
𝐴
𝑓𝑑𝑚)(𝑦


) = ∫

𝐴
𝑓𝑑𝑚

𝑦
 for each 𝑦 ∈ 𝐹.

(iv) For each 𝐴 ∈ B, the mapping 𝐶
𝑏
(𝑋, 𝐸) ∋ 𝑓 →

∫
𝐴
𝑓𝑑𝑚 ∈ 𝐹

 is a (𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator.
(v) For 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) and 𝑇(𝑓) =

𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚).

(vi) ‖𝑇‖ = �̃�(𝑋).
(vii) For 𝑈 ∈ P and 𝑦 ∈ 𝐹; we have


𝑚

𝑦



(𝑈) = sup{



∫
𝑈

ℎ 𝑑𝑚
𝑦




: ℎ ∈ 𝐶
𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ = 1, supp ℎ ⊂ 𝑈} .

(8)

Following [34] by 𝑀
𝜎
(B𝑎) (= 𝑐𝑎(B𝑎)), we denote the

space of all bounded countably additive, real-valued, regular
(with respect to zero sets) measures onB𝑎.

We define 𝑀
𝜎
(B𝑎, 𝐸


) to be the set of all measures 𝜇 :

B𝑎 → 𝐸
 such that the following two conditions are

satisfied.

(i) For each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B𝑎 → R defined

by 𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) for𝐴 ∈ B𝑎, belongs to𝑀

𝜎
(B𝑎).

(ii) |𝜇|(𝑋) < ∞, where, for each 𝐴 ∈ B𝑎, we define
|𝜇|(𝐴) = sup | ∑ 𝜇(𝐴

𝑖
)(𝑥

𝑖
)|, where the supremum is

taken over all finite B𝑎-partitions (𝐴
𝑖
) of 𝐴 and all

finite collections 𝑥
𝑖
∈ 𝐵

𝐸
.

It is known that if 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸


), then |𝜇| ∈ 𝑀

𝜎
(B𝑎) (see

[34, Lemma 2.1]).
The following result will be of importance (see [34,

Theorem 2.5]).

Theorem 7. Let 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸


). Then 𝜇 possesses a unique

extension 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸


) and |𝜇|(𝑋) = |𝜇|(𝑋).

FromTheorem 7 and [13, Corollary 10, page 4] it follows
that if 𝜇 ∈ 𝑀

𝜎
(𝑋, 𝐸


), then |𝜇|(𝐴) = |𝜇|(𝐴) for 𝐴 ∈ B.

By 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) we will denote the space of all

operator measures 𝑚 : B → L(𝐸, 𝐹) such that �̃�(𝑋) < ∞

and 𝑚
𝑦
 ∈ 𝑀

𝜎
(𝑋, 𝐸


) for each 𝑦 ∈ 𝐹

. By𝑀
𝜎
(B𝑎,L(𝐸, 𝐹))

we will denote the space of all operator measures𝑚 : B𝑎 →

L(𝐸, 𝐹) with �̃�(𝑋) < ∞ such that 𝑚
𝑦
 ∈ 𝑀

𝜎
(B𝑎, 𝐸


) for

each 𝑦 ∈ 𝐹.
The following theorem characterizes (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 such that

𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 are weakly compact for each 𝑥 ∈ 𝐸 (see [12,

Theorem 14 and Lemma 11]).

Theorem 8. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator such that 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is

weakly compact for each 𝑥 ∈ 𝐸, and let𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


))

be the representingmeasure of𝑇.Then the following statements
hold.

(i) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹) for each 𝐴 ∈ B, 𝑥 ∈ 𝐸 and

the measure 𝑚
𝐹

: B → L(𝐸, 𝐹) defined by
𝑚

𝐹
(𝐴)(𝑥) := 𝑗

𝐹
(𝑚(𝐴)(𝑥)) for 𝐴 ∈ B, 𝑥 ∈ 𝐸, belongs
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to 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and possesses a unique extension

𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with �̃�(𝑋) = �̃�(𝑋) which is

countably additive both in the strong operator topology
and the weak star operator topology. Moreover, 𝑚

𝑦
 =

𝑚
𝑦
 for 𝑦 ∈ 𝐹.

(ii) For every 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) and 𝐴 ∈ B𝑎 there exists a

unique vector in 𝐹, denoted by ∫
𝐴
𝑓𝑑𝑚, such that for

each 𝑦 ∈ 𝐹, 𝑦(∫
𝐴
𝑓𝑑𝑚) = ∫

𝐴
𝑓𝑑𝑚

𝑦
 and


∫
𝐴

𝑓𝑑𝑚
𝑦



≤ ∫

𝐴

𝑓𝑑

𝑚

𝑦



. (9)

(iii) For each 𝐴 ∈ B𝑎, the mapping 𝑇
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → 𝐹

defined by 𝑇
𝐴
(𝑓) = ∫

𝐴
𝑓𝑑𝑚 is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous

linear operator.

(iv) 𝑇(𝑓) = 𝑇
𝑋
(𝑓) = ∫

𝑋
𝑓𝑑𝑚 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

Remark 9. As a consequence of Theorem 8 (for 𝐹 = R) we
have

(𝐶
𝑏 (𝑋, 𝐸) , 𝛽𝜎)


= {Φ

𝜇
: 𝜇 ∈ 𝑀

𝜎
(B𝑎, 𝐸


)} , (10)

where for 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸


),Φ

𝜇
(𝑓) = ∫

𝑋
𝑓𝑑𝜇 for𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸)

and ‖Φ
𝜇
‖ = |𝜇|(𝑋).

3. Strongly Bounded Operators on 𝐶
𝑏
(𝑋,𝐸)

Making use of [35,Theorem 8] we can state the following ana-
logue (for Baire measures on a completely regular Hausdorff
space) of the celebrated Dieudonné-Grothendieck’s criterion
on weak compactness in the space of Borel measures on a
compact Hausdorff space (see [36,Theorem 2], [37,Theorem
14, pages 98–103]), which will play a crucial role in the study
of different classes of operators on 𝐶

𝑏
(𝑋, 𝐸).

By T
𝑠
we denote the topology of simple convergence in

𝑐𝑎(B𝑎). Then T
𝑠
is generated by the family {𝑝

𝐴
: 𝐴 ∈ B𝑎}

of seminorms, where 𝑝
𝐴
(]) = |](𝐴)| for ] ∈ 𝑐𝑎(B𝑎).

A completely regular Hausdorff space 𝑋 is said to be an
𝑧-space if a subset which meets every zero-set in a zero-set
must be a zero-set. One can note that every metrizable space
is a 𝑧-space.

From now on we will assume that𝑋 is a 𝑧-space.

Theorem 10. Assume that M is a subset of 𝑐𝑎+(B𝑎) such
that sup]∈M](𝑋) < ∞. Then the following statements are
equivalent.

(i) M is relativelyT
𝑠
-compact subset of 𝑐𝑎(B𝑎).

(ii) M is uniformly countably additive, that is,
sup]∈M](𝐴

𝑛
) → 0 whenever 𝐴

𝑛
↓ 0, (𝐴

𝑛
) ⊂ B𝑎.

(iii) M is uniformly strongly additive, that is,
sup]∈M](𝐴

𝑛
) → 0 whenever (𝐴

𝑛
) is pairwise

disjoint inB𝑎.
(iv) sup]∈M](𝑈

𝑛
) → 0 for every pairwise disjoint sequence

(𝑈
𝑛
) inP.

Proof. (i)⇔(ii) See [38, Theorem 7].
(ii)⇔(iii) See [37, Theorem 10, pages 88-89].
(iv)⇔(i) See [35, Theorem 8].

Now we can state a characterization of (𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous strongly bounded operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹.

Theorem 11. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator and let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


))

be its representing measure. Then the following statements are
equivalent.

(i) For each 𝑥 ∈ 𝐸, 𝑇
𝑥

: 𝐶
𝑏
(𝑋) → 𝐹 is weakly

compact and 𝑚 is variationally semiregular; that is,
sup{|𝑚

𝑦
 |(𝐴

𝑛
) : 𝑦


∈ 𝐵

𝐹
} → 0 whenever 𝐴

𝑛
↓ 0,

(𝐴
𝑛
) ⊂ B𝑎.

(ii) 𝑇 is strongly bounded.
(iii) 𝑇(𝑓

𝑛
) → 0 whenever (𝑓

𝑛
) is a uniformly bounded

sequence in𝐶
𝑏
(𝑋, 𝐸) such that𝑓

𝑛
(𝑡) → 0 in𝐸 for each

𝑡 ∈ 𝑋.
(iv) 𝑇(𝑓

𝑛
) → 0 whenever (𝑓

𝑛
) is a uniformly bounded

sequence in 𝐶
𝑏
(𝑋, 𝐸) such that supp𝑓

𝑛
∩ supp𝑓

𝑚
= 0

for 𝑛 ̸= 𝑚.

Proof. (i)⇔(ii) It follows from Theorem 8 and [12, Theorem
16].

(ii)⇒(iii) It follows from [12, Theorem 17].
(iii)⇒(iv) It is obvious.
(iv)⇒(i) Assume that (iv) holds. First we shall show that

for each 𝑥 ∈ 𝐸, 𝑇
𝑥

: 𝐶
𝑏
(𝑋) → 𝐹 is weakly compact.

