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We characterize the validity of a Hardy-type inequality with a kernel and three parameters 1 < p,g,r < co under some conditions

on three weight functions u, v, and w.

1. Introduction

Letl < p,r < 00,0 < g < 00,and —c0 < a < b < +oo.
Let u(-), v(-), and w(-) be positive functions locally integrable
on (a, b), hereinafter referred to as weights. Suppose that for
two nonnegative quantities A and B the expression A < B
means A < CB with some constant C that through the paper
depends only on the parameters r, p, and q. The notation A =
Bmeans A « B « A. Moreover, 1/p + l/p' =1.
We consider the following inequalities:

(Feo
: (Lx (Lx K(s,t) f (s) ds>r w(t) dt)q/r dx>1/q a)

b /p
SC(J v(x)fp(x)dx) ,

(fo
(I

b /p
< C(J v(x)fp(x)dx>

1/q

t r qlr
J K(ts) f(s)ds) w(t)dt) dx> ©

X

for all f > 0, where the kernel K(, -) satisfies the conditions
K (s,t) >0,
a<t<s<b, K(st) is increasing in s and decreasing in ¢, (3)
K (s,t) = K(s,z) + K (z,t)

forallt,z,and ssuchthata <t <z <s<b.

A class of Volterra type integral operators with kernels
K(.,+) satistying condition (3) was introduced in [1] and
independently in [2]. Later such kernels were considered in
many works (see, e.g., [3-8]).

The main aim of this paper is to find necessary and
sufficient conditions on the weights u, v, and w for the validity
of inequalities (1) and (2) in the case 1 < p,q,r < oo. The
same problem for K(:,-) = 1 was considered in [9, 10].

Assume

x 1/r
A, (o, B) = sup (J K" (x,s)w(s)ds>

a<x<f \Ja

B , 1/p'
<I VP (s)ds) ,

Al (o, B) = sup (Jx w(s) ds)l/r <J.j K (s, x)

a<x<f \Ja

) 1/p'
AP (s) ds) ,



B 1/r
Aj (o, B) = sup (L K (s, x) w(s) ds)

a<x<f

x , 1/P,
(J yiP (s)ds) ,

Al (o, B) = sup (Jjw (s) ds)l/r (r K (x,5)

a<x<f a
, 1/p'
VTP (s) ds> ,

Box pl(p=r)
wwn = ([ ([ K wowoa)
B , p(r=1)/(p-r) . (p-r)lpr
(j v (s)ds) WP (x) dx) ,

s ([ ([oos)

B , r(p—1)/(p-1) (p-n)/pr
' (J KF (52) 777 (9 d5> w(x) dx> :

B B p/(p-1)
By (o, B) = <L (L K" (s, x)w(s) ds)

P pr-DIp-r) (p=r/pr
(J VP (s)ds> VP (x)dx ,
o

B} (a, B) = <LB (Jj w(s) ds)’/(f”)

X, , Hp-1)/(p-r) (p=r/pr
(J K? (x,5)v'"P (s)ds) w(x)dx) ,

(IF() k60 f @ ds) wio dt)l/r
B (P dx)

(P ([ K9 f @ ds) wedr)
£20 ( [ ) f7 () dx)up '

(4)
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Two-sided estimates of the values J~ and J* with kernels
satisfying condition (3) were found in [11]. Moreover, when
K(-,-) = 1 we get standard Hardy-type estimates that have
been extensively investigated by many authors. A complete
review of Hardy-type estimates and generalized Hardy-type
estimates can be found in books [12, 13] and references given
there.

The following theorem will be used for the main results.

Theorem A (see [11]). (I)If1 < p < r < 0o, then forall f >0
we have

] =A,
(5)
]+ ~ A"
(2)If1 <r < p <00, then forall f >0 we have
]_ "~“B_)
. (6)
J' =B

+

Remark 1. Since the expressions Aj, Aj, B;, and B] are
decreasing in « and increasing in f3, then from (5) and (6)
we have that J*(a, f8) are equivalent to a decreasing function
in « and an increasing function in . This means that there
exists a constant C > 0 depending only on p and r such that

J* (e, B) < CT* (o), By) for oy < < B < By.

