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The paper deals with convex sets, functions satisfying the global convexity property, and positive linear functionals. Jensen’s type
inequalities can be obtained by using convex combinations with the common center. Following the idea of the common center, the
functional forms of Jensen’s inequality are considered in this paper.

1. Introduction

Introduction is intended to be a brief overview of the concept
of convexity and affinity. LetX be a real linear space. Let 𝑎, 𝑏 ∈

X be points and let 𝛼, 𝛽 ∈ R be coefficients. Their binomial
combination

𝛼𝑎 + 𝛽𝑏 (1)

is convex if 𝛼, 𝛽 ≥ 0 and if

𝛼 + 𝛽 = 1. (2)

If 𝑐 = 𝛼𝑎+𝛽𝑏, then the point 𝑐 itself is called the combination
center.

A set S ⊆ X is convex if it contains all binomial convex
combinations of its points. The convex hull convS of the set
S is the smallest convex set containing S, and it consists of
all binomial convex combinations of points of S.

Let C ⊆ X be a convex set. A function 𝑓 : C → R is
convex if the inequality

𝑓 (𝛼𝑎 + 𝛽𝑏) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) (3)

holds for all binomial convex combinations 𝛼𝑎 + 𝛽𝑏 of pairs
of points 𝑎, 𝑏 ∈ C.

Requiring only the condition in (2) for coefficients and
requiring the equality in (3), we get a characterization of the
affinity.

Implementingmathematical induction, we can prove that
all of the above applies to 𝑛-membered combinations for any

positive integer 𝑛. In that case, the inequality in (3) is the
famous Jensen’s inequality obtained in [1]. Numerous papers
have been written on Jensen’s inequality; different types and
variants can be found in [2, 3].

2. Positive Linear Functionals and
Convex Sets of Functions

LetX be a nonempty set, and letX be a subspace of the linear
space of all real functions on the domainX. We assume that
X contains the unit function 1 defined by 1(𝑥) = 1 for every
𝑥 ∈ X.

LetI ⊆ R be an interval, and letXI be the set containing
all functions 𝑔 ∈ X with the image in I. Then, XI is
convex set in the spaceX. The same is true for convex sets of
Euclidean spaces. Let C ⊆ R𝑘 be a convex set, and let (X𝑘)C
be the set containing all function 𝑘-tuples 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈

X𝑘 with the image inC.Then, (X𝑘)C is convex set in the space
X𝑘.

A linear functional 𝐿 : X → R is positive (nonnegative)
if 𝐿(𝑔) ≥ 0 for every nonnegative function 𝑔 ∈ X, and 𝐿

is unital (normalized) if 𝐿(1) = 1. If 𝑔 ∈ X, then for every
unital positive functional 𝐿 the number 𝐿(𝑔) is in the closed
interval of real numbers containing the image of 𝑔. Through
the paper, the space of all linear functionals on the space X
will be denoted with L(X).

Let 𝑓 : R → R be an affine function, that is, the function
of the form 𝑓(𝑥) := 𝜅𝑥 + 𝜆 where 𝜅 and 𝜆 are real constants.
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If 𝑔1, . . . , 𝑔𝑛 ∈ X are functions and if 𝐿1, . . . , 𝐿𝑛 ∈ L(X) are
positive functionals providing the unit equality

𝑛

∑

𝑖=1

𝐿 𝑖 (1) = 1, (4)

then

𝑓(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖)) = 𝜅

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) + 𝜆

𝑛

∑

𝑖=1

𝐿 𝑖 (1) =
𝑛

∑

𝑖=1

𝐿 𝑖 (𝜅𝑔𝑖 + 𝜆1)

=

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑔𝑖)) .

(5)
Respecting the requirement of unit equality in (4), the sum
∑
𝑛

𝑖=1
𝐿 𝑖(𝑔𝑖) could be called the functional convex combina-

tion. In the case 𝑛 = 1, the functional 𝐿 = 𝐿1 must be unital
by the unit equality in (4).

In 1931, Jessen stated the functional form of Jensen’s
inequality for convex functions of one variable; see [4].
Adapted to our purposes, that statement is as follows.

Theorem A. LetI ⊆ R be a closed interval, and let 𝑔 ∈ XI

be a function.
Then, a unital positive functional 𝐿 ∈ L(X) ensures the

inclusion
𝐿 (𝑔) ∈ I (6)

and satisfies the inequality
𝑓 (𝐿 (𝑔)) ≤ 𝐿 (𝑓 (𝑔)) (7)

for every continuous convex function 𝑓 : I → R providing
that f(𝑔) ∈ X.

