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We first introduce some new Morrey type spaces containing generalized Morrey space and weighted Morrey space as special cases.
Then, we discuss the strong-type and weak-type estimates for a class of Calder6n-Zygmund type operators T, in these new Morrey
type spaces. Furthermore, the strong-type estimate and endpoint estimate of commutators [b, Ty] formed by b and T} are established.
Also, we study related problems about two-weight, weak-type inequalities for Ty and [b, T,] in the Morrey type spaces and give

partial results.

1. Introduction

Calderén-Zygmund singular integral operators and their
generalizations on the Euclidean space R" have been exten-
sively studied (see [1-5], for instance). In particular, Yabuta
[5] introduced certain 6-type Calderén-Zygmund operators
to facilitate his study of certain classes of pseudodifferential
operators. Following the terminology of Yabuta [5], we intro-
duce the so-called 8-type Calderén-Zygmund operators.

Definition 1. Let 0 be a nonnegative, nondecreasing function
on R = (0, +00) with

jl @dt < oo, )

0

A measurable function K(+,-) on R" x R" \ {(x,x) : x € R"}
is said to be a 0-type kernel if it satisfies

C
O [K ()| € - forany x4 @

|x—y
(i) [K(x,y) - K (2, 9)|+|K (3, x) - K(y,2)]

_ - (3)
< n-e("c Z'), for |x—z|<M.
o= y" N\ lx -] 2

Definition 2. Let Ty be a linear operator from §'(R") into
its dual §'(R"). One can say that Ty is a 0-type Calderén-
Zygmund operator if

(1) Ty can be extended to be a bounded linear operator
on L*(R™);
(2) there is a 0-type kernel K(x, y) such that

Tof ()= | K(xy) £ (3)dy @

for all f € C;°(R") and for all x ¢ supp f, where C;°(R")
is the space consisting of all infinitely differentiable functions
on R" with compact supports.

Note that the classical Calderén-Zygmund operator with
standard kernel (see [1, 2]) is a special case of O-type operator
T, when 6(t) = t® with 0 < § < 1.

Definition 3. Given a locally integrable function b defined on
R" and given a 0-type Calderén-Zygmund operator Ty, the
linear commutator [b, Ty] is defined for smooth, compactly
supported functions f as

[6,Ty) f(x) =b(x) - Tyf (x) - Ty (b f)(x)

(5)
_ IW [b(x)-b(»)]K (x,) f (y)dy.



Throughout the paper, let us suppose that 6 is a nonneg-
ative, nondecreasing function on R* = (0, +00) satisfying
condition (1). Let us give the following weighted result of T
obtained by Quek and Yang in [6].

Theorem 4 (see [6]). Let1 < p < coandw € A, Then, the
O-type Calderén-Zygmund operator Ty is bounded on LP (R")
for p > 1 and bounded from L} (R") into WL (R") for p = 1.

Since linear commutator has a greater degree of sin-
gularity than the corresponding 0-type Calderén-Zygmund
operator, we need a slightly stronger version of condition
(8) given below. The following weighted endpoint estimate
for commutator [b,Ty] of the 0-type Calderén-Zygmund
operator was established in [7] under a stronger version of
condition (8) assumed on 6, if b € BMO(R") (for the
unweighted case, see [8]).

Let us now recall the definition of the space of BMO(R")
(see [9]). BMO(R") is the Banach function space modulo
constants with the norm || - ||, defined by

1
Il = sup—j 1b(x) - b| dx < oo, ©)
5 1Bl Js

where the supremum is taken over all balls B in R" and by
stands for the mean value of b over B; that is,

1
by = B Lb (y)dy. )

Theorem 5 (see [7]). Let O be a nonnegative, nondecreasing
function on R™ = (0, +00) with

Jl o(t)- |logt|dt .
t

0

0, (8)

and letw € A, andb € BMO(R"). Then, for all o > 0, there
is a constant C > 0 independent of f and o > 0 such that

w({x e R":[[b,T] (f) ()] > o})
SCJ @(M)-w(x)dx, ©
" o

where ®(t) = t - (1 + log't) and log"t = max{logt, 0}.

On the other hand, the classical Morrey space was
originally introduced by Morrey in [10] to study the local
behavior of solutions to second-order elliptic partial differen-
tial equations. Since then, this space played an important role
in studying the regularity of solutions to partial differential
equations. In [11], Mizuhara introduced the generalized
Morrey space ZP¥ which was later extended and studied by
many authors. In [12], Komori and Shirai defined a version
of the weighted Morrey space #?*(w) which is a natural
generalization of the weighted Lebesgue space. Let Ty be the
0-type Calderon-Zygmund operator, and let [b, Ty] be its
linear commutator. The main purpose of this paper is twofold.
We first define a new kind of Morrey type spaces .4%Y(w)
containing generalized Morrey space Z”* and weighted
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Morrey space ZP*(w) as special cases, and then we will
establish the weighted strong type and endpoint estimates
for Ty and [b, Ty] in these Morrey type spaces 4*Y (w) for
all1 < p < coandw € A,. In addition, we will discuss
two-weight, weak-type norm inequalities for T,y and [b, T]
in 7Y (w) and give some partial results.

Throughout this paper, C will denote a positive constant
whose value may change at each appearance. We also use A =
Bto denote the equivalence of A and B; that is, there exist two
positive constants C; and C, independent of A and B such
that C; A < B < C,A.