2. Main Results

2.1 Case p<q

Theorem 2. Let 1 < p < g < ocoandl < r < oo.
Inequality (1) holds for all f > 0 if and only if E= =
SUp,.,«,J (a,2)U(z,b) < 0o. Moreover, E- = C, where C is
the best constant in (1).

Theorem 3. Let 1 < p < g < ocoandl < r < oo.
Inequality (2) holds for all f > 0 if and only if E* =
SUpP,c,<p) " (z,b)U(a, z) < co. Moreover, E* = C, where C is
the best constant in (2).

Remark 4. Let us prove only Theorem 2 since the proof of
Theorem 3 is similar.

Proof of Theorem 2.

Sufficiency. Let E~ < oo. For any integer k we introduce

xk:sup{a<x
X X r (7)
<b:J (J K(s,t)f(s)ds> w(t)dtszf"}.

a
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It is obvious that for any k we have x; < x;,,. However,

when x; < b we have x; < x;,; < b. Therefore,
J ‘ <J K0 f(s) ds> wndi=2% (8
a t

Xk+1 Xk+1 r K+l
J (J K(s,t)f(s)ds> w(t)dt < 27®D. (9)
a t
Let I, = [xy, Xp,,). Then

(a,b) = U [ Xpes1) - (10)

k

Suppose that x; < b; then from (8), twice applying
Minkowski’s inequality, we get

1/r

1/r

ka K(s.t) £ (s) ds)r w () dt)

)

- E“(f“K@ﬂﬂ@ﬁfwww)
(
<

1/r

Kuﬂf@mywmm)

r 1/r
K (s,t) f (s) ds) w (t) dt>

(
(
(0 (17 keoson o
J,
(I
(I,

I
(j @of@¢)wmwfh
(L

r 1/r
K (s,t) f (s) ds) w (t) dt> .

Sincea <t < x;_; < s < b, we can use (3) so that the last
gives

2k—1

xx Xk r 1/r
< <J (J K(s,t)f(s)ds> w(t)dt)

+ <Jan_1 <J:Ck K (s, x1_) f () ds)r w(t) dt>1/r

" < LXH <Lik K (xept) £ (5) ds)r w () dt)w

3
_ <E <ka K(s,8) f (s) ds)rw(t) dt)m
+ J:Ii K (s, x5_y) f (s)ds (J:H w () dt)l/r
+ J:l f(s)ds <ka_1 K (x_p, t)w(t) dt)l/r :
(12)
From (9) and (10) we have
b
T = L u (x)
: ( : (thK(s, £ (s) ds)rw(t) dt)q/r dx
< ; L:CH u(x)dx
(13)

Xk+1 Xk+1 r q/r
. ( (J K (s,t) f(s) ds> w(t) dt)
t

Xket1
< qu(kﬂ) J u(x)dx
k Xk

Xier1
= 22q22‘1(k‘1) J u (x) dx.
k Xk

From (12) and (13) it follows that

T <2y ((Jxk (JXk K (s,t) f (s) ds>rw (t) dt)
=\, U

Xk-1

+ L:: K (s, x,_;) f (s)ds (L

Xk Xpeo1 1/r\1
+J f(s)ds(J K (%) w (@) dt) )

. J‘ o u(x)dx
Xk

1/r

w(t) dt>1/r

< ; (J: (L Kb () ds)r w(t) dt)q” (14)
. rk” u(x)dx + ; (ka

Xk k-1

([ w0 dt)q/r | uwax
+ Z <J f(s) ds> <kail K (x_p,t)w(t) dt)q/r

Xiet1
J ux)dx=T,+T,+T;.
Xk

q
K (s,x¢_1) f (5) ds)



Next, we separately estimate T}, T,, and T; for 1 < p <
min{r,q} <coand 1 <r < p < g < oo.
Let 1 < p < min{r, g} < co. From (5) we get

T, < Z (J™ (1> x3) U (0 Xpe41))”
p

- (J:k v @) (1) dt)q/p

k-1

< % (J (@ x) U (x3b))*

X alp (15)
(J v(t) fP(t) dt> <(E)?
% q/p
. (ZJ v(t) fF () dt) < (E)?
kY Xk-1
b q/p
. (J v(t) fF (t)dt) )
To estimate T, we use Holder’s inequality:
Xk q
T, = Z <_[ K (5) xkfl) fs) VP () y /P (s) dS)
k k-1 )
Xj-1 T X
( w(t)dt)q J u(x)dx,
Xg-1 qlr
T, < Z(J w(t)dt>
k a
Xk ' ) P’ xen
(J K? (s,x_)v F (s)ds) J u(x)dx
xk /
(] v@fﬂamfp (17)
< Z (A7 (@, 2) U (o, b))q
k
Xje alp
(J v(s)fp(s)ds) ,
b q/p
T, < sup (J~ (a,2)U (z,b))" (J v(s) fF (s) ds)
a<z<b a
(18)

b q/p
= (E)? (L v(t) fP (t)dt) .