If 𝑓 is concave, then the reverse inequality is valid in (7). If
𝑓 is affine, then the equality is valid in (7).

The intervalImust be closed, otherwise it could happen
that 𝐿(𝑔) ∉ I.The function𝑓must be continuous, otherwise
it could happen that the inequality in (7) does not apply. Such
boundary cases are presented in [5].

In 1937,McShane extended the functional form of Jensen’s
inequality to convex functions of several variables. He has
covered the generalization in two steps, calling them the
geometric (the inclusion in (8)) and analytic (the inequality
in (9)) formulation of Jensen’s inequality; see [6, Theorems
1 and 2]. Summarized in a theorem, that generalization is as
follows.

Theorem B. Let C ⊆ R𝑘 be a closed convex set, and let 𝑔 =

(𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)C be a function.
Then, a unital positive functional 𝐿 ∈ L(X) ensures the

inclusion
(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) ∈ C (8)

and satisfies the inequality
𝑓 (𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) ≤ 𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) (9)

for every continuous convex function 𝑓 : C → R providing
that 𝑓(𝑔1, . . . , 𝑔𝑘) ∈ X.

If 𝑓 is concave, then the reverse inequality is valid in (9). If
𝑓 is affine, then the equality is valid in (9).

3. Main Results

3.1. Functions of One Variable. The main result of this sub-
section is Theorem 1 relying on the idea of a convex function
graph and its secant line. Using functions that are more
general than convex functions and positive linear functionals,
we obtain the functional Jensen’s type inequalities.

Through the paper, we will use an interval I ⊆ R and a
bounded closed subinterval [𝑎, 𝑏] ⊆ I with endpoints 𝑎 < 𝑏.

Every number 𝑥 ∈ R can be uniquely presented as the
binomial affine combination

𝑥 =

𝑏 − 𝑥

𝑏 − 𝑎

𝑎 +

𝑥 − 𝑎

𝑏 − 𝑎

𝑏, (10)

which is convex if and only if the number 𝑥 belongs to the
interval [𝑎, 𝑏]. Let 𝑓 : I → R be a function, and let
𝑓
line
{𝑎,𝑏}

: R → R be the function of the line passing through the
points 𝐴(𝑎, 𝑓(𝑎)) and 𝐵(𝑏, 𝑓(𝑏)) of the graph of 𝑓. Applying
the affinity of the function 𝑓

line
{𝑎,𝑏}

to the combination in (10),
we obtain its equation

𝑓
line
{𝑎,𝑏}

(𝑥) =

𝑏 − 𝑥

𝑏 − 𝑎

𝑓 (𝑎) +

𝑥 − 𝑎

𝑏 − 𝑎

𝑓 (𝑏) . (11)

The consequence of the representations in (10) and (11) is the
fact that every convex function 𝑓 : I → R satisfies the
inequality

𝑓 (𝑥) ≤ 𝑓
line
{𝑎,𝑏}

(𝑥) for 𝑥 ∈ [𝑎, 𝑏] (12)

and the reverse inequality

𝑓 (𝑥) ≥ 𝑓
line
{𝑎,𝑏}

(𝑥) for 𝑥 ∈ I \ (𝑎, 𝑏) . (13)

In the following consideration, we use continuous func-
tions satisfying the inequalities in (12)-(13).

Theorem 1. LetI ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I be a
bounded closed subinterval, and let 𝑔 ∈ X[𝑎,𝑏] and ℎ ∈ XI\(𝑎,𝑏)

be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

𝐿 (𝑔) = 𝐻 (ℎ) , (14)

satisfies the inequality

𝐿 (𝑓 (𝑔)) ≤ 𝐻 (𝑓 (ℎ)) (15)

for every continuous function 𝑓 : I → R satisfying (12)-(13)
and providing that 𝑓(𝑔), 𝑓(ℎ) ∈ X.

