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A new characterization of 𝑘-uniformly rotund Banach space with 1 < 𝑃 < +∞ is given. Moreover, a corresponding result in the
locally 𝑘-uniformly rotund Banach space with 1 < 𝑃 < +∞ is given.

1. Introduction

In the geometric theory of Banach spaces the concept of uni-
form convexity plays a very significant role and is frequently
used in functional analysis. The concept of a uniformly
rotund (or uniformly convex) Banach space was first intro-
duced by Clarkson [1] in 1936 and this class of Banach space
is very interesting and has numerous applications (cf. [2–
8]). In 1979, Sullivan [9] introduced the 𝑘-uniformly rotund
spaces as a generalization of uniformly rotundBanach spaces.
Indeed, the 1-uniformly rotund Banach spaces coincide with
usually uniformly rotund Banach spaces.

The purpose of this paper is to give a character inequality
of 𝑘-uniformly rotund Banach space (or locally 𝑘-uniformly
rotund Banach space) with 1 < 𝑝 < +∞. Throughout the
sequel, the symbol 𝑋 denotes a real Banach space and 𝑋

∗

denotes its dual space. 𝐵(𝑋) = {𝑥 : 𝑥 ∈ 𝑋, ‖𝑥‖ ≤ 1} and
𝑆(𝑋) = {𝑥 : 𝑥 ∈ 𝑋, ‖𝑥‖ = 1} denote, respectively, the unit
ball and the unit sphere in𝑋. For 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
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(1)

A Banach space 𝑋 is said to be 𝑘-uniformly rotund [9]
if, for any 𝜖 > 0, there is a 𝛿(𝜖) > 0, such that, for
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
∈ 𝑆(𝑋), if ‖𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1
‖ > (𝑘 + 1) − 𝛿

then 𝐴(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
) < 𝜖.

A Banach space𝑋 is said to be locally 𝑘-uniformly rotund
[9] if, for ∀𝜖 > 0, 𝑥 ∈ 𝑆(𝑋), there is a 𝛿(𝜖, 𝑥) > 0, such that,
for 𝑥
1
, . . . , 𝑥

𝑘
∈ 𝑆(𝑋), if ‖𝑥 + 𝑥

1
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
‖ > (𝑘 + 1) − 𝛿 then

𝐴(𝑥, 𝑥
1
, . . . , 𝑥

𝑘
) < 𝜖.

2. A New Characterization of 𝑘-Uniformly
Rotund Banach Spaces

Theorem 1. Let 1 < 𝑝 < +∞, let 𝑋 be a Banach space,
and let 𝑀 be an arbitrary bounded subset of 𝑋. Then, 𝑋 is 𝑘-
uniformly rotund space if and only if, for any 𝜖 > 0, there exists
0 < 𝛿(𝜖, 𝑝) < 1, such that the inequality



𝑥 + 𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑘

𝑘 + 1



𝑝

≤ (1 − 𝛿 (𝜖, 𝑝))
‖𝑥‖
𝑝

+
𝑥1


𝑝
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𝑘 + 1

(2)
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holds for all 𝑥 ∈ 𝑀 and 𝑥
1
, . . . , 𝑥

𝑘
∈ 𝑋with𝐴(𝑥, 𝑥

1
, . . . , 𝑥

𝑘
) ≥

𝜖.

In order to proveTheorem 1, we give three lemmas.

Lemma 2 (Yu [10]). 𝑋 is 𝑘-uniformly rotund space if and only
if for any 𝑘 + 1 sequences

{𝑥
(𝑛)

1
}
∞

𝑛=1

, {𝑥
(𝑛)

2
}
∞

𝑛=1

, . . . , {𝑥
(𝑛)

𝑘+1
}
∞

𝑛=1

⊂ 𝑋, (3)

if ‖𝑥(𝑛)
𝑖

‖ → 𝑎 (𝑖 = 1, 2, . . . , 𝑘 + 1), ‖𝑥(𝑛)
1

+𝑥
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1
‖ →

(𝑘 + 1)𝑎, (𝑛 → ∞), then

𝐴(𝑥
(𝑛)

1
, 𝑥
(𝑛)

2
, . . . , 𝑥

(𝑛)

𝑘+1
) → 0, (𝑛 → ∞) . (4)

For the sake of completeness of this paper, herewe present
the proof of Lemma 2.