Journal of Function Spaces

To estimate T; we again use Holder’s inequality and get

j”f@wmgww@af

Xk-1

n:%(
(19)

Xj-1 It X
. <J K" (xp_ppt) wit) dt> J u(x)dx,

a/r

T, < ;(rkl K" (x5 t) w(t) dt)

X , alp' Xier1
. <J VP (s) ds) J u(x)dx
Xk-1 Xk

-(J:jlv<s)ff(s>ds)q“’ (20)

X a/p
-(j v@f”ﬂ¢> ,

b alp
T, < sup (J~ (a,z)U(z,b))q<J v(s) f? (s)ds)

a<z<b
b alp
— (B (J v ) 7 () dt) .

From (14), (15), (18), and (21) it follows that for 1 < p <
min{r, q} < co inequality (1) is correct. Moreover,

(21)

C<E, (22)

where C is the best constant in (1).
Let us turn to the case 1 < v < p < g < 00. In the same
way as above from (6) we get

T, < Z (U (xk—l’xk)U(xk’karl))q
%

X a/p
. (J o) dt)
< Y (J (ax) U (x,b))"
k
o / 23
. (J v(t) P () dt>q ! < (") >
N q/p
‘<ZJ vmfﬂnm> < (£
kY %Xk-1

b a/p
(J v(t)fp(t)dt> )
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To estimate T, we work with (17). Since

(o)

e , , 1/p' _
<J K? (s, %) v'7F (s)ds) < (Pp 4

X1
x r/(p=7) (p=r)lpr
j w(t) dt) w (t) dt)

)

Xk ’ U I/P,
<J K? (s,x3_,) V' P (s) ds) < B (a,xy),

Xk-1

(24)

we have

T, < Z (B; (a,x) U (x3,b))"

-(Jxk v(s) fF (s) ds>q/P

b ar (25)
< sup (J° (a,z)U(z,b))q<J v(s) f? (s)ds)

a<z<b a
b qa/p
— (B (j v @) P (1) dt) .

Similarly, working with (20) we have

U K" (21, 1) w (8) dt)w (J V() ds)w

< (ka'l K (xp ) w (0) dt)l/r (%

X X , p(r=1)/(p-r)
. J <J VP () ds)
Xpe_1 x

, (p—n)/pr
VP (s) ds) < B, (a,x;)

(26)

that yields

Ty < ;(Bo_ (@x) U (x,0))’

-(Jxk v(s) fF (s) ds)q/p

Xk-1

b alp 27)
< sup (J° (a,z)U(z,b))q<J v(s) f? (5)ds>

a<z<b a

b q/p
— (B (j v @) P () dt) .

Combining (14), (23), (25), and (27), we have that for 1 <
r < p < g < oo inequality (1) is correct. Moreover,

C<E, (28)

where C is the best constant in (1).

Necessity. Let (1) be valid. Let z € (a,b) and f : (a,2) —
R be an arbitrary function such that f: v(x) fP(x)dx < oo.
Suppose that

0, z<s<b.

(s), a<s<z,
fz(s): {f (29)

If we substitute the function f, in (1) we have

b 1/q
(J u(x) dx)

' <J (LZK (076 d$>rw(t> dt)l/r (30)

z 1/p
SC(J v(x)fp(x)dx> .

From (30) we have
U(z,b)] (a,z) <C Vze€ (a,b). (31)
Therefore,
E <C. (32)
Moreover, from (22), (28), and (32) we have C = E°,

where C is the best constant in (1). The proof of Theorem 2
is complete. O

2.2. Case q < p. In this section we consider the case 0 <
q < p<oo,p>1landl < r < co and present sufficient
conditions for the validity of inequalities (1) and (2).