Proof. The number 𝐿(𝑔) belongs to the interval [𝑎, 𝑏] by the
inclusion in (6). Using the features of the function 𝑓 and
applying the affinity of the function 𝑓

line
{𝑎,𝑏}

, we get

𝐿 (𝑓 (𝑔)) ≤ 𝐿 (𝑓
line
{𝑎,𝑏}

(𝑔)) = 𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔))

= 𝑓
line
{𝑎,𝑏}

(𝐻 (ℎ)) = 𝐻 (𝑓
line
{𝑎,𝑏}

(ℎ))

≤ 𝐻 (𝑓 (ℎ))

(16)

because 𝑓line
{𝑎,𝑏}

(ℎ(𝑥)) ≤ 𝑓(ℎ(𝑥)) for every 𝑥 ∈ X.
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It is obvious that a continuous convex function 𝑓 : I →

R satisfies Theorem 1 for every subinterval [𝑎, 𝑏] ⊆ I with
endpoints 𝑎 < 𝑏. The function used inTheorem 1 is shown in
Figure 1. Such a function satisfies only the global property of
convexity on the sets [𝑎, 𝑏] andI \ (𝑎, 𝑏).

Involving the binomial convex combination 𝛼𝑎+𝛽𝑏 with
the equality in (14) by assuming that

𝐿 (𝑔) = 𝛼𝑎 + 𝛽𝑏 = 𝐻 (ℎ) (17)

and inserting the term 𝛼𝑓(𝑎) + 𝛽𝑓(𝑏) in (16) via the double
equality

𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) = 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) = 𝑓
line
{𝑎,𝑏}

(𝐻 (ℎ)) (18)

which is true because 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏) = 𝛼𝑓(𝑎) + 𝛽𝑓(𝑏), we
achieve the double inequality

𝐿 (𝑓 (𝑔)) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤ 𝐻 (𝑓 (ℎ)) . (19)

The functions used in Theorem 1 satisfy the functional
form of Jensen’s inequality in the following case.

Corollary 2. Let I ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I
be a bounded closed subinterval, and let ℎ ∈ XI\(𝑎,𝑏) be a
function.

Then, a unital positive functional𝐻 ∈ L(X) such that

𝐻(ℎ) ∈ [𝑎, 𝑏] (20)

satisfies the inequality

𝑓 (𝐻 (ℎ)) ≤ 𝐻 (𝑓 (ℎ)) (21)

for every continuous function satisfying (12)-(13) and providing
that 𝑓(ℎ) ∈ X.

Proof. Putting 𝛼𝑎 + 𝛽𝑏 = 𝐻(ℎ), it follows that

𝑓 (𝐻 (ℎ)) = 𝑓 (𝛼𝑎 + 𝛽𝑏) ≤ 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏)

= 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤ 𝐻 (𝑓 (ℎ))

(22)

by the right inequality in (19).

Now, we give a characterization of continuous convex
functions by using unital positive functionals.

Proposition 3. LetI ⊆ R be a closed interval. A continuous
function 𝑓 : I → R is convex if and only if it satisfies the
inequality

𝐿 (𝑓 (𝑔)) ≤ 𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) (23)

for every pair of interval endpoints 𝑎, 𝑏 ∈ I, every function𝑔 ∈

X[𝑎,𝑏] such that 𝑓(𝑔) ∈ X, and every unital positive functional
𝐿 ∈ L(X).

Proof. Let us prove the sufficiency. Let 𝑐 := 𝛼𝑎 + 𝛽𝑏 be a
convex combination of points 𝑎, 𝑏 ∈ I where 𝑎 < 𝑏. We
take the constant function 𝑔 = 𝑐1 in X[𝑎,𝑏] (actually 𝑔(𝑥) = 𝑐

y

xa b

y = f(x)

Figure 1: A continuous function satisfying (12)-(13).

for every 𝑥 ∈ X) and a unital positive functional 𝐿. Then,
connecting

𝐿 (𝑓 (𝑔)) = 𝐿 (𝑓 (𝑐) 1) = 𝑓 (𝑐) = 𝑓 (𝛼𝑎 + 𝛽𝑏) ,

𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) = 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏) = 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏)

(24)

via (23), we get the convexity inequality in (3).

3.2. Functions of Several Variables. We want to transfer the
results of the previous subsection to higher dimensions. The
main result in this subsection is Theorem 6 generalizing
Theorem 1 to functions of several variables.

LetC ⊆ R2 be a convex set, let △ ⊆ C be a triangle with
vertices𝐴,𝐵, and𝐶, and let△𝑜 be its interior. In the following
observation, we assume that 𝑓 : C → R is a continuous
function satisfying the inequality

𝑓 (𝑃) ≤ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) for 𝑃 ∈ △ (25)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) for 𝑃 ∈ C \ △
𝑜
, (26)

where𝑓plane
{𝐴,𝐵,𝐶}

is the function of the plane passing through the
corresponding points of the graph of 𝑓.