The sufficiency of Lemma 2 is clear.

The Proof of Necessity. Without loss of generality, we may
assume that 𝑎 = 1.

Suppose that {𝑥(𝑛)
𝑖

}
∞

𝑛=1
⊂ 𝑋 (𝑖 = 1, 2, . . . , 𝑘 + 1), satisfying

the conditions given in Lemma 2.Then, for each 𝛿 > 0, by the
assumption that ‖𝑥(𝑛)

1
+𝑥
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1
‖ → 𝑘+1 (𝑛 → ∞),

there exists 𝑁
0
> 0, such that the inequality


𝑥
(𝑛)

1
+ 𝑥
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1


> 𝑘 + 1 −

𝛿

2
(5)

holds for all 𝑛 > 𝑁
0
.

On the other hand, since ‖𝑥
(𝑛)

𝑖
‖ → 1(𝑖 = 1, 2, . . . , 𝑘 + 1,

𝑛 → ∞), so there exists𝑁
1
≥ 𝑁
0
, such that the inequality




𝑥
(𝑛)

𝑖


− 1


<

𝛿

2 (𝑘 + 1)
, (𝑖 = 1, 2, . . . , 𝑘 + 1) (6)

holds for all 𝑛 > 𝑁
1
.

Therefore, by letting 𝑦
(𝑛)

𝑖
= 𝑥
(𝑛)

𝑖
/‖𝑥
(𝑛)

𝑖
‖, 𝑖 = 1, 2, . . . , 𝑘 + 1,

𝑛 = 1, 2, . . ., we can deduce that
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(𝑛)

𝑘+1
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𝑥
(𝑛)

1
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1
+ 𝑦
(𝑛)

1
− 𝑥
(𝑛)

1
+ ⋅ ⋅ ⋅ + 𝑦

(𝑛)

𝑘+1
− 𝑥
(𝑛)

𝑘+1



≥

𝑥
(𝑛)

1
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1


−

𝑘+1

∑

𝑖=1



𝑥
(𝑛)

𝑖


𝑥
(𝑛)

𝑖



− 𝑥
(𝑛)

𝑖



> 𝑘 + 1 −
𝛿

2
−

𝛿 (𝑘 + 1)

𝛿 (𝑘 + 2)

= 𝑘 + 1 − 𝛿.

(7)

By the assumption that 𝑋 is 𝑘-uniformly rotund space, we
may take 𝛿 = 𝛿(𝜖/2) for any 𝜖 > 0. Therefore, by the above
proof, there exists an 𝑁

1
corresponding to 𝛿 = 𝛿(𝜖/2) such

that the inequality

𝐴(𝑦
(𝑛)

1
, 𝑦
(𝑛)

2
, . . . , 𝑦

(𝑛)

𝑘+1
) <

𝜖

2
(8)

holds for all 𝑛 > 𝑁
1
.

Furthermore, by using inequality (8), we easily obtain the
desired result that

𝐴(𝑥
(𝑛)

1
, 𝑥
(𝑛)

2
, . . . , 𝑥

(𝑛)

𝑘+1
) → 0, (𝑛 → ∞) . (9)

Lemma 3. Let 1 < 𝑝 < +∞, then one has

(
1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘

𝑘 + 1
)

𝑝

≤
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑘

𝑘 + 1
, (10)

where 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
≥ 0, and the sign of equality holds if and

only if 𝑡
1
= 𝑡
2
= ⋅ ⋅ ⋅ = 𝑡

𝑘
= 1.