Assume on the contrary that 𝑇
𝑥
𝑜

: 𝐶
𝑏
(𝑋) → 𝐹 is not weakly

compact for some 𝑥
𝑜
∈ 𝐸. This means that 𝑚

𝑥
𝑜

: B → 𝐹


is not strongly bounded. Since for 𝐴 ∈ B, ‖𝑚
𝑥
0

(𝐴)‖
𝐹
 =

sup{|𝑚
𝑥
0
,𝑦
(𝐴)| : 𝑦


∈ 𝐵

𝐹
}, we obtain that the family {𝑚

𝑥
𝑜
,𝑦
 :

𝑦

∈ 𝐵

𝐹
} is not uniformly strongly additive. Hence the family

{𝑚
𝑥
𝑜
,𝑦
 : 𝑦


∈ 𝐵

𝐹
} is not uniformly countably additive. It

follows that the family {|𝑚
𝑥
𝑜
,𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is not uniformly

countably additive. In view of Theorem 10 there exist 𝜀
0
> 0,

a sequence (𝑦
𝑛
) in 𝐵

𝐹
 and a pairwise disjoint sequence (𝑈

𝑛
)

inP such that for 𝑛 ∈ N, |𝑚
𝑥
𝑜
,𝑦
 |(𝑈

𝑛
) ≥ 𝜀

0
. Note that


𝑚

𝑥
𝑜
,𝑦


𝑛


(𝑈

𝑛
) = sup{



∫
𝑈
𝑛

𝑢 𝑑𝑚
𝑥
𝑜
,𝑦


𝑛



: 𝑢 ∈ 𝐶
𝑏 (𝑋) ,

‖𝑢‖ = 1, supp 𝑢 ⊂ 𝑈
𝑛
} .

(11)

Hence there exists a sequence (𝑢
𝑛
) in 𝐶

𝑏
(𝑋) such that ‖𝑢

𝑛
‖ =

1, supp 𝑢
𝑛
⊂ 𝑈

𝑛
and


𝑦


𝑛
(𝑇

𝑥
0

(𝑢
𝑛
))

=


∫
𝑋

𝑢
𝑛
𝑑𝑚

𝑥
0
,𝑦


𝑛



=



∫

𝑈
𝑛

𝑢
𝑛
𝑑𝑚

𝑥
𝑜
,𝑦


𝑛



≥

𝑚

𝑥
𝑜
,𝑦


𝑛


(𝑈

𝑛
) −

𝜀
0

2
≥
𝜀
0

2
.

(12)
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Let 𝑓
𝑛
= 𝑢

𝑛
⊗ 𝑥

0
for 𝑛 ∈ N. Then supp𝑓

𝑛
∩ supp𝑓

𝑛
= 0 for

𝑛 ̸= 𝑚 and by (iv), ‖𝑇(𝑓
𝑛
)‖
𝐹

→ 0, which contradics (12).
This means that 𝑇

𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly compact for each

𝑥 ∈ 𝐸, as desired.
In view of Theorem 8 𝑚 can be uniquely extended to

a measure 𝑚 : B𝑎 → L(𝐸, 𝐹). Assume that 𝑚 is not
variationally semiregular. Then by Theorem 10 there exist
𝜀
0
> 0, a pairwise disjoint sequence (𝑈

𝑛
) inP and a sequence

(𝑦


𝑛
) in 𝐵

𝐹
 such that |𝑚

𝑦


𝑛

|(𝑈
𝑛
) > 𝜀

0
. Hence by Theorem 7

there exists a sequence (ℎ
𝑛
) in 𝐶

𝑏
(𝑋) ⊗ 𝐸 and ‖ℎ

𝑛
‖ = 1 with

supp ℎ
𝑛
⊂ 𝑈

𝑛
for 𝑛 ∈ N such that



∫
𝑈
𝑛

ℎ
𝑛
𝑑𝑚

𝑦


𝑛



≥

𝑚

𝑦


𝑛


(𝑈

𝑛
) −

𝜀
0

2
>
𝜀
0

2
. (13)

Then, for 𝑛 ∈ N,
𝑇 (ℎ𝑛)

𝐹
= sup {𝑦


(𝑇 (ℎ

𝑛
))

: 𝑦


∈ 𝐵

𝐹
}

= sup {

∫
𝑋

ℎ
𝑛
𝑑𝑚

𝑦



: 𝑦


∈ 𝐵

𝐹
}

= sup{


∫
𝑈
𝑛

ℎ
𝑛
𝑑𝑚

𝑦




: 𝑦

∈ 𝐵

𝐹
}

≥



∫
𝑈
𝑛

ℎ
𝑛
𝑑𝑚

𝑦


𝑛



>
𝜀
0

2
.

(14)

On the other hand, since supp ℎ
𝑛
∩ supp ℎ

𝑚
= 0 for 𝑛 ̸= 𝑚,

by (iv), ‖𝑇(ℎ
𝑛
)‖
𝐹
→ 0. This contradiction establishes that (i)

holds.

Corollary 12. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and strongly bounded linear operator and let 𝑚 ∈

𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) be its representing measure. Then the set

{|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is uniformly regular onB𝑎; that is, for each

𝐴 ∈ B𝑎 and 𝜀 > 0, there exist 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and 𝑈 ∈ P
with 𝐴 ⊂ 𝑈 such that

sup {𝑚𝑦



(𝐵) : 𝐵 ∈ B𝑎, 𝐵 ⊂ 𝑈 \ 𝑍, 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀. (15)

Proof. In view of Theorem 11 the family {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is

uniformly countably additive. Let 𝜆 ∈ 𝑐𝑎
+
(B𝑎) be a control

measure for {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
} and let 𝐴 ∈ B𝑎 and 𝜀 > 0

be given. Then there is 𝛿 > 0 such that sup{|𝑚
𝑦
 |(𝐵) : 𝑦


∈

𝐵
𝐹
} ≤ 𝜀 whenever 𝐵 ∈ B𝑎 and 𝜆(𝐵) ≤ 𝛿. By the regularity

of 𝜆 there exists 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and 𝑈 ∈ P with 𝐴 ⊂ 𝑈

such that 𝜆(𝑈 \ 𝑍) ≤ 𝛿. Hence we get sup{|𝑚
𝑦
 |(𝐵) : 𝐵 ∈ B𝑎,

𝐵 ⊂ 𝑈 \ 𝑍, 𝑦

∈ 𝐵

𝐹
} ≤ 𝜀.

Corollary 13. Assume that 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator and 𝐹 contains no isomorphic copy
of 𝑐

0
. Then 𝑇 is strongly bounded.

Proof. Let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) stand for the representing

measure of 𝑇. We shall first show that 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is

weakly compact for each 𝑥 ∈ 𝐸. Assume on the contrary that
𝑇
𝑥
0

: 𝐶
𝑏
(𝑋) → 𝐹 is not weakly compact for some 𝑥

0
∈ 𝐸.

Then by the proof of implication (iv)⇒(i) ofTheorem 11 there
exist 𝜀

0
> 0, a sequence (𝑦

𝑛
) in 𝐵

𝐹
 , and a pairwise disjoint

sequence (𝑈
𝑛
) in P such that |𝑚

𝑥
0
,𝑦


𝑛

|(𝑈
𝑛
) ≥ 𝜀

0
for 𝑛 ∈ N.

By the Rosenthall lemma (see [13, Lemma 1, page 18]) the
sequence (𝑈

𝑛
) in P and (𝑦

𝑛
) in 𝐵

𝐹
 can be chosen such that

for 𝑛 ∈ N,


𝑚

𝑥
0
,𝑦


𝑛


(𝑈

𝑛
) ≥ 𝜀

0
,


𝑚

𝑥
0
,𝑦


𝑛


(⋃

𝑚 ̸=𝑛

𝑈
𝑚
) <

𝜀
0

2
. (16)

Since, for 𝑛 ∈ N,


𝑚

𝑥
0
,𝑦


𝑛


(𝑈

𝑛
) = sup{



∫
𝑈
𝑛

𝑢 𝑑𝑚
𝑥
0
,𝑦


𝑛



: 𝑢 ∈ 𝐶
𝑏 (𝑋) ,

‖𝑢‖ = 1 with supp 𝑢 ⊂ 𝑈
𝑛
} ,

(17)

there exists a sequence (𝑢
𝑛
) in 𝐶

𝑏
(𝑋) such that ‖𝑢

𝑛
‖ = 1 with

supp 𝑢
𝑛
⊂ 𝑈

𝑛
and


𝑦


𝑛
(𝑇

𝑥
0

(𝑢
𝑛
))

=


∫
𝑋

𝑢
𝑛
𝑑𝑚

𝑥
0
,𝑦


𝑛


=



∫

𝑈
𝑛

𝑢
𝑛
𝑑𝑚

𝑥
0
,𝑦


𝑛



> 𝜀
0
.

(18)

Let 𝑌 = {∑
∞

𝑛=1
𝑎
𝑛
𝑢
𝑛

: (𝑎
𝑛
) ∈ 𝑐

0
}. We see that 𝑌 is an

isomorphic copy of 𝑐
0
. Assume that 𝑢 = ∑

∞

𝑛=1
𝑎
𝑛
𝑢
𝑛
for some

sequence (𝑎
𝑛
) in 𝑐

0
. Then for 𝑛 ∈ N we have


𝑦


𝑛
(𝑇

𝑥
0

(𝑢))

=


∫
𝑋

𝑢 𝑑𝑚
𝑥
0
,𝑦


𝑛



=



𝑎
𝑛
∫
𝑈
𝑛

𝑢
𝑛
𝑑𝑚

𝑥
0
,𝑦


𝑛

+ ∫
⋃

𝑚 ̸=𝑛

𝑈
𝑚

𝑢 𝑑𝑚
𝑥
0
,𝑦


𝑛



≥
𝑎𝑛

 𝜀0 − ∫
⋃

𝑚 ̸=𝑛

𝑈
𝑚

|𝑢| 𝑑

𝑚

𝑥
0
,𝑦


𝑛



≥
𝑎𝑛

 𝜀0 −

𝑚

𝑥
0
,𝑦


𝑛


(⋃

𝑚 ̸=𝑛

𝑈
𝑚
)‖𝑢‖

≥
𝑎𝑛

 𝜀0 −
𝜀
0

2
‖𝑢‖ .