Let
b b q9/(p-q)
J u (x) (J u(s) ds)

(p-a)/pq
. (]— (a) x))PQ/(P*q) d.x) ,

o (Lb ) <Lx ") ds)q/(pq)

(p-9)/pq
) (]+ (x, b))Pq/(P—q) dx) .

(33)

Theorem 5. Let0 < g < p <00, p > L,and1 < r < oo.
Inequality (1) holds if F~ < 0co. Moreover, C < F~, where C is
the best constant in (1).

Theorem 6. Let0 < g < p < 00, p > Land1 < r < oo.
Inequality (2) holds if F* < co. Moreover, C < F*, where C is
the best constant in (2).

Remark 7. Let us prove only Theorem 5 since the proof of
Theorem 6 is similar.



Proof of Theorem 5. The first steps of the proof are similar to
those in Theorem 2 up to (14), where

T<T +T,+Ts;. (34)
This means that we need to separately estimate T}, T,, and Tj.

Let us start with T;. Let us notice that we use Holder’s
inequality:

T, = ;(j:: (ka K(s,) £ (s) ds)rw(t) dt)q/r

[ < Y 07 (x))”
X P

- Jxk“ u(x) dx (Jx v ) f7 (1) dt>q/P

Xk Xk-1

Xea1 p/(p—9)
< (Z (J u (x) dx>
PR

e pal(p-q) e *
(U™ (%=1 X)) I v

kY Xk-1

q/P Xker1
P @) dt) < <Zj u (x)
k

Xk

a

-y (Jxk K (s %) £ () ds>q <JXH w (£) dt)q/r

Xk-1

MuwarsY ([
k X,

k
(J w () dt)q/r J:k u(x) dx<J’:Ii V() 2 (1) dt)q/p < (
J
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Xpa1 q/(p-q)
. <J u(s) ds> dx

(p-a)/p b

1 (xk-l,xk))”’“"‘”) (j 10
q/P X+1
.fP(t)dt> < <ZJ u(x)
k7%
b q/(p-q)

(J u(s) ds)

e-alp ,
(U @x) " dx) (j V()

a/p b
i (t)dt) s(F‘)q(J v(t)

qa/p
- fP(t) dt) )
(35)

Now, we turn to the estimation of T,. Again Hoélder’s
inequality is used:

' . aly’
K (s, %) v' P (s) ds>

k-1

Xpa1 p/(p—9)
J u (x) dx>

Xk

>(

k

9p-D/(p=9) / (x4 ap/r(p-q)\ ‘P~D/P X a/p
< KP (s, %) 1-p/ (s)ds) <J w(t)dt) ) (ZJ v(t) fF () dt)

xk+1 p/(p—q)
< u(x) dx)
X

kY Xk-1

pl(p=n) ) . Hp-1)/(p—r) 19D Ir(p-)\ P~ D/P alp
[ J w(t) df) <J K? (S, Xk—l) yiP (s) dS) :| > (J v (t) fP ®) dt)
Xj—1 a

xk+1 Xk+1 q/(P_q)
u (x) u(s) ds) dx

X x

“ wi([[we dr)r/(p_r) ar( [ K xe) o ds)r(p_”/“"’)]
( | " 70 dt)q/p <\ 2 j e (x) (Ku(s) d5>q

q(p-n)/r(p-q) ><P-q>/P

dx
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) oexe , r(p-1)/(p-r) (p-r)/pr\ P9/(P=2) (p-9)/p
( J w (t) w (1) d‘l’) (J K? (s,0)v'"P (s) ds) dt] >
t
b b b 9/(p-q) b q/p
( v(t) f ) < <J u(x) <j u(s) ds) (B, (a, x))Pq/(P—q) dx) (j v (t) fP (t) dt)

q9/(p-q) p-alp , qlp
( u(x) u(s)ds) (]_(a,x))pq/(p_q)dx> (j v (t) fP(t)dt> = (F)?