Proof. (1∘)When 𝑘 = 1, we construct a function𝑓(𝑡
1
) = ((1+

𝑡
1
)/2)
𝑝

− (1 + 𝑡
𝑝

1
)/2; then

𝑓


(𝑡
1
) =

𝑝

2
[(

1 + 𝑡
1

2
)

𝑝−1

− 𝑡
𝑝−1

1
] . (11)

Obviously,

𝑓


(𝑡
1
) = 0 if 𝑡

1
= 1

𝑓


(𝑡
1
) > 0 if 𝑡

1
< 1

𝑓


(𝑡
1
) < 0 if 𝑡

1
> 1.

(12)

It is easy to see that the function 𝑓(𝑡
1
) attains its maximum

value at point 𝑡
1
= 1 and 𝑓(1) = 0. Hence 𝑓(𝑡

1
) ≤ 𝑓(1) = 0;

that is,

(
1 + 𝑡
1

2
)

𝑝

≤
1 + 𝑡
𝑝

1

2
. (13)

And the sign of equality holds if and only if 𝑡
1
= 1.

(2∘) Suppose the conclusion of Lemma 3 is true when 𝑘 =

𝑛 − 1; that is, the inequality

(
1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1

𝑛
)

𝑝

≤
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1

𝑛
(14)
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holds and the sign of equality holds if and only if 𝑡
1
= 𝑡
2
=

⋅ ⋅ ⋅ = 𝑡
𝑛−1

= 1.
(3∘) When 𝑘 = 𝑛, we construct a multivariate function

𝑓 (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = (

1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛

𝑛 + 1
)

𝑝

−
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛

𝑛 + 1
;

(15)

then

𝜕𝑓

𝜕𝑡
𝑛

=
𝑝

𝑛 + 1
{(

1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛

𝑛 + 1
)

𝑝−1

− 𝑡
𝑝−1

𝑛
} . (16)

Now, let us fix variables 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛−1
. Then the function

𝑓(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) attains its maximum value at point 𝑡

𝑛
= (1 +

𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
)/𝑛. Hence

𝑓 (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
)

≤ (
1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
+ (1 + 𝑡

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
) /𝑛

𝑛 + 1
)

𝑝

−
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
+ ((1 + 𝑡

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
) /𝑛)
𝑝

𝑛 + 1

=
𝑛

𝑛 + 1
{(

1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1

𝑛
)

𝑝

−
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1

𝑛
}

≤ 0.

(17)

This shows that the inequality

(
1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛

𝑛 + 1
)

𝑝

≤
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛

𝑛 + 1
(18)

holds and the sign of equality holds if and only if 𝑡
1
= 𝑡
2
=

⋅ ⋅ ⋅ = 𝑡
𝑛
= 1.

Combining (1∘), (2∘), and (3∘), we have

(
1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘

𝑘 + 1
)

𝑝

≤
1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑘

𝑘 + 1
, (19)

and the sign of equality holds if and only if 𝑡
1
= 𝑡
2
= ⋅ ⋅ ⋅ =

𝑡
𝑘
= 1.

Lemma 4. Let 1 < 𝑝 < +∞, then one has

((1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘
) / (𝑘 + 1))

𝑝

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑘
) / (𝑘 + 1)

≤
1

(𝑘 + 1)
𝑝−1

(𝑘 − 1 + (
(1 + 𝑡
1
)
𝑝

1 + 𝑡
𝑝

1

)

1/(𝑝−1)

)

𝑝−1

,

(20)

where 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
≥ 0.