It should be noted that convex functions of two variables
do not generally satisfy (26). The next example confirms this
claim.

Example 4. We take the convex function 𝑓(𝑥, 𝑦) = 𝑥
2
+ 𝑦
2,

the triangle with vertices𝐴(0, 0), 𝐵(1, 0), and 𝐶(0, 2), and the
outside point 𝑃(1, 1).

The valuation of functions 𝑓 and 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑥, 𝑦) = 𝑥 + 2𝑦

at the point 𝑃 is

2 = 𝑓 (𝑃) < 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) = 3 (27)

as opposed to (26).

The generalization of Theorem 1 to two dimensions is as
follows.
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Lemma 5. Let C ⊆ R2 be a closed convex set, let △ ⊆ C be
a triangle, and let 𝑔 = (𝑔1, 𝑔2) ∈ (X2)△ and ℎ = (ℎ1, ℎ2) ∈

(X2)C\△𝑜 be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

(𝐿 (𝑔1) , 𝐿 (𝑔2)) = (𝐻 (ℎ1) ,𝐻 (ℎ2)) (28)

satisfies the inequality

𝐿 (𝑓 (𝑔1, 𝑔2)) ≤ 𝐻 (𝑓 (ℎ1, ℎ2)) (29)

for every continuous function satisfying (25)-(26) and provid-
ing that 𝑓(𝑔1, 𝑔2), 𝑓(ℎ1, ℎ2) ∈ X.

Proof. The proof is similar to that of Theorem 1. Using the
triangle vertices 𝐴, 𝐵, and 𝐶, we apply the plane function
𝑓
plane
{𝐴,𝐵,𝐶}

instead of the line function 𝑓
line
{𝑎,𝑏}

.

The previous lemma suggests how the results of the
previous subsection can be transferred to higher dimensions.

Let 𝑆1, . . . , 𝑆𝑘+1 ∈ R𝑘 be points. Their convex hull

S = conv {𝑆1, . . . , 𝑆𝑘+1} (30)

is the 𝑘-simplex inR𝑘 if the points 𝑆1 − 𝑆𝑘+1, . . . , 𝑆𝑘 − 𝑆𝑘+1 are
linearly independent.

LetC ⊆ R𝑘 be a convex set, and letS ⊆ C be a 𝑘-simplex
with vertices 𝑆1, . . . , 𝑆𝑘+1. In the consideration that follows,
we use a function 𝑓 : C → R satisfying the inequality

𝑓 (𝑃) ≤ 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
(𝑃) for 𝑃 ∈ S (31)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
hyperplane
{𝑆1 ,...,𝑆𝑘+1}

(𝑃) for 𝑃 ∈ C \S
𝑜
, (32)

where 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
is the function of the hyperplane passing

through the corresponding points of the graph of 𝑓.

Theorem 6. Let C ⊆ R𝑘 be a closed convex set, let S ⊆ C

be a 𝑘-simplex, and let g = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S and ℎ =

(ℎ1, . . . , ℎ𝑘) ∈ (X𝑘)C\S𝑜 be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) = (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) (33)

satisfies the inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) (34)

for every continuous function satisfying (31)-(32) and provid-
ing that 𝑓(𝑔1, . . . , 𝑔𝑘), 𝑓(ℎ1, . . . , ℎ𝑘) ∈ X.

Proof. Relying on the hyperplane function 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
where

𝑆1, . . . , 𝑆𝑘+1 are the simplex vertices, we can apply the proof
similar to that of Theorem 1.

Including the (𝑘 + 1)-membered convex combination
∑
𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 with the equality in (33) in a way that

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) =

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘))

(35)

and using the double equality

𝑓
hyperplane
{𝑆1 ,...,𝑆𝑘+1}

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘))

=

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

= 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
(𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ,

(36)

we can derive the double inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) .

(37)

The following functional form of Jensen’s inequality is
true for functions of several variables.

Corollary 7. LetC ⊆ R𝑘 be a closed convex set, let S ⊆ C be
a 𝑘-simplex, and let ℎ = (ℎ1, . . . , ℎ𝑘) ∈ (X𝑘)C\S𝑜 be a function.