(19)

But ‖𝑢‖ = sup
𝑛
|𝑎
𝑛
|, so


𝑇
𝑥
0

(𝑢)
𝐹

≥ sup
𝑛


𝑦


𝑛
(𝑇

𝑥
0

(𝑢))

≥ 𝜀

0 ‖𝑢‖ −
𝜀
0

2
‖𝑢‖ =

𝜀
0

2
‖𝑢‖ .

(20)

This means that 𝑇
𝑥
0

: 𝐶
𝑏
(𝑋) → 𝐹 is an isomorphism on 𝑌,

so𝐹 contains an isomorphic copy of 𝑐
0
, which contradicts our

assumption on 𝐹. This means that 𝑇
𝑥
is weakly compact for

each 𝑥 ∈ 𝐸. Hence in view ofTheorem 8 𝑚 : B𝑎 → L(𝐸, 𝐹)

is countably additive in the weak star operator topology and
by [19, Remark 7, page 923] and Theorem 11 we derive that 𝑇
is strongly bounded, as desired.

Remark 14. If 𝑋 is a compact Hausdorff space, the equiva-
lence (ii)⇔(iii) of Theorem 11 was obtained by Brooks and
Lewis (see [16, Theorem 2.1]).
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LetL∞
(B𝑎, 𝐸) stand for theBanach space of all bounded

strongly B𝑎-measurable functions 𝑔 : 𝑋 → 𝐸, equipped
with the uniform norm ‖ ⋅ ‖. Assume that𝑚 : B → L(𝐸, 𝐹)

with �̃�(𝑋) < ∞ is variationally semiregular. Then every 𝑔 ∈

L∞
(B𝑎, 𝐸) is 𝑚-integrable (see [39, Definition 2, page 523

andTheorem 5, page 524]) and ∫
𝑋
𝑔
𝑛
𝑑𝑚 → 0whenever (𝑔

𝑛
)

is a uniformly bounded sequence inL∞
(B𝑎, 𝐸) converging

pointwise to 0 (see [40, Proposition 2.2]).
Note that if 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) then 𝑦 ∘ 𝑓 is B𝑎-measurable.

Hence if 𝐸 is assumed to be separable then 𝑓 is stronglyB𝑎-
measurable; that is, 𝑓 ∈ L∞

(B𝑎, 𝐸) (see [2, Proposition 21,
page 9]).

Recall that a function 𝑔 : 𝑋 → 𝐸
 is weak∗-measurable

if for each 𝑥 ∈ 𝐸 the function 𝑋 ∋ 𝑡 → ⟨𝑥, 𝑔(𝑡)⟩ ∈ R isB𝑎-
measurable. For 𝜆 ∈ 𝑐𝑎

+
(B𝑎) by L1

𝑤
∗(𝜆, 𝐸


) we denote the

vector space of all weak∗-measurable functions 𝑔 : 𝑋 → 𝐸


for which there exists 𝑢 ∈ L1
(𝜆) such that ‖𝑔(𝑡)‖

𝐸
 ≤ 𝑢(𝑡)𝜆-

a.e. on𝑋 (see [41, page 26]).
Following [40] we can distinguish an important class of

operators onL∞
(B𝑎, 𝐸).

Definition 15. A bounded linear operator 𝑆 : L∞
(B𝑎, 𝐸) →

𝐹 is said to be 𝜎-smooth if 𝑆(𝑔
𝑛
) → 0 whenever (𝑔

𝑛
)

is a uniformly bounded sequence in L∞
(B𝑎, 𝐸) such that

𝑔
𝑛
(𝑡) → 0 for each 𝑡 ∈ 𝑋.

Proposition 16. Assume that 𝐸 is separable. Let 𝑇 :

𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
,‖ ⋅ ‖

𝐹
)-continuous and strongly

bounded linear operator, and let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) be

its representing measure. Then for each 𝑦

∈ 𝐹

 there exists
𝑔
𝑦
 ∈ L1

𝑤
∗(𝜆, 𝐸


) such that

𝑦

(𝑇 (𝑓)) = ∫

𝑋

⟨𝑓, 𝑔
𝑦
⟩ 𝑑𝜆 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) , (21)

where 𝜆 ∈ 𝑐𝑎+(B𝑎) is a control measure for {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
}.

Proof. Since 𝐸 is supposed to be separable, 𝐶
𝑏
(𝑋, 𝐸) ⊂

L∞
(B𝑎, 𝐹). Moreover, since 𝑚 : B𝑎 → L(𝐸, 𝐹) is vari-

ationally semiregular (see Theorem 11), the corresponding
integration operator 𝑆

𝑚
: L∞

(B𝑎, 𝐸) → 𝐹 is 𝜎-smooth and
for 𝑦 ∈ 𝐹 we have (see [40, Proposition 2.2])

𝑦

(𝑆

𝑚
(𝑓)) = ∫

𝑋

𝑓𝑑𝑚
𝑦
 = 𝑦


(𝑇 (𝑓)) ∀𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) .

(22)

It follows that 𝑆
𝑚
(𝑓) = 𝑇(𝑓) for each 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

Let 𝑦 ∈ 𝐹
. Then 𝑦


∘ 𝑆

𝑚
is a 𝜎-smooth functional

on L∞
(B𝑎, 𝐸), and 𝑚

𝑦
 is 𝜆-absolutely continuous; that is,

𝑚
𝑦
 ∈ 𝑐𝑎𝑏V

𝜆
(B𝑎, 𝐸


). According to the Radon-Nikodym

type theorem (see [41, Theorem 1.5.3]) there exists a weak∗-
measurable function 𝑔

𝑦
 : 𝑋 → 𝐸

 which satisfies the
following conditions.

(1) The function 𝑋 ∋ 𝑡 → ‖𝑔
𝑦
(𝑡)‖

𝐸
 ∈ R is B𝑎-

measurable and 𝜆-integrable; that is, ‖𝑔
𝑦
(⋅)‖

𝐸
 ∈

L1
(𝜆).

(2) For every 𝑥 ∈ 𝐸 and 𝐴 ∈ B𝑎,

𝑚
𝑦
 (𝐴) (𝑥) = ∫

𝐴

⟨𝑥, 𝑔
𝑦
⟩ 𝑑𝜆,


𝑚

𝑦



(𝐴) = ∫

𝐴


𝑔
𝑦
(⋅)

𝐸
𝑑𝜆.

(23)

It follows that 𝑔
𝑦
 ∈ L1

𝑤
∗(𝜆, 𝐸


). Note that for every 𝑠 =

∑
𝑛

𝑖=1
(1

𝐴
𝑖

⊗ 𝑥
𝑖
) ∈ S(B𝑎, 𝐸) the mapping ⟨𝑠, 𝑔

𝑦
⟩ : 𝑋 ∋ 𝑡 →

⟨𝑠(𝑡), 𝑔
𝑦
(𝑡)⟩ ∈ R isB𝑎-measurable and using (2) we get

𝑦

∘ 𝑆

𝑚 (𝑠) = ∫
𝑋

𝑠 𝑑𝑚
𝑦
 =

𝑛

∑

𝑖=1

𝑚
𝑦
 (𝐴

𝑖
) (𝑥

𝑖
)

=

𝑛

∑

𝑖=1

∫
𝑋

⟨1
𝐴
𝑖

⊗ 𝑥
𝑖
, 𝑔

𝑦
⟩ 𝑑𝜆

= ∫
𝑋

(

𝑛

∑

𝑖=1

⟨1
𝐴
𝑖

⊗ 𝑥
𝑖
, 𝑔

𝑦
⟩)𝑑𝜆

= ∫
𝑋

⟨

𝑛

∑

𝑖=1

(1
𝐴
𝑖

⊗ 𝑥
𝑖
) , 𝑔

𝑦
⟩𝑑𝜆

= ∫
𝑋

⟨𝑠, 𝑔
𝑦
⟩ 𝑑𝜆.

(24)

Now let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) ⊂ L∞

(B𝑎, 𝐸). Then there exists a
sequence (𝑠

𝑛
) in S(B𝑎, 𝐸) such that ‖𝑠

𝑛
(𝑡) − 𝑓(𝑡)‖

𝐸
→ 0

and ‖𝑠
𝑛
(𝑡)‖

𝐸
≤ ‖𝑓(𝑡)‖

𝐸
for each 𝑡 ∈ 𝑋 and 𝑛 ∈ N (see [2,

Theorem 1.6, page 4]). Then the mapping ⟨𝑓, 𝑔
𝑦
⟩ : 𝑋 ∋ 𝑡 →

⟨𝑓(𝑡), 𝑔
𝑦
(𝑡)⟩ ∈ R is B𝑎-measurable. Using the Lebesgue

dominated convergence theorem we have


∫
𝑋

⟨𝑠
𝑛
, 𝑔

𝑦
⟩ 𝑑𝜆 − ∫

𝑋

⟨𝑓, 𝑔
𝑦
⟩ 𝑑𝜆



=


∫

𝑋

⟨𝑠
𝑛
− 𝑓, 𝑔

𝑦
⟩ 𝑑𝜆



≤ ∫
𝑋


⟨𝑠

𝑛
− 𝑓, 𝑔

𝑦
⟩

𝑑𝜆

≤ ∫
𝑋

(𝑠𝑛 − 𝑓)(𝑡)
𝐸

⋅

𝑔
𝑦
(𝑡)

𝐸
𝑑𝜆 → 0.

(25)

It follows that

𝑦

(𝑇 (𝑓)) = (𝑦


∘ 𝑆

𝑚
) (𝑓) = lim

𝑛
(𝑦


∘ 𝑆

𝑚
) (𝑠

𝑛
)

= lim
𝑛
∫
𝑋

⟨𝑠
𝑛
, 𝑔

𝑦
⟩ 𝑑𝜆 = ∫

𝑋

⟨𝑓, 𝑔
𝑦
⟩ 𝑑𝜆.