(p-9)/p

a

b
( v(t) fF (¢) dt)
(36)

The last step is to estimate T5:

T, = ;(E:l 1) d5>q <J‘:k-1 K" (x_t) w(t) dt>q/r I::“ u(x)dx < Z (Lk | Y () ds)q/pl (ka_l )
“w(t) dt)q/r ka“ u (x) dx(J:k v(s) FP (s) ds>q/p < <z <J:k+1 () dx>p/(p—q

k

alr / cx . R L A alp

[(I K" (%31 t)w(t)dt> (J yiP (s)ds> ] > (J v(s) fF (s)ds)
xk+1 p/(p—q) Xk , r(p-1)/(p-1)
<Z u (x) dx <[<j VP (s) d5>
3

Xk Xk-1

pl(p—r)7P~1)/pT pal(p-a)\ P~/ b alp Xier1
Kr (X ) wt) dt) ] ) > (J v(s) 7 (s) ds) < <ZJ u(x)
a k

Xk

b 9/ (p~ q) Xk , Xk , p(r=1)/(p-r)
(j u (1) d‘r) ([j VP (s) <J VP (1) dt) ds
e ‘ (37)
pl(p—r)7(P~1)/pr pal(p=a) \ P~/ b q/p Xpa1
(J K" (x3_1> t)w(t)dt) ] ) > (J v(s) f? (s)ds> < <ZJ u(x)
a ko Y%k
b a/(p—-q)
. (J u (1) d‘r)
x pr-1/(p-1) / (s plp-n  7@DIpr\ PP iy
<“ -7 (s) yr (t)dt> (J K’ (s,t)w(t)dt) ds] ) dx>
b alp b b al(p-9) p-alp , alp
(j v () £ (5) ds) < (j () (j u (@) dr) (B (a, )"/ dx> (j v ) £ (5) ds)

b a/(p-9) e=alp alp b
< <J u(x) (j u (1) d‘l.') g (a,x))Pq/(‘D_q) dx) (J v(s) fF (s) ds) = (F)q<J v(s)

a/p
P (s) ds) .



Combining (14), (35), (36), and (37), we have that inequality
(1) is correct. Moreover, C < F~, where C is the best constant
in (1). O

Remark 8. Let us consider the following inequalities:

b
<J u(x)
x b r q/r 1/q
(J (j K(s,t)f(s)ds> w(t)dt> dx> (38)
a t

b 1/p
SE(J v(x)fp(x)dx) ,

t r alr 1/q
j K(ts) f(s)ds) w(t)dt> dx> (39)

a

(I
SC(Jabv(x) i (x)dx)

It is obvious that, in view of (3), the validity of inequality
(38) is equivalent to the simultaneous validity of inequality
(1) and the following inequalities:

(Fas( o)

. (EK(s, 0 ) ds)qu)l/q < Ci(j:v(ﬂ (40)
~fP<r)dt)Up,

([ e
(Lroe)e) el

1/p
P () dt) )

1/p

Inequality (40) can be treated by Theorem A, while inequality
(41) is the standard Hardy-type inequality. This means that
if we combine Theorem 2 and the known results on Hardy-
type inequalities, we can characterize (38) for the case 1 <
p < g <ooandl < r < oo. Similar splitting can be
done for inequality (39). In [14] inequalities (38) and (39) are
completely characterized for all relations between p, g, and
r,where 1 < p < 00,0 < g < 00,and 0 < r < oo. The
characterization method in [14] is not based on the integral
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splitting. Thus, due to the splitting, our main inequalities
(1) and (2) allow characterizing inequalities (38) and (39).
However, inversely, inequalities (38) and (39) do not help to
characterize inequalities (1) and (2).

Let us also notice that when K(:,-) = 1 inequalities (38)
and (39) were considered in [15-17].

3. Applications

(1) Let a function g : I — R have generalized derivatives up
to nth order; n > 1. Let 0 < k < n — 1. Now we consider the
inequality

(42)

1=

where the inside norm [|R,,_.(:, -, g(k) )l is taken with respect
to the second argument of the function R,,_;, and the function

2 <Cle"l,.

el

R, (t, x, g(k)) is the (n — k)th remainder of Taylor’s formula
of g(k); that is,

n—k—1 _(k+i) _
B =gV 0~ 3 (") GG I

In the case k = 0 we have

T g7 @) -

R,(t.x.9) = g(t) = ). g (44)
i=0 :
Moreover, || - ||, stands for
b 1/p
o= ([ vobreras) " o