Then, a unital positive functional𝐻 ∈ L(X) such that

(𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ∈ S (38)

satisfies the inequality

𝑓 (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) (39)

for every continuous function satisfying (25)-(26) and provid-
ing that 𝑓(ℎ1, . . . , ℎ𝑘) ∈ X.

Continuous convex functions of several variables can be
characterized by unital positive functionals in the following
way. The dimension of a convex set is defined as the dimen-
sion of its affine hull.

Proposition8. LetC ⊆ R𝑘 be a closed convex set of dimension
𝑘. A continuous function 𝑓 : C → R is convex if and only if it
satisfies the inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝑓
hyperplane
{𝑆
1
,...,S
𝑘+1
}
(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) (40)

for every (𝑘 + 1)-tuple of 𝑘-simplex vertices 𝑆1, . . . , 𝑆𝑘+1 ∈

C, every function 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S such that
𝑓(𝑔1, . . . , 𝑔𝑘) ∈ X, and every unital positive functional 𝐿 ∈

L(X).

Proof. To prove the sufficiency, we take a convex combination
𝐶 = ∑

𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 of 𝑘-simplex vertices 𝑆1, . . . , 𝑆𝑘+1 ∈ C. If 𝐶 =

(𝑐1, . . . , 𝑐𝑘), we take the constant mapping 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈

(X𝑘)S consisting of constant functions 𝑔𝑖 = 𝑐𝑖1 and continue
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the proof in the same way as in Proposition 3. Finally, we get
Jensen’s inequality

𝑓(

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝) ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝) (41)

confirming the convexity of the function 𝑓.

4. Applications to Functional
Quasiarithmetic Means

Functions investigated in Subsection 3.1 can be included to
quasiarithmeticmeans by applyingmethods such as those for
convex functions. The basic facts relating to quasiarithmetic
and power means can be found in [7]. For more details on
different forms of quasiarithmetic and power means, as well
as their refinements, see [8].

The next generalization of Theorem 1 will be applied to
the consideration of functional quasiarithmetic means.

Corollary 9. LetI ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I be
a bounded closed subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏] and
ℎ1, . . . , ℎ𝑚 ∈ XI\(𝑎,𝑏) be functions.

Then, a pair of collections of positive functionals 𝐿 𝑖, 𝐻𝑗 ∈
L(X) providing the unit equalities ∑𝑛

𝑖=1
𝐿 𝑖(1) = ∑

𝑚

𝑗=1
𝐻𝑗(1) =

1 and the equality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) =

𝑚

∑

𝑗=1

𝐻𝑗 (ℎ𝑗) (42)

satisfies the inequality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑔𝑖)) ≤

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (ℎ𝑗)) (43)

for every continuous function satisfying (12)-(13) and providing
that all functions 𝑓(𝑔𝑖), 𝑓(ℎ𝑗) ∈ X.

Now, we present a way of introducing the functional
quasiarithmetic means. Let 𝑔1, . . . , 𝑔𝑛 ∈ XI be functions,
and let 𝜑 : I → R be a strictly monotone continuous
function such that all 𝜑(𝑔𝑖) ∈ X. Let 𝐿1, . . . , 𝐿𝑛 : X →

R be positive linear functionals providing the unit equality
∑
𝑛

𝑖=1
𝐿 𝑖(1) = 1. The quasiarithmetic mean of functions 𝑔𝑖

respecting the function 𝜑 and functionals 𝐿 𝑖 can be defined
by

𝑀𝜑 (𝐿1 . . . , 𝐿𝑛; 𝑔1, . . . , 𝑔𝑛) = 𝜑
−1

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝜑 (𝑔𝑖))) . (44)

In what follows, we will use the abbreviation 𝑀𝜑(𝐿 𝑖, 𝑔𝑖)

for the above mean. The term in parentheses belongs to
the interval 𝜑(I), and therefore the quasiarithmetic mean
𝑀𝜑(𝐿 𝑖, 𝑔𝑖) belongs to the intervalI.

In applications of the function convexity, we use a pair
of strictly monotone continuous functions 𝜑, 𝜓 : I → R

such that 𝜓 is convex with respect to 𝜑 (it also says that 𝜓
is 𝜑-convex), which means that the function 𝑓 = 𝜓(𝜑

−1
) is

convex on the interval 𝜑(I). A similar notation is used for
the concavity.

Instead of the convexity of𝑓, we will apply the conditions
in (12)-(13) via Corollary 9 as follows.