(26)

4. Unconditionally Converging
Operators on 𝐶

𝑏
(𝑋,𝐸)

Recall that a series ∑∞

𝑖=1
𝑧
𝑖
in a Banach space 𝐺 is called

weakly unconditionally Cauchy (wuc) if, for each 𝑧

∈ 𝐺

,
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∑
∞

𝑖=1
|𝑧

(𝑧

𝑖
)| < ∞. We say that a bounded linear operator

𝑇 : 𝐺 → 𝐹 is unconditionally converging if, for every
weakly unconditionally Cauchy series ∑∞

𝑖=1
𝑧
𝑖
in 𝐺, the series

∑
∞

𝑖=1
𝑇(𝑧

𝑖
) converges unconditionally in a Banach space 𝐹.

If𝑋 is a compactHausdorff space, Swartz [33] proved that
every unconditionally converging operator 𝑇 : 𝐶(𝑋, 𝐸) → 𝐹

is strongly bounded. Dobrakov (see [28,Theorem 3]) showed
that if 𝑋 is a locally compact Hausdorff space, then every
unconditionally converging operator 𝑇 : 𝐶

0
(𝑋, 𝐸) → 𝐹

is strongly bounded and for every Borel set 𝐴 in 𝑋, the
operator 𝑚(𝐴) : 𝐸 → 𝐹 is unconditionally converging.
Moreover, Brooks and Lewis [27, Theorem 5.2] showed that
if 𝐸 contains no isomorphic copy of 𝑐

0
, then every strongly

bounded operator 𝑇 : 𝐶
0
(𝑋, 𝐸) → 𝐹 is unconditionally

converging. We will extend these results to the setting when
𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operator

and𝑋 is a completely regular Hausdorff space.

Theorem 17. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and unconditionally converging linear operator,
and𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹


)) stand for the representing measure

of 𝑇. Then the following statements hold.

(i) 𝑇 is strongly bounded.

(ii) For each 𝐴 ∈ B𝑎, 𝑚(𝐴) : 𝐸 → 𝐹 is an
unconditionally converging operator.

Proof. (i) Assume that (𝑓
𝑛
) is a uniformly bounded sequence

in 𝐶
𝑏
(𝑋, 𝐸) such that supp𝑓

𝑛
∩ supp𝑓

𝑚
= 0 for 𝑛 ̸= 𝑚. Then

{∑
𝑛∈𝑀

𝑓
𝑛
: 𝑀 ∈ 𝐹(N)} is bounded in 𝐶

𝑏
(𝑋, 𝐸) and, since 𝑇

is unconditionally converging, we obtain that 𝑇(𝑓
𝑛
) → 0.

Hence byTheorem 11 𝑇 is strongly bounded.
(ii) Let 𝐴 ∈ B𝑎 and assume that ∑∞

𝑛=1
𝑥
𝑛
is 𝑤𝑢𝑐 in

𝐸. Then sup{‖∑
𝑖∈𝑀

𝑥
𝑖
‖
𝐸

: 𝑀 ∈ 𝐹(N)} ≤ 𝑟. In view of
Theorem 11 {|𝑚

𝑦
 | : 𝑦


∈ 𝐵

𝐹
} is uniformly countably additive

and let 𝜆 ∈ 𝑐𝑎+(B𝑎) stand for the control measure of {|𝑚
𝑦
 | :

𝑦

∈ 𝐵

𝐹
} (see Corollary 12). Let 𝜀 > 0 be given. Then there

is 𝛿 > 0 such that sup{|𝑚
𝑦
 |(𝐵) : 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀/𝑟 whenever

𝐵 ∈ B𝑎, 𝜆(𝐵) ≤ 𝛿. Then there exist 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and
𝑈 ∈ P with 𝐴 ⊂ 𝑈 such that 𝜆(𝑈 \ 𝑍) ≤ 𝛿. Hence

sup {𝑚𝑦



(𝑈 \ 𝑍) : 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀. (27)

Then one can choose 𝑢 ∈ 𝐶
𝑏
(𝑋) with 0 ≤ 𝑢 ≤ 1

𝑋
, 𝑢|

𝑍
≡ 1,

and 𝑢|
𝑋\𝑈

≡ 0. Define 𝑇
𝑢
(𝑥) := 𝑇(𝑢 ⊗ 𝑥) for 𝑥 ∈ 𝐸. We shall

show that𝑇
𝑢
: 𝐸 → 𝐹 is unconditionally converging. Indeed,

for𝑀 ∈ 𝐹(N), ‖∑
𝑖∈𝑀

(𝑢 ⊗ 𝑥
𝑖
)‖ ≤ ‖∑

𝑖∈𝑀
𝑥
𝑖
‖
𝐸
≤ 𝑟. Hence the

series ∑∞

𝑛=1
𝑇(𝑢 ⊗ 𝑥

𝑛
) is unconditionally convergent; that is,

𝑇
𝑢
is unconditionally converging, as desired. Then for each

𝑥 ∈ 𝐵
𝐸
, we have

𝑇𝑢(𝑥) − 𝑚(𝐴)(𝑥)
𝐹

=


∫
𝑋

((𝑢 − 1
𝐴
) ⊗ 𝑥) 𝑑𝑚

𝐹

= sup {

𝑦

(∫

𝑋

((𝑢 − 1
𝐴
) ⊗ 𝑥) 𝑑𝑚)


: 𝑦


∈ 𝐵

𝐹
}

≤ sup {∫
𝑋

𝑢 − 1
𝐴

 𝑑

𝑚

𝑦



: 𝑦


∈ 𝐵

𝐹
}

≤ sup{∫
𝑈\𝑍

1
𝑋
𝑑

𝑚

𝑦



: 𝑦


∈ 𝐵

𝐹
}

≤ sup {𝑚𝑦



(𝑈 \ 𝑍) : 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀.

(28)

Hence ‖𝑇
𝑢
− 𝑚(𝐴)‖ ≤ 𝜀 and since the class of all uncondi-

tionally converging operators from 𝐸 to 𝐹 is a closed linear
subspace of (L(𝐸, 𝐹), ‖ ⋅ ‖) (see [28, page 20]), we derive that
𝑚(𝐴) is unconditionally converging.

Theorem 18. Assume that 𝐸 is separable and contains no
isomorphic copy of 𝑐

0
. Then for a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 the following statements are

equivalent.

(i) 𝑇 is unconditionally converging.
(ii) 𝑇 is strongly bounded.

Proof. (i)⇒(ii) See Theorem 17.
(ii)⇒(i) See [12, Corollary 18].

Recall that a subset 𝑃 of a Banach space 𝐺 is said to
be weakly precompact if every bounded sequence (𝑧

𝑛
) in 𝑃

contains a subsequence (𝑧
𝑘
𝑛

) so that 𝑧(𝑧
𝑘
𝑛

) converges for
each 𝑧 ∈ 𝐺

. An operator 𝑇 : 𝐺 → 𝐹 is said to be weakly
precompact if 𝑇(𝐵

𝐺
) is weakly precompact in a Banach space

𝐹.
Abbott et al. [17, Theorem 2.8] discussed the relationship

between strongly bounded and unconditionally converging
operators 𝑇 : 𝐶(𝑋, 𝐸) → 𝐹 whenever 𝑋 is a compact
Hausdorff space. They showed that if 𝐸 contains no iso-
morphic copy of ℓ1 and 𝐸

 has the RNP, then the classes of
strongly bounded and unconditionally converging operators
𝑇 : 𝐶(𝑋, 𝐸) → 𝐹 coincide. Now we state an analogue of
Theorem 2.8 of [17] for (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operator

𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹, where𝑋 is a completely regularHausdorff

space.

Theorem 19. Assume that 𝐸 contains no isomorphic copy of
ℓ
1 and 𝐸 has the RNP.Then for a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 the following statements are

equivalent.

(i) 𝑇
: 𝐹


→ 𝐶

𝑏
(𝑋, 𝐸)

 is weakly precompact.
(ii) 𝑇 is unconditionally converging.
(iii) 𝑇 is strongly bounded.

Proof. (i)⇒(ii) See [17, Theorem 2.7].
(ii)⇒(iii) See Theorem 17.
(iii)⇒(i) Assume that𝑇 is strongly bounded. Since {𝑦 ∘𝑇:

𝑦

∈ 𝐵

𝐹
} ⊂ 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

, we have to show that {𝑦 ∘ 𝑇 :

𝑦

∈ 𝐵

𝐹
} is a weakly precompact subset of the Banach

space (𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

, ‖ ⋅ ‖). By Theorem 11 {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
}

is uniformly countably additive, and let 𝜆 ∈ 𝑐𝑎
+
(B𝑎) be a
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control measure for {|𝑚
𝑦
 | : 𝑦


∈ 𝐵

𝐹
}. Since 𝐸 is supposed

to have the RNP, for each 𝑦


∈ 𝐵
𝐹
 there exists 𝑔

𝑦
 ∈

𝐿
1
(𝜆, 𝐸


) such that 𝑚

𝑦
(𝐴) = ∫

𝐴
𝑔
𝑦
𝑑𝜆 and |𝑚

𝑦
 |(𝐴) =

∫
𝐴
‖𝑔

𝑦
(⋅)‖

𝐸
𝑑𝜆 for 𝐴 ∈ B𝑎. It follows that {‖𝑔

𝑦
(⋅)‖

𝐸
 :