By integration by parts it is easy to see that for x > t we have

R (6.9Y)
RGN nk-1 _(n)
= m J; (S - t) g (S) ds (46)
=Gy (t X, g(”))

Similarly, for x < t we get

R, i (t, X, g(k))

= TE ]:_1)'[ -5 g™ (s)ds  (47)
=Gy (tx, g(")) .
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Therefore, inequality (42) holds if and only if the follow-
ing inequalities simultaneously hold:

b x q/r 1/q
(J u(x) <J |G,; (t,x,g("))'rw(t) dt) dx)

1/
<C <Jb v () |4 (o dx) g

b b . qlr
<I u(x)([ 'G,j (t,x,g<n))| w(t)dt) dx>

1/p
<C <Jb v(x) |g(”) (x)'p dx) .

g (48)

1/q

b b . q/r
(J u(x)(J 9" (x) - " (@) w(t)dt) dx>
b b . qlr 1/q
(J u(x)(J g% () - g% )] w(t)dt> dx>

Thus, if we denote E,f = E* and Fki = F* when K(s,t) =
(s—t)”_k_1 ,from Theorems 2, 3, 5, and 6 we have the following.

Theorem9. Let0 <k <n-l.Letl<p<g<ooandl <r<
00. Inequality (42) holds if and only if E;, = max{E,, E; } < co.
Moreover, E; = C, where C is the best constant in (42).

Theorem10. LetO < k <n-1.Let0 < g < p <co, p > 1,and
1 < r < oo. Inequality (42) holds if F, = max{F, ,F{} < oo.
Moreover, C < Fy, where C is the best constant in (42).

Remark 11. If inequality (42) holds, then the inequalities

1/p
<C (Jbv(x) |g(") (x)|P dx) ,

(49)

b 1/p  n-1 b b qlr 1/q
sC((J V(x)|g(n)(x)"°dx) + Z (J u(x)(J 'gu)(t)(x—t)i—k'rw(t)dt) dx) > 0<k<n-1,

i=k+1

also hold.

(2) In this part of the paper we investigate the inequality

b b . alr 1/q
(J u(x)(J 'g(k) (x)_guo (t)| w(t)dt) dx)

a a

(50)
b p 1/p
<C (J v(x) |g(”) (x)‘ dx>
for 0 < k < n— 1 with the conditions
lim g (t) = g” (a) = 0,
t—a*
lim 0 =9"®) =0 (51)
t—b~
fori=kk+1,...,n-1.
When r = g inequality (50) turns to the inequality
bob o 1/q
(j [ 109 @-9% 0 uwe dtdx)
(52)

1/p
<C (Jb v(x) |g(") (x)|P dx) .

Characterization of inequality (52) with conditions (51) is
associated with open problem 2 in book [13, page 297].

First, we consider the inequality

b | W ® [ alr - \4
(j u(x)q 9% () - g (¢)] w(t)dt) dx>

) (53)
1/p
<C (r v(x) |g(") (x)|p dx)

for 0 < k < n— 1 with the conditions

lirilg(i) () :g(i) (b)=0 fori=kk+1,....,n-1. (54)
t—b~

Let g(")(t) = f(t); then we have

(_l)n—k

b k
e j (s— )™ £ (s)ds,

®) (4 =
g ® (55)

k=0,1,...,n—-1.

Therefore, for x > t,

A O ACY)

_1\nk b
= % [J-t (s — x)" 1 f(s)ds

b
_ J (s—t)"* ! f(s) ds]
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_1\nk x

b
+| [=0"" = (s=x)" 1] F(5)ds|.
J.I f

X

(56)

In the case n > 2 and k = n — 2 we have

X

9" () - g (x) = j (s— 1) £ (s)ds

t

(57)
b
+(x—t)J f(s)ds.