Theorem 10. Let I ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I
be a bounded closed subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏]
and ℎ1, . . . , ℎ𝑚 ∈ XI\(𝑎,𝑏) be functions. Let 𝐿 𝑖, 𝐻𝑗 ∈ L(X) be
a pair of collections of positive functionals providing the unit
equalities ∑𝑛

𝑖=1
𝐿 𝑖(1) = ∑

𝑚

𝑗=1
𝐻𝑗(1) = 1. Let 𝜑, 𝜓 : I → R be

strictly monotone continuous functions such that all functions
𝜑(𝑔𝑖), 𝜑(ℎ𝑗), 𝜓(𝑔𝑖), 𝜓(ℎ𝑗) ∈ X, and let 𝑓 = 𝜓(𝜑

−1
) be the

composite function.
If𝑓 satisfies (12)-(13) and𝜓 is increasing and if the equality

𝑀𝜑 (𝐿 𝑖, 𝑔𝑖) = 𝑀𝜑 (𝐻𝑗, ℎ𝑗) (45)

is valid, then we have the inequality

𝑀𝜓 (𝐿 𝑖, 𝑔𝑖) ≤ 𝑀𝜓 (𝐻𝑗, ℎ𝑗) . (46)

Proof. We takeJ = 𝜑(I) and [𝑐, 𝑑] = 𝜑([𝑎, 𝑏]).Wewill apply
Corollary 9 to the functions 𝑢𝑖 = 𝜑(𝑔𝑖) ∈ X[𝑐,𝑑] and V𝑗 =

𝜑(ℎ𝑗) ∈ XJ\(𝑐,𝑑) and the function 𝑓 : J → R.
Using the equality 𝜑(𝑀𝜑(𝐿 𝑖, 𝑔𝑖)) = 𝜑(𝑀𝜑(𝐻𝑗, ℎ𝑗)) and

including the functions 𝑢𝑖 and V𝑗, we have
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑢𝑖) =

𝑚

∑

𝑗=1

𝐻𝑗 (V𝑗) . (47)

Then, the inequality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑢𝑖)) ≤

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (V𝑗)) (48)

follows from Corollary 9, and applying the increasing func-
tion 𝜓

−1, we get

𝜓
−1

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑢𝑖))) ≤ 𝜓
−1

(

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (V𝑗))) . (49)

The above inequality is actually the inequality in (46) because
𝑓(𝑢𝑖) = 𝜓(𝑔𝑖) and 𝑓(V𝑗) = 𝜓(ℎ𝑗).

All the cases of the above theorem are as follows.

Corollary 11. Let 𝑓 = 𝜓(𝜑
−1
) be the composite function

satisfying the conditions of Theorem 10.
If either 𝑓 satisfies (12)-(13) and 𝜓 is increasing or −𝑓

satisfies (12)-(13) and 𝜓 is decreasing and if the equality in (45)
is valid, then the inequality holds in (46).

If either 𝑓 satisfies (12)-(13) and 𝜓 is decreasing or −𝑓

satisfies (12)-(13) and 𝜓 is increasing and if the equality in (45)
is valid, then the reverse inequality holds in (46).

A special case of the quasiarithmetic means in (44) is
power means depending on real exponents 𝑟. Thus, using the
functions

𝜑𝑟 (𝑥) = {

𝑥
𝑟
, 𝑟 ̸= 0

ln𝑥, 𝑟 = 0,

(50)
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where 𝑥 ∈ (0,∞), we get the power means of order 𝑟 in the
form

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) =

{
{
{
{
{

{
{
{
{
{

{

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔
𝑟

𝑖
))

1/𝑟

, 𝑟 ̸= 0

exp(

𝑛

∑

𝑖=1

𝐿 𝑖 (ln𝑔𝑖)) , 𝑟 = 0.

(51)

To apply Theorem 1 to the power means, we use a closed
interval I = [𝜀,∞) where 𝜀 is a positive number and the
equality

𝑀1 (𝐿, 𝑔𝑖) =

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) . (52)

Corollary 12. Let I = [𝜀,∞) be an unbounded closed
interval where 𝜀 > 0, let [𝑎, 𝑏] ⊂ I be a bounded closed
subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏] and ℎ1, . . . , ℎ𝑚 ∈

XI\(𝑎,𝑏) be functions. Let 𝐿 𝑖, 𝐻𝑗 ∈ L(X) be a pair of collections
of positive functionals providing the unit equalities∑𝑛

𝑖=1
𝐿 𝑖(1) =

∑
𝑚

𝑗=1
𝐻𝑗(1) = 1.