𝑦

∈ 𝐵

𝐹
} is a uniformly integrable subset of 𝐿1(𝜆) and

since 𝐸 contains no isomorphic copy ℓ1, {𝑔
𝑦
 : 𝑦


∈ 𝐵



𝐹
}

is a weakly precompact subset of 𝐿1(𝜆, 𝐸) (see [42]). Since
{𝑚

𝑦
 : 𝑦


∈ 𝐵

𝐹
} ⊂ 𝑐𝑎𝑏V

𝜆
(B𝑎, 𝐸


) (= the Banach

space of all 𝜆-continuous members of 𝑐𝑎𝑏V(B𝑎, 𝐸

)) and the

Radon-Nikodym theorem establishes the isometry between
𝑐𝑎𝑏V

𝜆
(B𝑎, 𝐸


) and 𝐿

1
(𝜆, 𝐸


), we obtain that {𝑦 ∘ 𝑇 : 𝑦


∈

𝐵
𝐹
} is a weakly precompact subset of 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

because
(𝑦


∘ 𝑇)(𝑓) = ∫

𝑋
𝑓𝑑𝑚

𝑦
 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

5. Weakly Completely Continuous
Operators on 𝐶

𝑏
(𝑋,𝐸)

Recall that a bounded linear operator 𝑇 from a Banach
space 𝐺 to a Banach space 𝐹 is said to be a Dieudonné
operator if 𝑇 maps 𝜎(𝐺, 𝐺


)-Cauchy sequences in 𝐺 into

weakly convergent sequences in 𝐹.
If 𝑋 is a compact Hausdorff space, then Dieudonné

operators from the Banach space 𝐶(𝑋, 𝐸) to 𝐹 were studied
by Bombal and Cembranos [23] and Abbott et al. (see [17,
Theorems 3.1, 3.5 andTheorem, page 334].

Definition 20. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹

is said to be weakly completely continuous if 𝑇(𝑓
𝑛
) is 𝜎(𝐹, 𝐹)-

convergent in 𝐹 whenever (𝑓
𝑛
) is a uniformly boundd

sequence in 𝐶
𝑏
(𝑋, 𝐸) such that (𝑓

𝑛
(𝑡)) is a 𝜎(𝐸, 𝐸)-Cauchy

sequence in 𝐸 for each 𝑡 ∈ 𝑋.

Proposition 21. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then the following statements are equivalent.

(i) 𝑇 is weakly completely continuous.
(ii) 𝑇 maps 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

)-Cauchy sequences in
𝐶
𝑏
(𝑋, 𝐸) onto 𝜎(𝐹, 𝐹)-convergent sequences in 𝐹.

Proof. (i)⇒(ii) Assume that 𝑇 is weakly completely contin-
uous and (𝑓

𝑛
) is a 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

)-Cauchy sequence
in 𝐶

𝑏
(𝑋, 𝐸). Then for each 𝑡 ∈ 𝑋, (𝑓

𝑛
(𝑡)) is a 𝜎(𝐸, 𝐸)-Cauchy

sequence in 𝐸 because Φ
𝑡,𝑥
 ∈ 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

, where Φ
𝑡,𝑥
(𝑓) =

𝑥

(𝑓(𝑡)) for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). Since (𝑓

𝑛
) is 𝛽

𝜎
-bounded, we get

sup ‖𝑓
𝑛
‖ < ∞. It follows that (𝑇(𝑓

𝑛
)) is 𝜎(𝐹, 𝐹)-convergent.

(ii)⇒(i) Assume that (ii) holds and (𝑓
𝑛
) is a uniformly

bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that (𝑓

𝑛
(𝑡)) is a 𝜎(𝐸, 𝐸)-

Cauchy sequence in 𝐸 for each 𝑡 ∈ 𝑋. We shall show that (𝑓
𝑛
)

is a𝜎(𝐶
𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

)-Cauchy sequence.Assumeon the
contrary that (𝑓

𝑛
) is not a 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

)-Cauchy
sequence. Then there exist Φ

0
∈ 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

and 𝜀
0
> 0 and

a subsequence (𝑔
𝑛
) of (𝑓

𝑛
) satisfying |Φ

0
(𝑔

2𝑛
− 𝑔

2𝑛
)| ≥ 𝜀

0

for 𝑛 ∈ N. Since 𝑔
2𝑛
(𝑡) − 𝑔

2𝑛−1
(𝑡) → 0 for each 𝑡 ∈ 𝑋,

by Theorem 5 𝑔
2𝑛
− 𝑔

2𝑛−1
→ 0 for 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

).
Hence Φ

0
(𝑔

2𝑛
− 𝑔

2𝑛−1
) → 0. This contradiction establishes

that (𝑓
𝑛
) is a 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

)-Cauchy sequence, and
it follows that a sequence (𝑇(𝑓

𝑛
)) is 𝜎(𝐹, 𝐹)-convergent in

𝐹.

From Proposition 21 it follows that every weakly com-
pletely continuous operator 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 is a

Dieudonné operator. As a consequence, we get the following
result (see [37, Problem 8, page 54]).

Corollary 22. Assume that 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is a weakly

completely continuous operator. Then 𝑇 is unconditionally
converging.

Theorem 23. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and weakly completely continuous linear operator
and𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹


)) stand for its representing measure.

Then the following statements hold.

(i) 𝑇 is strongly bounded.

(ii) For each 𝐴 ∈ B𝑎, 𝑚(𝐴) : 𝐸 → 𝐹 is a Dieudonné
operator.

Proof. (i) It follows from Corollary 22 andTheorem 17.
(ii) Let𝐴 ∈ B𝑎 and assume that (𝑥

𝑛
) is a 𝜎(𝐸, 𝐸)-Cauchy

sequence in 𝐸. Hence sup
𝑛
‖𝑥

𝑛
‖
𝐸
< ∞. Since 𝑇 is strongly

bounded, arguing as in the proof of Theorem 17 for a given
𝜀 > 0 there exist 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and 𝑈 ∈ P with 𝐴 ⊂ 𝑈

such that

sup {𝑚𝑦



(𝑈 \ 𝑍) : 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀. (29)

Then we can choose 𝑢 ∈ 𝐶
𝑏
(𝑋) with 0 ≤ 𝑢 ≤ 1

𝑋
, 𝑢|

𝑍
≡ 1,

and 𝑢|
𝑋\𝑈

≡ 0. Define 𝑇
𝑢
(𝑥) := 𝑇(𝑢 ⊗ 𝑥) for 𝑥 ∈ 𝐸. We

shall show that 𝑇
𝑢
: 𝐸 → 𝐹 is a Dieudonné operator. Let

ℎ
𝑛
= 𝑢 ⊗ 𝑥

𝑛
for 𝑛 ∈ N. Then sup

𝑛
‖ℎ

𝑛
‖ ≤ sup

𝑛
‖𝑥

𝑛
‖
𝐸
< ∞

and (ℎ
𝑛
(𝑡)) is a 𝜎(𝐸, 𝐸)-Cauchy sequence in𝐸 for each 𝑡 ∈ 𝑋.

Hence (𝑇(ℎ
𝑛
)) is 𝜎(𝐹, 𝐹)-convergent in𝐹 and thismeans that

𝑇
𝑢
is a Dieudonné operator. Then arguing as in the proof of

Theorem 17, we obtain that ‖𝑇
𝑢
− 𝑚(𝐴)‖ ≤ 𝜀 and since the

class of all Dieudonné operators from 𝐸 to 𝐹 is a closed linear
subspace of (L(𝐸, 𝐹), ‖ ⋅ ‖) (see [17, Theorem 3.5]), we derive
that𝑚(𝐴) is a Dieudonné operator.

6. Completely Continuous
Operators on 𝐶

𝑏
(𝑋,𝐸)

Recall that a bounded linear operator 𝑇 from a Banach space
𝐺 to a Banach space 𝐹 is said to be a Dunford-Pettis operator
if 𝑧

𝑛
→ 0 in 𝐺 for 𝜎(𝐺, 𝐺

) implies ‖𝑇(𝑧
𝑛
)‖
𝐹
→ 0 (see [43,

Section 19]).

Definition 24. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹

is said to be completely continuous if ‖𝑇(𝑓
𝑛
)‖
𝐹
→ 0whenever

(𝑓
𝑛
) is a uniformly bounded sequence in 𝐶

𝑏
(𝑋, 𝐸) such that

𝑓
𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸) for each 𝑡 ∈ 𝑋.

UsingTheorem 5 one can get the following result.
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Proposition 25. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then the following statements are equivalent.

(i) 𝑇 is completely continuous.
(ii) ‖𝑇(𝑓

𝑛
)‖
𝐹

→ 0 whenever 𝑓
𝑛

→ 0 in 𝜎(𝐶
𝑏
(𝑋, 𝐸),

𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

).

Theorem 26. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and completely continuous operator and 𝑚 ∈

𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) its representing measure. Then the following

statements hold.

(i) 𝑇 is strongly bounded.
(ii) For each 𝐴 ∈ B𝑎, 𝑚(𝐴) : 𝐸 → 𝐹 is a Dunford-Pettis

operator.

Proof. (i) In view of [43, Theorem 19.1] and Proposition 25 𝑇
maps 𝜎(𝐶

𝑏
(𝑋, 𝐸), 𝐶

𝑏
(𝑋, 𝐸)


) Cauchy sequences in 𝐶

𝑏
(𝑋, 𝐸)

onto norm convergent sequences in 𝐹. It follows that 𝑇
is a Dieudonné operator and hence 𝑇 is unconditionally
converging. Thus 𝑇 is strongly bounded (see Theorem 17).

(ii) Let𝐴 ∈ B𝑎 and assume that𝑥
𝑛
→ 0 in𝐸 for𝜎(𝐸, 𝐸).