Proof. (1∘) When 𝑘 = 1, the conclusion of Lemma 4 is
obvious. When 𝑘 = 2, we construct a function

𝑓 (𝑡
1
, 𝑡
2
) =

((1 + 𝑡
1
+ 𝑡
2
) /3)
𝑝

(1 + 𝑡
𝑝

1
+ 𝑡
𝑝

2
) /3

=
1

3𝑝−1

(1 + 𝑡
1
+ 𝑡
2
)
𝑝

1 + 𝑡
𝑝

1
+ 𝑡
𝑝

2

; (21)

then

𝜕𝑓

𝜕𝑡
2

=
1

3𝑝−1

𝑝 (1 + 𝑡
1
+ 𝑡
2
)
𝑝−1

{1 + 𝑡
𝑝

1
− 𝑡
𝑝−1

2
− 𝑡
𝑝−1

2
𝑡
1
}

(1 + 𝑡
𝑝

1
+ 𝑡
𝑝

2
)
2

. (22)

It is easy to see that the function𝑓(𝑡
1
, 𝑡
2
) attains its maximum

value at point 𝑡
2
= ((1 + 𝑡

𝑝

1
)/(1 + 𝑡

1
))
1/(𝑝−1). Hence

𝑓 (𝑡
1
, 𝑡
2
) ≤

1

3𝑝−1

(1 + 𝑡
1
+ ((1 + 𝑡

𝑝

1
) / (1 + 𝑡

1
))
1/(𝑝−1)

)

𝑝

1 + 𝑡
𝑝

1
+ ((1 + 𝑡

𝑝

1
) / (1 + 𝑡

1
))
𝑝/(𝑝−1)

=
1

3𝑝−1
(1 + (

(1 + 𝑡
1
)
𝑝

1 + 𝑡
𝑝

1

)

1/(𝑝−1)

)

𝑝−1

.

(23)

(2∘) Suppose the conclusion of Lemma 4 is true when 𝑘 =

𝑛 − 1; that is, we have

((1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
) /𝑛)
𝑝

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
) /𝑛

≤
1

𝑛𝑝+1
(𝑛 − 2 + (

(1 + 𝑡
1
)
𝑝

1 + 𝑡
𝑝

1

)

1/(𝑝−1)

)

𝑝−1

.

(24)

(3∘) When 𝑘 = 𝑛, we construct a multivariate function

𝑓 (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) =

((1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
) / (𝑛 + 1))

𝑝

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛
) / (𝑛 + 1)

=
1

(𝑛 + 1)
𝑝−1

(1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
)
𝑝

1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛

;

(25)

then

𝜕𝑓

𝜕𝑡
𝑛

=
1

(𝑛 + 1)
𝑝−1

𝑝 (1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
)
𝑝−1

{1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
− 𝑡
𝑝

𝑛
(1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
)}

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛
)
2

. (26)



4 Journal of Function Spaces

Now, let us fix variables 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛−1
. Then the function

𝑓(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) attains its maximum value at point 𝑡

𝑛
= ((1 +

𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
)/(1 + 𝑡

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
))
1/(𝑝−1). Hence,

𝑓 (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ≤

1

(𝑛 + 1)
𝑝−1

(1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
+ ((1 + 𝑡

𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
) / (1 + 𝑡

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
))
1/(𝑝−1)

)

𝑝

1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
+ ((1 + 𝑡

𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1
) / (1 + 𝑡

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
))
𝑝/(𝑝−1)

=
1

(𝑛 + 1)
𝑝−1

(1 + (
(1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
)
𝑝

1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1

)

1/(𝑝−1)

)

𝑝−1

.

(27)

By using inequality (24) we have

((1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
) / (𝑛 + 1))

𝑝

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛
) / (𝑛 + 1)

≤
1

(𝑛 + 1)
𝑝−1

(1 + (
(1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
)
𝑝

1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑛−1

)

1/(𝑝−1)

)

𝑝−1

≤
1

(𝑛 + 1)
𝑝−1

(𝑛 − 1 + (
(1 + 𝑡
1
)
𝑝

1 + 𝑡
𝑝

1

)

1/(𝑝−1)

)

𝑝−1

.

(28)

Combining (1∘), (2∘), and (3∘), we have

((1 + 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘
) /(𝑘 + 1))

𝑝

(1 + 𝑡
𝑝

1
+ ⋅ ⋅ ⋅ + 𝑡

𝑝

𝑘
) / (𝑘 + 1)

≤
1

(𝑘 + 1)
𝑝−1

(𝑘 − 1 + (
(1 + 𝑡
1
)
𝑝

1 + 𝑡
𝑝

1

)

1/(𝑝−1)

)

𝑝−1

.