If

𝑀1 (𝐿 𝑖, 𝑔𝑖) = 𝑀1 (𝐻𝑗, ℎ𝑗) , (53)

then

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) ≤ 𝑀𝑟 (𝐻𝑗, ℎ𝑗) for 𝑟 ≥ 1,

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) ≥ 𝑀𝑟 (𝐻𝑗, ℎ𝑗) for 𝑟 ≤ 1.

(54)

Proof. The proof follows from Theorem 10 and Corollary 11
by using convex and concave functions such as 𝜑(𝑥) = 𝑥 and
𝜓(𝑥) = 𝑥

𝑟 for 𝑟 ̸= 0, and 𝜓(𝑥) = ln𝑥 for 𝑟 = 0.

5. Applications to Discrete and
Integral Inequalities

Our aim is to use Theorem 6 to obtain certain discrete and
integral inequalities concerning functions of several vari-
ables.The following is the application to discrete inequalities.

Proposition 13. LetC ⊆ R𝑘 be a closed convex set, letS ⊆ C
be a 𝑘-simplex, let∑𝑛

𝑖=1
𝛼𝑖𝐴 𝑖 be a convex combination of points

𝐴 𝑖 ∈ S, and let ∑𝑚
𝑗=1

𝛽𝑗𝐵𝑗 be a convex combination of points
𝐵𝑗 ∈ C \S𝑜.

If the above convex combinations have the common center
𝑛

∑

𝑖=1

𝛼𝑖𝐴 𝑖 =

𝑚

∑

𝑗=1

𝛽𝑗𝐵𝑗, (55)

then the inequality
𝑛

∑

𝑖=1

𝛼𝑖𝑓 (𝐴 𝑖) ≤

𝑚

∑

𝑗=1

𝛽𝑗𝑓 (𝐵𝑗) (56)

holds for every continuous function 𝑓 : C → R satisfying
(31)-(32).

Proof. We take the setX = C and the spaceX containing all
real functions onC. We also take any simplex vertex 𝑆 and its
coordinates (𝑠1, . . . , 𝑠𝑘).

Let 𝑔𝑝, ℎ𝑝 ∈ X (𝑝 = 1, . . . , 𝑘) be functions defined by

𝑔𝑝 (𝑥1, . . . , 𝑥𝑘) = {

𝑥𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ S

𝑠𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ C \S,

(57)

ℎ𝑝 (𝑥1, . . . , 𝑥𝑘) = {

𝑠𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ S𝑜

𝑥𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ C \S𝑜.
(58)

Then, 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S and ℎ = (ℎ1, . . . , ℎ𝑘) ∈

(X𝑘)C\S𝑜 .
Let 𝐿,𝐻 ∈ L(X) be summarizing unital positive func-

tionals defined by

𝐿 (𝑔) =

𝑛

∑

𝑖=1

𝛼𝑖𝑔 (𝐴 𝑖) ,

𝐻 (ℎ) =

𝑚

∑

𝑗=1

𝛽𝑗ℎ (𝐵𝑗) .

(59)

Applying the functional 𝐿 to the functions 𝑔𝑝 and the
functional𝐻 to the functions ℎ𝑝, we obtain

𝑛

∑

𝑖=1

𝛼𝑖𝐴 𝑖 = (𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘))

= (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) =

𝑚

∑

𝑗=1

𝛽𝑗𝐵𝑗.

(60)

Now, we can apply Theorem 6 and get the inequality

𝑛

∑

𝑖=1

𝛼𝑖𝑓 (𝐴 𝑖) = 𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘))

=

𝑚

∑

𝑗=1

𝛽𝑗𝑓 (𝐵𝑗)

(61)

which concludes the proof.

Proposition 13 does not generally hold for convex func-
tions. The next example demonstrates a concrete planar case
of 𝑘 = 2.

Example 14. We take the convex function 𝑓(𝑥, 𝑦) = 𝑥
2
+ 𝑦
2,

the triangle with vertices 𝐴1(−3, 0), 𝐴2(3, 0), and 𝐴3(0, 3),
and the outside points 𝐵1(−2, 2), 𝐵2(0, −2), and 𝐵3(2, 2).