Then sup ‖𝑥
𝑛
‖
𝐸
< ∞. Since𝑇 is strongly bounded, arguing as

in the proof ofTheorem 17 for a given 𝜀 > 0 there exist𝑍 ∈ Z
with 𝑍 ⊂ 𝐴 and 𝑈 ∈ P with 𝐴 ⊂ 𝑈 such that

sup {𝑚𝑦



(𝑈 \ 𝑍) : 𝑦


∈ 𝐵

𝐹
} ≤ 𝜀. (30)

Then we can choose 𝑢 ∈ 𝐶
𝑏
(𝑋)with 0 ≤ 𝑢 ≤ 1

𝑋
, 𝑢|

𝑍
≡ 1, and

𝑢|
𝑋\𝑈

≡ 0. Define 𝑇
𝑢
(𝑥) := 𝑇(𝑢 ⊗ 𝑥) for 𝑥 ∈ 𝐸. We shall show

that𝑇
𝑢
: 𝐸 → 𝐹 is a Dunford-Pettis operator. Let ℎ

𝑛
= 𝑢⊗𝑥

𝑛

for 𝑛 ∈ N. Then ℎ
𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸


) for each 𝑡 ∈ 𝑋 and

sup
𝑛
‖ℎ

𝑛
‖ < ∞. It follows that ‖𝑇

𝑢
(𝑥

𝑛
)‖
𝐹
= ‖𝑇(ℎ

𝑛
)‖
𝐹
→ 0

and this means that 𝑇
𝑢
: 𝐸 → 𝐹 is a Dunford-Pettis operator

(see [43, Theorem 19.1]). Then arguing as in the proof of (ii)
ofTheorem 17, we obtain that ‖𝑇

𝑢
−𝑚(𝐴)‖ ≤ 𝜀. Since the class

of all Dunford-Pettis operators from 𝐸 to 𝐹 is a closed linear
subspace of (L(𝐸, 𝐹), ‖ ⋅ ‖) (see [28, page 27]), we derive that
𝑚(𝐴) is a Dunford-Pettis operator.

Corollary 27. Assume that 𝐸 is a Schur space. Let 𝑇 :

𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖)-continuous linear operator. The

the following statements are equivalent.

(i) 𝑇 is strongly bounded.
(ii) 𝑇 is completely continuous.
(iii) 𝑇 is weakly completely continuous.
(iv) 𝑇 is unconditionally converging.
(v) ∑∞

𝑛=1
𝑇(𝑓

𝑛
) converges unconditionally whenever (𝑓

𝑛
) is

a uniformly bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that

supp𝑓
𝑛
∩ supp𝑓

𝑚
= 0 for 𝑛 ̸= 𝑚.

Proof. (i)⇒(ii) Assume that𝑇 is strongly bounded and (𝑓
𝑛
) is

a uniformly bounded sequence in𝐶
𝑏
(𝑋, 𝐸) such that𝑓

𝑛
(𝑡) →

0 in 𝜎(𝐸, 𝐸

) for each 𝑡 ∈ 𝑋. It follows that ‖𝑓

𝑛
(𝑡)‖

𝐸
→

0 because 𝐸 is supposed to be a Schur space. Hence by
Theorem 11 ‖𝑇(𝑓

𝑛
)‖
𝐹
→ 0, as desired.

(ii)⇒(iii) It is obvious.
(iii)⇒(iv) See Proposition 21.
(iv)⇒(v)Assume that (iv) hold and let (𝑓

𝑛
) be a uniformly

bounded sequence in𝐶
𝑏
(𝑋, 𝐸) such that supp𝑓

𝑛
∩ supp𝑓

𝑚
=

0 for 𝑛 ̸= 𝑚. Let 𝐶 = sup
𝑛
‖𝑓

𝑛
‖ and (𝑎

𝑛
) ∈ ℓ

∞. Then

sup
𝑛



𝑛

∑

𝑖=1

𝑎
𝑖
𝑓
𝑖



≤ 𝐶 sup
𝑛

𝑎𝑛
 (31)

and it follows that ∑∞

𝑛=1
𝑓
𝑛
is 𝑤𝑢𝑐 in 𝐶

𝑏
(𝑋, 𝐸) (see [44]).

Hence ∑∞

𝑛=1
𝑇(𝑓

𝑛
) converges unconditionally in 𝐹.

(v)⇒(i) It follows fromTheorem 11.

Theorem 28. Assume that 𝐸 is separable. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) →

𝐹 be a (𝛽
𝜎
,‖⋅‖

𝐹
)-continuous and strongly bounded operator and

let𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) be its representingmeasure.Then the

following statements are equivalent.

(i) 𝑇 is completely continuous.
(ii) lim

𝑛
∫
𝑋
⟨𝑓

𝑛
, 𝑔

𝑦


𝑛

⟩𝑑𝜆 = 0 whenever (𝑓
𝑛
) is a uniformly

bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that 𝑓

𝑛
(𝑡) → 0 in

𝜎(𝐸, 𝐸

) for 𝑡 ∈ 𝑋 and (𝑦

𝑛
) is a sequence in 𝐵

𝐹
 .

Here 𝜆 ∈ 𝑐𝑎
+
(B𝑎) is a control measure for {|𝑚

𝑦
 | : 𝑦


∈ 𝐵

𝐹
}

and for 𝑛 ∈ N, 𝑔
𝑦


𝑛

is an element of L1

𝑤
∗(𝜆, 𝐸


) corresponding

to𝑚
𝑦


𝑛

(see Proposition 16).

Proof. (i)⇒(ii) Assume that 𝑇 is completely continuous and
let (𝑓

𝑛
) be a uniformly bounded sequence in 𝐶

𝑏
(𝑋, 𝐸) such

that 𝑓
𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸


) for each 𝑡 ∈ 𝑋 and (𝑦



𝑛
) is a

sequence in 𝐵
𝐹
 . Then, by Proposition 16,


∫
𝑋

⟨𝑓
𝑛
, 𝑔

𝑦


𝑛

⟩ 𝑑𝜆


=

𝑦


𝑛
(𝑇 (𝑓

𝑛
))

≤
𝑇(𝑓𝑛)

𝐹
→ 0. (32)

(ii)⇒(i) Assume that (ii) holds. Let (𝑓
𝑛
) be a uniformly

bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that 𝑓

𝑛
(𝑡) → 0 in

𝜎(𝐸, 𝐸

) for each 𝑡 ∈ 𝑋. Choose a sequence (𝑦

𝑛
) in 𝐵

𝐹
 such

that |𝑦
𝑛
(𝑇(𝑓

𝑛
))| ≥ (1/2)‖𝑇(𝑓

𝑛
)‖
𝐹
. Hence, by Proposition 16,

𝑇(𝑓𝑛)
𝐹

≤ 2

𝑦


𝑛
(𝑇 (𝑓

𝑛
))

= 2


∫
𝑋

⟨𝑓
𝑛
, 𝑔

𝑦


𝑛

⟩ 𝑑𝜆


→ 0,

(33)

so 𝑇 is completely continuous.

7. Weakly Compact Operators on 𝐶
𝑏
(𝑋,𝐸)

If 𝑋 is a compact Hausdorff space (resp., 𝑋 is a locally
compact Hausdorff space), weakly compact operators 𝑇 :

𝐶(𝑋, 𝐸) → 𝐹 (resp., 𝑇 : 𝐶
𝑜
(𝑋, 𝐸) → 𝐹) have been studied

intensively by Batt and Berg [19, 20], Brooks and Lewis [27],
Bombal [24], and Saab [29]. The aim of this section is to
extend a characterization of weakly compact operators 𝑇 :

𝐶
𝑜
(𝑋, 𝐸) → 𝐹 of [27,Theorem 4.1] to (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous

and weakly compact operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹.

Theorem 29. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator and let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) be

its representing measure. Then the following statements hold.
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(i) Assume that 𝑇 is weakly compact. Then 𝑇 is strongly
bounded and for each 𝐴 ∈ B𝑎, 𝑚(𝐴) : 𝐸 → 𝐹 is a
weakly compact operator.

(ii) Assume that 𝐸 and 𝐸 have the RNP and 𝑇 is strongly
bounded and for each 𝐴 ∈ B𝑎, 𝑚(𝐴) : 𝐸 → 𝐹 is a
weakly compact operator. Then 𝑇 is weakly compact.

Proof. (i) In view of [45, Corollary 9.3.2.] the conjugate
operator 𝑇

: 𝐹

→ 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

maps 𝐵
𝐹
 onto a relatively

weakly compact subset of (𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

, ‖ ⋅ ‖), where (𝑦

∘

𝑇)(𝑓) = ∫
𝑋
𝑓𝑑𝑚

𝑦
 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). Hence {𝑚

𝑦
 : 𝑦


∈

𝐵
𝐹
} is a relatively weakly compact subset of the Banach

space 𝑐𝑎𝑏V(B𝑎, 𝐸

), equipped with the total variation norm.

Making use of the Bartle-Dunford-Schwartz theorem [13,
Theorem 5, pages 105-106], we obtain that the set {|𝑚

𝑦
 | : 𝑦


∈

𝐵
𝐹
} is uniformly countably additive and, for each 𝐴 ∈ B𝑎,

the set {𝑚
𝑦
(𝐴) : 𝑦


∈ 𝐵

𝐹
} is relatively weakly compact

in 𝐸
. Thus by Theorem 11 𝑇 is strongly bounded and, since

𝑚(𝐴)

(𝑦


) = 𝑚

𝑦
(𝐴), we derive that𝑚(𝐴) : 𝐸 → 𝐹 is weakly

compact.
(ii) By Theorem 11 {|𝑚|

𝑦
 : 𝑦


∈ 𝐵

𝐹
} is uniformly

countably additive. Moreover, for each 𝐴 ∈ B𝑎, {𝑚
𝑦
 :

𝑦

∈ 𝐵

𝐹
} is relatively weakly compact in 𝐸

. This means
that {𝑚

𝑦
 : 𝑦


∈ 𝐵

𝐹
} is relatively weakly compact subset of

𝑀
𝜎
(B𝑎, 𝐸


) (see [13, Theorem 5, pages 105-106]). Since

𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

= {Φ
𝜇
: 𝜇 ∈ 𝑀

𝜎
(B𝑎, 𝐸


)}, {Φ

𝑚
𝑦

: 𝑦


∈ 𝐵

𝐹
}

is a relatively weakly compact subset of 𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

. Hence
according to [45, Corollary 9.3.2] 𝑇 is weakly compact.