(29)

Proof of Theorem 1.

Proof of Sufficiency. Suppose that, for ∀𝜖 > 0, there is a 0 <

𝛿
1
= 𝛿
1
(𝜖, 𝑝) < 1, such that the inequality



𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1

𝑘 + 1



𝑝

≤ 1 − 𝛿
1

(30)

holds for all𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
∈ 𝑆(𝑋)with𝐴(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
) ≥

𝜖.
Let 𝛿
2

= 1 − (1 − 𝛿
1
)
1/𝑝

> 0 and 𝛿 = (𝑘 + 1)𝛿
2
; then

‖𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1
‖ ≤ 1 − 𝛿.

By the definition of 𝑘-uniformly rotund space, we know
that𝑋 is 𝑘-uniformly rotund space.

Proof of Necessity. Suppose inequality (2) is not true. Then
there exist 𝑏 ∈ 𝑅

+, 𝜖
0
> 0, such that, for ∀1/𝑛 > 0, there exist

{𝑥
(𝑛)

1
}
∞

𝑛=1
, {𝑥
(𝑛)

2
}
∞

𝑛=1
, . . . , {𝑥

(𝑛)

𝑘+1
}
∞

𝑛=1
⊂ 𝑋, satisfying ‖𝑥

(𝑛)

1
‖ ≤ 𝑏.

When 𝐴(𝑥
(𝑛)

1
, 𝑥
(𝑛)

2
, . . . , 𝑥

(𝑛)

𝑘+1
) ≥ 𝜖
0
, we have



𝑥
(𝑛)

1
+ 𝑥
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑥

(𝑛)

𝑘+1

𝑘 + 1



𝑝

> (1 −
1

𝑛
)


𝑥
(𝑛)

1



𝑝

+

𝑥
(𝑛)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑥
(𝑛)

𝑘+1



𝑝

𝑘 + 1
.

(31)

Take 𝑢
(𝑛)

1
= 𝑥
(𝑛)

1
/‖𝑥
(𝑛)

1
‖, 𝑢
(𝑛)

2
= 𝑥
(𝑛)

2
/‖𝑥
(𝑛)

1
‖, . . . , 𝑢

(𝑛)

𝑘+1
=

𝑥
(𝑛)

𝑘+1
/‖𝑥
(𝑛)

1
‖. Then


𝑢
(𝑛)

1


= 1,

𝐴 (𝑢
(𝑛)

1
, 𝑢
(𝑛)

2
, . . . , 𝑢

(𝑛)

𝑘+1
) =

1


𝑥
(𝑛)

1



𝑘

𝐴(𝑥
(𝑛)

1
, 𝑥
(𝑛)

2
, . . . , 𝑥

(𝑛)

𝑘+1
)

≥
𝜖
0

𝑏𝑘
.

(32)

By Lemma 3 we know that

1 −
1

𝑛
<


(𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛)

𝑘+1
) / (𝑘 + 1)



𝑝

(

𝑢
(𝑛)

1



𝑝

+

𝑢
(𝑛)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛)

𝑘+1



𝑝

) / (𝑘 + 1)

≤
((1 +


𝑢
(𝑛)

2


+ ⋅ ⋅ ⋅ +


𝑢
(𝑛)

𝑘+1


) / (𝑘 + 1))

𝑝

(1 +

𝑢
(𝑛)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛)

𝑘+1



𝑝

) / (𝑘 + 1)

≤ 1.