Then, we have

1

3

𝐴1 +

1

3

𝐴2 +

1

3

𝐴3 =

3

8

𝐵1 +

2

8

𝐵2 +

3

8

𝐵3,

9 =

1

3

𝑓 (𝐴1) +

1

3

𝑓 (𝐴2) +

1

3

𝑓 (𝐴3)

>

3

8

𝑓 (𝐵1) +

2

8

𝑓 (𝐵2) +

3

8

𝑓 (𝐵3) = 7.

(62)
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More details on the behavior of a convex function of two
variables on the triangle and outside the triangle can be found
in [9, Theorem 3.2]. Triangle cones have a prominent part in
these considerations.

The integral analogy of the concept of convex combina-
tion is the concept of barycenter. Let 𝜇 be a positive measure
on R𝑘, and letA ⊆ R𝑘 be a 𝜇-measurable set with 𝜇(A) > 0.
Given the positive integer 𝑛, letA = ∪

𝑛

𝑖=1
A𝑛𝑖 be the partition

of pairwise disjoint 𝜇-measurable sets A𝑛𝑖. Taking points
𝐴𝑛𝑖 ∈ A𝑛𝑖, we determine the convex combination

𝐴𝑛 =

𝑛

∑

𝑖=1

𝜇 (A𝑛𝑖)

𝜇 (A)

𝐴𝑛𝑖 (63)

whose center 𝐴𝑛 belongs to convA. The 𝜇-barycenter of the
set A can be defined as the limit of the sequence (𝐴𝑛)𝑛; that
is,

𝑀(A, 𝜇) = lim
𝑛→∞

(

𝑛

∑

𝑖=1

𝜇 (A𝑛𝑖)

𝜇 (A)

𝐴𝑛𝑖)

=

1

𝜇 (A)

(∫

A

𝑥1 𝑑𝜇, . . . , ∫

A

𝑥𝑘 𝑑𝜇) .

(64)

As defined above, the point 𝑀(A, 𝜇) is in convA. So, the
convex sets contain its barycenters.

The application ofTheorem 6 to integral inequalities is as
follows.

Proposition 15. Let 𝜇 be a positive measure on R𝑘. Let C ⊆

R𝑘 be a closed convex set, let S ⊆ C be a 𝑘-simplex, and let
A ⊆ S andB ⊆ C \S𝑜 be sets of positive 𝜇-measures.

If the above sets have the common 𝜇-barycenter

𝑀(A, 𝜇) = 𝑀(B, 𝜇) , (65)

then the inequality

1

𝜇 (A)

∫

A

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

1

𝜇 (B)

∫

B

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇

(66)

holds for every continuous function 𝑓 : C → R satisfying
(31)-(32).

Proof. The proof is similar to that of Proposition 13 by using
X as the space of all 𝜇-integrable functions on C. We apply
the integrating unital positive functional 𝐿 defined by

𝐿 (𝑔) =

1

𝜇 (A)

∫

A

𝑔 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 (67)

to the functions 𝑔𝑝 of (57), as well as the integrating unital
positive functional𝐻 defined by

𝐻(ℎ) =

1

𝜇 (B)

∫

B

ℎ (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 (68)

to the functions ℎ𝑝 of (58).

If 𝑆1, . . . , 𝑆𝑘+1 are the simplex vertices, then using the
unique convex combination∑

𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 satisfying

𝑀(A, 𝜇) =

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = 𝑀(B, 𝜇) (69)

and applying (37), we obtain the extension of (66) as the
double inequality

1

𝜇 (A)

∫

A

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

≤

1

𝜇 (B)

∫

B

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇.

(70)

The above inequality is reminiscent of Hermite-Hadamard’s
inequality where discrete and integral terms are replaced, see
the below inequality in (72).

Implementing convex combinations to the integral
method, onemay derive the following version of theHermite-
Hadamard inequality for convex functions on simplexes.

Proposition 16. Let𝜇 be a positivemeasure onR𝑘. LetS ⊂ R𝑘

be a 𝑘-simplex of positive 𝜇-measure, let 𝑆1, . . . , 𝑆𝑘+1 be simplex
vertices, and let ∑𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 be their convex combination.

If the convex combination center and the 𝜇-barycenter ofS
both fall at the same point

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = 𝑀(S, 𝜇) , (71)

then the double inequality

𝑓(

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝) ≤

1

𝜇 (S)

∫

S

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

(72)

holds for every 𝜇-integrable convex function 𝑓 : S → R.

More on the important and interesting Hermite-Hada-
mard’s inequality, including historical facts about its name,
can be found in [10, 11].
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