Corollary 30. Assume that𝐸 is reflexive.Then for a (𝛽
𝜎
, ‖⋅‖

𝐹
)-

continuous linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 the following

statements are equivalent.

(i) 𝑇 is weakly compact.

(ii) 𝑇 is strongly bounded.

As a consequence of Corollaries 13 and 30 we can state
a generalization of the well known theorem due to Batt and
Berg telling us that if 𝑋 is a compact Hausdorff space, 𝐸 is
reflexive, and 𝐹 contains no isomorphic copy of 𝑐

𝑜
, then every

bounded linear operator𝑇 : 𝐶(𝑋, 𝐸) → 𝐹 is weakly compact
(see [20, Theorem 9]).

Corollary 31. Assume that 𝐸 is reflexive and 𝐹 contains no
isomorphic copy of 𝑐

𝑜
. Then every (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is weakly compact.

8. Nuclear Operators on 𝐶
𝑏
(𝑋,𝐸)

Following [46, Ch. 3, §7] we have the following definition.

Definition 32. A (𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operator 𝑇 :

𝐶
𝑏
(𝑋, 𝐸) → 𝐹 is said to be nuclear if it can be represented as

𝑇 (𝑓) =

∞

∑

𝑛=1

𝜆
𝑛
Φ
𝑛
(𝑓) 𝑦

𝑛
for each 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) , (34)

where (Φ
𝑛
) is a 𝛽

𝜎
-equicontinuous sequence in 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

,
(𝑦

𝑛
) is a bounded sequence in 𝐹, and (𝜆

𝑛
) is a sequence in R

such that ∑∞

𝑛=1
|𝜆

𝑛
| < ∞.

In particular, an operator𝐿 ∈ L(𝐸, 𝐹) is said to be nuclear
if there exist sequences (𝑥

𝑛
) in 𝐸 and (𝑦

𝑛
) in 𝐹 such that 𝐿 is

of the form

𝐿 (𝑥) =

∞

∑

𝑛=1

𝑥


𝑛
(𝑥) 𝑦𝑛 for each 𝑥 ∈ 𝐸, (35)

and∑∞

𝑛=1
‖𝑥



𝑛
‖
𝐸
 ⋅ ‖𝑦

𝑛
‖
𝐹
< ∞. Then we say that∑∞

𝑛=1
(𝑥



𝑛
⊗ 𝑦

𝑛
)

represents a nuclear operator 𝐿.The nuclear norm of a nuclear
operator 𝐿 : 𝐸 → 𝐹 is defined by

‖𝐿‖nuc := inf
∞

∑

𝑛=1


𝑥


𝑛

𝐸
⋅
𝑦𝑛

𝐹
, (36)

where the infimum is taken over all sequences (𝑥
𝑛
) and (𝑦

𝑛
)

such that 𝐿(𝑥) = ∑
∞

𝑛=1
𝑥


𝑛
(𝑥)𝑦

𝑛
holds for each 𝑥 ∈ 𝐸. The

nuclear operators 𝐿 : 𝐸 → 𝐹 form a normed space under
the nuclear norm ‖ ⋅ ‖nuc, which we shall denote by N(𝐸, 𝐹)

(see [13, Proposition 2, page 170]).
If𝑋 is a compact Hausdorff space, then nuclear operators

from theBanach space𝐶(𝑋, 𝐸) to𝐹have been studied by Saab
and Smith [31]. In this section we extend Proposition 1 of [31]
to the completely regular setting.

Let 𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

stand for bidual of (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝜎
). Note

that 𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

= (𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

, ‖ ⋅ ‖)
. Then one can embed

𝐵(B𝑎, 𝐸) into 𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

by the mapping 𝜋 : 𝐵(B𝑎, 𝐸) →

𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

, where, for 𝑔 ∈ 𝐵(B𝑎, 𝐸),

𝜋 (𝑔) (Φ
𝜇
) := ∫

𝑋

𝑔𝑑𝜇 for 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸


) . (37)

(Here Φ
𝜇
(𝑓) = ∫

𝑋
𝑓𝑑𝜇 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸)).

Proposition 33. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator such that 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is

weakly compact for each 𝑥 ∈ 𝐸, and let𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


))

be its representingmeasure.Then the following statements hold.

(i) (𝑇
∘ 𝜋)(𝑔) = ∫

𝑋
𝑔𝑑𝑚

𝑦
 for 𝑔 ∈ 𝐵(Ba, 𝐸).

(ii) 𝑖
𝐹
(𝑚(𝐴)(𝑥)) = (𝑇


∘ 𝜋)(1

𝐴
⊗ 𝑥) for 𝐴 ∈ B𝑎, 𝑥 ∈ 𝐸.

Proof. (i) Let 𝑇
: 𝐹


→ 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

and 𝑇
: 𝐶

𝑏
(𝑋, 𝐸)



𝛽
𝜎

→

𝐹
 stand for the conjugate and the biconjugate operators of𝑇,

respectively. Then for each 𝑦 ∈ 𝐹
, 𝑦(𝑇(𝑓)) = ∫

𝑋
𝑓𝑑𝑚

𝑦
 =

∫
𝑋
𝑓𝑑𝑚

𝑦
 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), and hence, for 𝑔 ∈ 𝐵(B𝑎, 𝐸),

((𝑇

∘ 𝜋) (𝑔)) (𝑦


) = 𝜋 (𝑔) (𝑇


(𝑦


)) = 𝜋 (𝑔) (𝑦


∘ 𝑇)

= ∫
𝑋

𝑔𝑑𝑚
𝑦
 .

(38)
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(ii) Let 𝐴 ∈ B𝑎. Then by (i) for each 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹


we get

((𝑇

∘ 𝜋) (1

𝐴
⊗ 𝑥)) (𝑦


)

= ∫
𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝑚

𝑦


= 𝑚
𝑦
 (𝐴) (𝑥) = 𝑦


(𝑚 (𝐴) (𝑥)) = 𝑖

𝐹 (𝑚 (𝐴) (𝑥)) (𝑦

) .

(39)

Hence 𝑖
𝐹
(𝑚(𝐴)(𝑥)) = (𝑇


∘𝜋)(1

𝐴
⊗𝑥) for𝐴 ∈ B𝑎, 𝑥 ∈ 𝐸.

For 𝑚 : B𝑎 → L(𝐸, 𝐹) by |𝑚|nuc(𝐴) we denote the
variation of𝑚 on 𝐴 ∈ B𝑎; that is,

|𝑚|nuc (𝐴) := sup
𝑛

∑

𝑖=1

𝑚(𝐴 𝑖
)
nuc , (40)

where the supremum is taken over all finite B𝑎-partitions
(𝐴

𝑖
)
𝑛

𝑖=1
of 𝐴.

Theorem 34. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a

(𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and nuclear operator and let

𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹


)) be its representing measure. Then

the following statements hold.

(i) 𝑇 is strongly bounded.
(ii) For each 𝐴 ∈ B𝑎,𝑚(𝐴) ∈ N(𝐸, 𝐹).
(iii) |𝑚|

𝑛𝑢𝑐
(𝑋) < ∞ and 𝑚 : B𝑎 → N(𝐸, 𝐹) is ‖ ⋅ ‖

𝑛𝑢𝑐
-

countably additive.

Proof. (i) In view of [46, Ch. 3, §7, Corollary 1]𝑇 is (𝛽
𝜎
, ‖ ⋅‖

𝐹
)-

compact. Hence byTheorem 29 𝑇 is strongly bounded.
(ii) Assume that 𝑇 is of the form

𝑇 (𝑓) =

∞

∑

𝑛=1

𝜆
𝑛
Φ
𝑛
(𝑓) 𝑦

𝑛
for each 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) , (41)

where (Φ
𝑛
) is a 𝛽

𝜎
-equicontinuous sequence in

𝐶
𝑏
(𝑋, 𝐸)



𝛽
𝜎

, (𝑦
𝑛
) is a bounded sequence in 𝐹, and (𝜆

𝑛
)

is a sequence in R such that ∑∞

𝑛=1
|𝜆

𝑛
| < ∞. Then for 𝑛 ∈ N,

Φ
𝑛
(𝑓) = Φ

𝜇
𝑛

(𝑓) = ∫
𝑋
𝑓𝑑𝜇

𝑛
, where 𝜇

𝑛
∈ 𝑀

𝜎
(B𝑎, 𝐸


)

and |𝜇
𝑛
|(𝑋) = ‖Φ

𝜇
𝑛

‖ (see Remark 9). It follows that
sup

𝑛
|𝜇

𝑛
|(𝑋) = sup ‖Φ

𝜇
𝑛

‖ < ∞. Assume that 𝐴 ∈ B𝑎. Then
for 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹, using Proposition 33 we get

𝑦

(𝑚 (𝐴) (𝑥)) = ((𝑇


∘ 𝜋) (1

𝐴
⊗ 𝑥)) (𝑦


)

= 𝜋 (1
𝐴
⊗ 𝑥) (𝑦


∘ 𝑇)

= 𝜋 (1
𝐴
⊗ 𝑥)(

∞

∑

𝑛=1

𝜆
𝑛
𝑦

(𝑦

𝑛
)Φ

𝜇
𝑛

)

=

∞

∑

𝑛=1

𝜆
𝑛
𝑦

(𝑦

𝑛
) 𝜋 (1

𝐴
⊗ 𝑥) (Φ

𝜇
𝑛

)

=

∞

∑

𝑛=1

𝜆
𝑛
𝑦

(𝑦

𝑛
) ∫

𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝜇

𝑛

=

∞

∑

𝑛=1

𝜆
𝑛
𝑦

(𝑦

𝑛
) 𝜇

𝑛 (𝐴) (𝑥)

= 𝑦

(

∞

∑

𝑛=1

𝜆
𝑛
𝜇
𝑛 (𝐴) (𝑥) 𝑦𝑛) .