(33)

It follows that

lim
𝑛→∞


(𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛)

𝑘+1
) /(𝑘 + 1)



𝑝

(

𝑢
(𝑛)

1



𝑝

+

𝑢
(𝑛)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛)

𝑘+1



𝑝

) / (𝑘 + 1)

= 1. (34)

Now we prove that

lim
𝑛→∞


𝑢
(𝑛)

𝑖


= 1, 𝑖 = 2, 3, . . . , 𝑘 + 1. (35)
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If (35) does not hold, then there exists subsequence {𝑢(𝑛𝑖)
𝑗

}

of {𝑢(𝑛)
𝑗

} satisfying


𝑢
(𝑛𝑖)

𝑗


≤ 𝛼
𝑗−1

< 1 or 
𝑢
(𝑛𝑖)

𝑗


≥ 𝛼
𝑗−1

> 1,

𝑗 = 2, . . . , 𝑘 + 1.

(36)

Hence, by Lemma 4 we have


(𝑢
(𝑛𝑖)

1
+ 𝑢
(𝑛𝑖)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛𝑖)

𝑘+1
) /(𝑘 + 1)



𝑝

(

𝑢
(𝑛𝑖)

1



𝑝

+

𝑢
(𝑛𝑖)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛𝑖)

𝑘+1



𝑝

) / (𝑘 + 1)

≤
1

(𝑘 + 1)
𝑝−1

(1 +

𝑢
(𝑛𝑖)

2


+ ⋅ ⋅ ⋅ +


𝑢
(𝑛𝑖)

𝑘+1


)
𝑝

1 +

𝑢
(𝑛𝑖)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛𝑖)

𝑘+1



𝑝

≤
1

(𝑘 + 1)
𝑝−1

(𝑘 − 1 + (
(1 +


𝑢
(𝑛𝑖)

2


)
𝑝

1 +

𝑢
(𝑛𝑖)

2



𝑝
)

1/(𝑝−1)

)

𝑝−1

.

(37)

Considering a function (1 + 𝑡)
𝑝

/(1 + 𝑡
𝑝

) and noticing that

(
(1 + 𝑡)

𝑝

1 + 𝑡𝑝
)



(𝑡) =
𝑝 (1 + 𝑡)

𝑝−1

(1 + 𝑡
𝑝

) − 𝑝𝑡
𝑝−1

(1 + 𝑡)
𝑝

(1 + 𝑡𝑝)
2

=
𝑝 (1 + 𝑡)

𝑝−1

(1 − 𝑡
𝑝−1

)

(1 + 𝑡𝑝)
2

,

(38)

we know that (1+𝑡)𝑝/(1+𝑡𝑝) is strictly increasing (decreasing)
function when 𝑡 < 1 (𝑡 > 1) and attains its maximum value
at point 𝑡 = 1.

Hence


(𝑢
(𝑛𝑖)

1
+ 𝑢
(𝑛𝑖)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛𝑖)

𝑘+1
) /(𝑘 + 1)



𝑝

(

𝑢
(𝑛𝑖)

1



𝑝

+

𝑢
(𝑛𝑖)

2



𝑝

+ ⋅ ⋅ ⋅ +

𝑢
(𝑛𝑖)

𝑘+1



𝑝

) / (𝑘 + 1)

≤
1

(𝑘 + 1)
𝑝−1

(𝑘 − 1 + (
(1 +


𝑢
(𝑛𝑖)

2


)
𝑝

1 +

𝑢
(𝑛𝑖)

2



𝑝
)

1/(𝑝−1)

)

𝑝−1

≤
1

(𝑘 + 1)
𝑝−1

(𝑘 − 1 + (
(1 + 𝛼

1
)
𝑝

1 + 𝛼
1

𝑝

)

1/(𝑝−1)

)

𝑝−1

< 1;

(39)

this contradicts (34), so lim
𝑛→∞

‖𝑢
(𝑛)

2
‖ = 1.