X

Inthecasen >2and 0 < k < n—2fors > x >t we use the
following relation:

(S _ t)n—k—l _ (S _ x)n—k—l
(58)
= (=) [(s = x)" 7+ (x -t

From (56), (57), and (58) we have
g(k) (x) - g(k) (t)
x b
~ Jt (s= )" f(s)ds+ (x— )" J f©)ds (59

b
+y (k,n) (x — 1) J (s— )" 2 f (s)ds,

where y(k,n) = 0 when k = n — 2 and y(k,n) = 1 when
0<k<n-2.
From (59) we obtain

(] 19 0 - @] wer dt)w

(I

+ (Jx (x =)D 4 (1) dt)l/r

a

r 1/r
w(t) dt)

r (s— )" £ (s) ds

b
J f(s)ds (60)

x 1/r
+y<k,n)<j (x—t)rw(t)dt)

b
j (s— )" 2 f(s)ds

Journal of Function Spaces

Consequently, the validity of inequality (53) is equivalent
to the simultaneous validity of the following inequalities:

b
(J u(x)
x x r qlr 1/q
<j (J (S—t)"_k_lf(s)ds> w(t)dt) dx) (61)
a t

b 1/p
<G (J v(x)fp(x)dx> ,

a

b b q 1/q
<I W,:,(@(J (s—x)m'kf(s)ds> dx)
b 1/p
scz<j v(x)fp(x)dx>

form = kand m = n — 2, where W (x) = u(x)(I:(x -
£) " Vw(t)dt) "0 <k <n-1.

Inequality (61) can be characterized by Theorems 2 and 5
when K(s, t) = (s — t)" 1,

Inequality (62) can be characterized by Theorem A if we
denote A;’m(a, b) = A (a,b) and B‘;m(a, b) = B (a,b),

where we replace K(s,t) by (s — t)m_k, w by W, , and r by
q. Then by Theorem A inequality (62) is valid if and only if
A;’m(a,b) <ooforl < p<gq<ooand B;’m(a, b) < oo for
I<g<p<oo.

Thus, the following hold.

(62)

Proposition 12. Let n > 2 and 0 < k < n — 1. Let
1 < p<q < ooandl < r < oo. Suppose that g
satisfies condition (54). Then inequality (53) holds if and only if
D, = max{y(k, n)A;’n_z(a, b),A;’k(a, b), E;.} < 0o. Moreover,

Dy = C, where C is the best constant in (53).

Proposition 13. Let n > 2 and 0 < k < n — 1. Let
1 < g < p < ooandl < r < co. Suppose that g
satisfies condition (54). Then inequality (53) holds if M, =
max{y(k, n)B;’n_z(a, b),qu,k(a, b), F.} < co. Moreover, M =
C, where C is the best constant in (53).

A similar result can be written for the inequality

b b . alr /g
(J u(x)(J |9 &) - g% ()| w(t)dt) dx)

(63)
1/p
<C <Jb v(x) 'g(") (x)'P dx>

with the conditions
limg(i) (t) = g(i) (@)=0 fori=kk+1,....,n-1. (64)
t—a*

Here we need the following notations: A;)m(a, b) = A%(a,b)

and B;’m(a, b) = B'(a,b), where we replace K(s,t) by
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(s - t)mﬁk, w by W,; for m = kand m = n - 2, where

Wi () = u() ([t - 0" Dw@ndn', 0 < k < n-1,
and r by q.

Proposition 14. Let n > 2 and 0 < k < n — 1. Let
1 < p<q < ooandl < r < o00. Suppose that g
satisfies condition (64). Then inequality (63) holds if and only if
Dy = max{y(k, n)A;’nfz(a, b),A;k(a, b), E;} < 0o. Moreover,

Dy = C, where C is the best constant in (63).

Proposition 15. Let n > 2 and 0 < k < n — 1. Let
1 < g < p < ooandl < r < oo. Suppose that g
satisfies condition (64). Then inequality (63) holds if M} =
max{y(k, n)B;n_Z(a, b),B;k(a, b), F} < co. Moreover, M| =
C, where C is the best constant in (63).

The validity of inequality (50) with conditions (51) is
equivalent to the simultaneous validity of inequalities (53)
with (54) and (63) with (64). Therefore, from Propositions 12,
13, 14, and 15 we have the following.

Theorem 16. Let0 <k <n—-1.Letl < p<g<ooandl <
r < 00. Suppose that g satisfies conditions (51). Then inequality
(50) holds if and only if D, = max{D;,D;} < co. Moreover,
D, = C, where C is the best constant in (50).

Theorem17. Let0 <k <n-1.Letl <g< p<ooandl <
r < 00. Suppose that g satisfies conditions (51). Then inequality
(50) holds if M. = maX{M,Z,M,:} < 00. Moreovet, M. = C,
where C is the best constant in (50).
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