(42)

Hence

𝑚(𝐴) (𝑥) =

∞

∑

𝑛=1

𝜆
𝑛
𝜇
𝑛 (𝐴) (𝑥) 𝑦𝑛 for 𝑥 ∈ 𝐸. (43)

Note that ‖𝜇
𝑛
(𝐴)‖

𝐸
 ≤ |𝜇

𝑛
|(𝐴) ≤ |𝜇

𝑛
|(𝑋), and hence

∞

∑

𝑛=1

𝜇𝑛(𝐴)
𝐸

𝜆𝑛𝑦𝑛
𝐹

≤

∞

∑

𝑛=1

𝜇𝑛
 (𝑋)

𝜆𝑛


𝑦𝑛
𝐹

≤ sup
𝑛

𝜇𝑛
 (𝑋) sup

𝑛

𝑦𝑛
𝐹

∞

∑

𝑛=1

𝜆𝑛
 < ∞.

(44)

This means that 𝑚(𝐴) : 𝐸 → 𝐹 is a nuclear operators, as
desired.

(iii) To show that |𝑚|nuc(𝑋) < ∞, assume (𝐴
𝑖
)
𝑘

𝑖=1
is aB𝑎-

partition of𝑋. Then using (43)

𝑘

∑

𝑖=1

𝑚(𝐴 𝑖
)
nuc ≤

𝑘

∑

𝑖=1

∞

∑

𝑛=1

𝜆𝑛


𝜇𝑛 (𝐴 𝑖
)
𝐸

𝑦𝑛
𝐹

≤

𝑘

∑

𝑖=1

∞

∑

𝑛=1

𝜆𝑛


𝜇𝑛
 (𝐴 𝑖

)
𝑦𝑛

𝐹

≤

𝑘

∑

𝑖=1

(

∞

∑

𝑛=1

𝜆𝑛


𝜇𝑛
 (𝐴 𝑖

)
𝑦𝑛

𝐹
)

≤

∞

∑

𝑛=1

𝜆𝑛


𝜇𝑛
 (𝑋)

𝑦𝑛
𝐹

≤ sup
𝑛

𝜇𝑛
 (𝑋) sup

𝑛

𝑦𝑛
𝐹

∞

∑

𝑛=1

𝜆𝑛
 < ∞.

(45)

Hence |𝑚|nuc(𝑋) < ∞, as desired. Now we will show that
𝑚 : B𝑎 → N(𝐸, 𝐹) is ‖⋅‖nuc-countably additive. Let 𝜀 > 0 be
given. Since ∑∞

𝑛=1
|𝜆

𝑛
||𝜇

𝑛
|(𝑋) ≤ sup

𝑛
|𝜇

𝑛
|(𝑋)∑

∞

𝑛=1
|𝜆

𝑛
| < ∞,

one can choose 𝑛
𝜀
∈ N such that

∞

∑

𝑛=𝑛
𝜀
+1

𝜆𝑛


𝜇𝑛
 (𝑋) ≤

𝜀

2𝑎
, where 𝑎 = sup

𝑛

𝑦𝑛
𝐹
. (46)

Since 𝜇
𝑛
∈ 𝑀

𝜎
(B𝑎, 𝐸


), for 𝑛 ∈ N, there exists 𝑘 ∈ N such

that


𝜆
𝑗




𝜇
𝑗


(

∞

⋃

𝑖=𝑘

𝐴
𝑖
) ≤

𝜀

2𝑛
𝜀
𝑎

for 𝑗 = 1, . . . , 𝑛
𝜀
. (47)
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Hence



𝑚(

∞

⋃

𝑖=𝑘

𝐴
𝑖
) −

𝑘−1

∑

𝑖=1

𝑚(𝐴
𝑖
)

nuc

=



𝑚(

∞

⋃

𝑖=𝑘

𝐴
𝑖
)

nuc

≤

∞

∑

𝑛=1

𝜆𝑛




𝜇
𝑛
(

∞

⋃

𝑖=𝑘

𝐴
𝑖
)

𝐸

𝑦𝑛
𝐹

≤ 𝑎

𝑛
𝜀

∑

𝑛=1

𝜆𝑛


𝜇𝑛
 (

∞

⋃

𝑖=𝑘

𝐴
𝑖
) + 𝑎

∞

∑

𝑛=𝑛
𝜀
+1

𝜆𝑛


𝜇𝑛
 (

∞

⋃

𝑖=𝑘

𝐴
𝑖
)

≤ 𝑎
𝜀

2𝑎
+ 𝑎

𝜀

2𝑎
= 𝜀.

(48)

This means that 𝑚 : B𝑎 → N(𝐸, 𝐹) is ‖ ⋅ ‖nuc-countably
additive.

9. Strictly Singular Operators on 𝐶
𝑏
(𝑋,𝐸)

Definition 35. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹

is said to be strictly singular if it does not have a bounded
inverse on any infinite-dimensional subspace contained in
𝐶
𝑏
(𝑋, 𝐸).

Bilyeu and Lewis [21, Theorem 4.1] showed that if 𝑋 is
compact, then every strictly singular operator 𝑇 : 𝐶(𝑋, 𝐸) →

𝐹 is strongly bounded and, for each Borel set in 𝑋, 𝑚(𝐴) :
𝐸 → 𝐹 is strictly singular. Strictly singular operators 𝑇 :

𝐶(𝑋, 𝐸) → 𝐹 have been studied by Bessaga and Pełczyński
[44] and Abbott et al. [18].

Now we show an analogue of Theorem 4.1 of [21] for
(𝛽

𝜎
, ‖ ⋅ ‖)-continuous and strictly singular operators 𝑇 :

𝐶
𝑏
(𝑋, 𝐸) → 𝐹, where 𝑋 is a completely regular Hausdorff

space.

Theorem 36. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continu-

ous and strictly singular linear operator and let 𝑚 ∈ 𝑀
𝜎
(𝑋,

L(𝐸, 𝐹

)) be its representing measure. Then the following

statements hold.

(i) 𝑇 is strongly bounded.

(ii) For each 𝐴 ∈ B𝑎,𝑚(𝐴) :→ 𝐹 is strictly singular.

Proof. Since 𝑇 is strictly singular, 𝑇 is unconditionally
converging (see [47, Proposition 1.5]) and hence by
Theorem 17 𝑇 is strongly bounded. Suppose that there is
𝐴 ∈ B𝑎 such that 𝑚(𝐴) : 𝐸 → 𝐹 is not strictly singular.
Then there is an infinite-dimensional subspace 𝑀 of 𝐸 so
that𝑚(𝐴)|

𝑀
has a bounded inverse. Therefore, there is 𝑎 > 0

so that ‖𝑚(𝐴)(𝑥)‖
𝐹
≥ 𝑎‖𝑥‖

𝐸
for each 𝑥 ∈ 𝑀.

Let 𝜀 > 0 be given such that 2𝜀 < 𝑎. Hence byCorollary 12,
there exist 𝑍 ∈ Z, 𝑍 ⊂ 𝐴 and 𝑈 ∈ P, 𝑈 ⊃ 𝐴 such that
�̃�(𝑈\𝑍) ≤ 𝜀. Choose a function𝑢

𝑜
∈ 𝐶

𝑏
(𝑋)with 0 ≤ 𝑢

𝑜
≤ 1

𝑋

such that 𝑢
𝑜
|
𝑍
≡ 1 and 𝑢

𝑜
|
𝑋\𝑈

≡ 0. For 𝑥 ∈ 𝐸 let ℎ
𝑥
= 𝑢

𝑜
⊗ 𝑥.

Then, byTheorem 8,

𝑇(ℎ𝑥)
𝐹

=



∫
𝑈

ℎ
𝑥
𝑑𝑚

𝐹

≥


∫
𝑍

ℎ
𝑥
𝑑𝑚

𝐹

−



∫
𝑈\𝑍

ℎ
𝑥
𝑑𝑚

𝐹

≥


∫
𝑍

ℎ
𝑥
𝑑𝑚

𝐹

−



∫
𝑈\𝑍

ℎ
𝑥
𝑑𝑚

𝐹

≥ ‖𝑚(𝑍)(𝑥)‖𝐹 − �̃� (𝑈 \ 𝑍) ‖𝑥‖𝐸

≥ ‖𝑚(𝐴)(𝑥)‖𝐹 − ‖𝑚(𝐴 \ 𝑍)(𝑥)‖𝐹 − 𝜀 ‖𝑥‖𝐸

≥ ‖𝑚(𝐴)(𝑥)‖𝐹 − �̃� (𝐴 \ 𝑍) ‖𝑥‖𝐸 − 𝜀 ‖𝑥‖𝐸

≥ 𝑎 ‖𝑥‖𝐸 − 𝜀 ‖𝑥‖𝐸 − 𝜀 ‖𝑥‖𝐸 ≥ (𝑎 − 2𝜀) ‖𝑥‖𝐸 .

(49)

Let 𝐸
𝑀

= {𝑢
𝑜
⊗ 𝑥 : 𝑥 ∈ 𝑀}. Then 𝐸

𝑀
is an infinite-

dimensional subspace of 𝐶
𝑏
(𝑋, 𝐸), and this means that 𝑇 is

not strictly singular, a contradiction.
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