Similarly, we can deduce that lim
𝑛→∞

‖𝑢
(𝑛)

3
‖ = 1, . . . ,

lim
𝑛→∞

‖𝑢
(𝑛)

𝑘+1
‖ = 1. It follows that

lim
𝑛→∞



𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛)

𝑘+1

𝑘 + 1



= 1. (40)

Let 𝑧
𝑛
= 𝑢
(𝑛)

𝑘+1
/‖𝑢
(𝑛)

𝑘+1
‖; then


𝑧
𝑛
− 𝑢
(𝑛)

𝑘+1


=



𝑢
(𝑛)

𝑘+1


𝑢
(𝑛)

𝑘+1



− 𝑢
(𝑛)

𝑘+1



→ 0, (𝑛 → ∞) ,

1 = lim
𝑛→∞



𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑢

(𝑛)

𝑘+1

𝑘 + 1



≤ lim
𝑛→∞

(



𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑧

𝑛

𝑘 + 1



+



𝑢
(𝑛)

𝑘+1
− 𝑧
𝑛

𝑘 + 1



)

= lim
𝑛→∞



𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑧

𝑛

𝑘 + 1



≤ 1.

(41)

This means that

lim
𝑛→∞



𝑢
(𝑛)

1
+ 𝑢
(𝑛)

2
+ ⋅ ⋅ ⋅ + 𝑧

𝑛

𝑘 + 1



= 1. (42)

But

lim
𝑛→∞

𝐴(𝑢
(𝑛)

1
, 𝑢
(𝑛)

2
, . . . , 𝑧

𝑛
) = lim
𝑛→∞

𝐴(𝑢
(𝑛)

1
, 𝑢
(𝑛)

2
, . . . , 𝑢

(𝑛)

𝑘+1
)

≥
𝜖
𝑜

𝑏𝑘
.

(43)

This contradicts that 𝑋 is 𝑘-uniformly rotund space from
Lemma 2.

Theorem 5. Let 1 < 𝑝 < +∞, let𝑋 be a Banach space, and let
𝑀 be an arbitrary bounded subset of 𝑋. Then, 𝑋 is locally 𝑘-
uniformly rotund space if and only if, for any 𝜖 > 0 and𝑥

1
∈ 𝑀,

there exists 0 < 𝛿(𝜖, 𝑝, 𝑥
1
) < 1, such that the inequality



𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1

𝑘 + 1



𝑝

≤ (1 − 𝛿 (𝜖, 𝑝, 𝑥
1
))

𝑥1

𝑝

+
𝑥2


𝑝

+ ⋅ ⋅ ⋅ +
𝑥𝑘+1


𝑝

𝑘 + 1

(44)

holds for all 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘+1
∈ 𝑋 with 𝐴(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
) ≥ 𝜖.

The proof of Theorem 5 is greatly similar to the proof of
Theorem 1.

In particular, considering the special cases of Theorems
1 and 5 when 𝑘 = 1, we give a new characterization of
uniformly rotund (resp., locally uniformly rotund) Banach
space; that is, we have the following two corollaries.
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Corollary 6. Let 1 < 𝑝 < +∞, let 𝑋 be a Banach space,
and let 𝑀 be an arbitrary bounded subset of 𝑋. Then, 𝑋 is
uniformly rotund space if and only if, for any 𝜖 > 0, there exists
0 < 𝛿(𝜖, 𝑝) < 1, such that the inequality



𝑥 + 𝑦

2



𝑝

≤ (1 − 𝛿 (𝜖, 𝑝))
‖𝑥‖
𝑝

+
𝑦


𝑝

2

(45)

holds for all 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑋 with ‖𝑥 − 𝑦‖ ≥ 𝜖.

Corollary 7. Let 1 < 𝑝 < +∞, let 𝑋 be a Banach space, and
let 𝑀 be an arbitrary bounded subset of 𝑋. Then, 𝑋 is locally
uniformly rotund space if and only if, for any 𝜖 > 0 and 𝑥 ∈ 𝑀,
there exists 0 < 𝛿(𝜖, 𝑝, 𝑥) < 1, such that the inequality



𝑥 + 𝑦

2



𝑝

≤ (1 − 𝛿 (𝜖, 𝑝, 𝑥))
‖𝑥‖
𝑝

+
𝑦


𝑝

2

(46)

holds for all 𝑦 ∈ 𝑋 with ‖𝑥 − 𝑦‖ ≥ 𝜖.
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