2. Statements of the Main Results

2.1. Notation and Preliminaries. Let R" be the n-dimensional
Euclidean space of points x = (x;,x,,...,x,) with norm
x| = XL, xf)l/z. For x, € R" and r > 0, let B(xy,7) =
{x € R" : |x — x4| < r} denote the open ball centered at
x, of radius r, B(x,, )" denote its complement, and |B(x, 7)|
be the Lebesgue measure of the ball B(x,,r). A weight w is
a nonnegative locally integrable function on R" that takes
values in (0, +00) almost everywhere. A weight w is said to
belong to Muckenhoupt’s class A, for 1 < p < 0o, if there
exists a constant C > 0 such that

1 1/p 1 *P//P I/P’
1 - (10)
(|B| JBw(x) dx) <|B| Lw(x) dx) <C

for every ball B ¢ R", where p' is the dual of p such that
1/p+1/p’ = 1. Theclass A, is defined replacing the inequality
above by

% L w(x)dx<C- esieianw (x) 11)

for every ball B ¢ R". We also define Ay, = Ujcpcco Ap-
Given a ball Band A > 0, AB will denote the ball with the
same center as B whose radius is A times that of B. Given
a Lebesgue measurable set E and a weight function w, we
denote the characteristic function of E by yg, the Lebesgue
measure of E by |E|, and the weighted measure of E by w(E),
where w(E) = fE w(x)dx. It is well known that if w € A
with 1 < p < 0o (or w € A_,), then w satisfies the doubling
condition; that is, for any ball B, there exists an absolute
constant C > 0 such that (see [2])

w(2B) < Cw (B). (12)

Moreover, if w € A, then for any ball B and any measurable
subset E of a ball B, there exists a number § > 0 independent
of E and B such that (see [2])

w (E) IE\°
e sc<ﬁ> . (13)

Given a weight function w on R", as usual, the weighted
Lebesgue space L? (R") for 1 < p < 0o is defined as the set of
all functions f such that

1/p
Il = ([ 1 @Pw@ds) <o a8



Journal of Function Spaces

We also denote by WLI’;}(IR") (1 < p < 00) the weighted weak
Lebesgue space consisting of all measurable functions f such
that

I lyee = sup A [w({x e R" : |f (x)] > AN]?
A>0 (15)

< 0.

We next recall some basic definitions and facts about
Orlicz spaces needed for the proof of the main results. For
further information on the subject, one can see [13]. A
function & is called a Young function if it is continuous,
nonnegative, convex, and strictly increasing on [0, +00) with
0) = 0and (t) — +oco ast — +00. An important
example of Young function is &/ (t) = t*(1+log"t)? with some
1 < p < oo. Given a Young function &/, we define the /-
average of a function f over a ball B by means of the following
Luxemburg norm:

s ine {1500 o [ (LM )axsa} 0o

When &/(t) = 7,1 < p < 00, it is easy to see that

1 p
s = (i [ lroPax) s

that is, the Luxemburg norm coincides with the normalized
L? norm. Given a Young function &/, we use < to denote the
complementary Young function associated with &. Then, the
following generalized Holder’s inequality holds for any given
ball B:

1

5 )yl - a@lax <2l ol 09)

In particular, when &/(¢) = t - (1 + log*t), we know that its
complementary Young function is &/(t) = exp(t) — 1. In this
situation, we denote

“f"LlogL,B = "f“&i,B ’

"g"expL,B = "9“3,3 N

(19)

So we have

1
5 | 10 9 0l < 2] iy ol 20

2.2. Morrey Type Spaces. Let us begin with the definitions of
the weighted Morrey space and generalized Morrey space.

Definition 6 (see [12]). Let1 < p < 00,0 < k¥ < 1, and w be
a weight function on R". Then, the weighted Morrey space
P (w) is defined by

L (w) = {f € Lj, (w): Ilf”y%x(w)
(21)

— 1 P d e
_s%p<WJB|f(x)| w (x) x> <oo},

where the supremum is taken over all balls B in R". We also
denote by W2 (w) the weighted weak Morrey space of all
measurable functions f such that

st;ps/\ti};mk-w({xeB:|f(x)|>)»})SC .
< 00.

Let ¥ = ¥(r), r > 0, be a growth function, that is,
a positive increasing function in (0, +c0), and satisfy the
following doubling condition:

Y(Q2r)y<D-¥Y(r), Vr>0, (23)

where D = D(¥) > 1 is a doubling constant independent of
r.

Definition 7 (see [11]). Let 1 < p < oo and ¥ be a growth
function in (0,+0c0). Then, the generalized Morrey space
ZPY(R") is defined by

ZPY (R = { feLd (R"):|f]lgme
(24)

ik eres)”
= su (x) dx) <00f,
r>0;B(I;0,r) v (7’) B(xg,r) f

where the supremum is taken over all balls B(x,, r) in R” with
x, € R". One can also denote by W.Z"* (R") the generalized
weak Morrey space of all measurable functions f for which

sup sup ! A |{x € B(xg,r) : |f ()| > A} <C
B(xy,r) A>0 (T) (25)
< 00.

In order to unify these two definitions, we now introduce
Morrey type spaces associated with v as follows. Let 0 < & <
1. Assume that y(-) is a positive increasing function defined
in (0, +00) and satisfies the following &, condition:

 (§) y (&)
<C- )
& Uy

where C > 0 is a constant independent of £ and &'

for any 0 < &' <& < +co,  (26)

Definition 8. Let 1 < p < 00,0 < k < 1, y satisty the D,
condition (26), and w be a weight function on R". We denote
by 4PV (w) the generalized weighted Morrey space, the space
of all locally integrable functions f with finite norm:

(i)

= ; P 1/p
B Sl;p<w(w (B)) L [f G wix) dx> <c ()

< 00.

Then, we know that .#"Y(w) becomes a Banach function
space with respect to the norm || - || 4»w(y,). Furthermore, we



denote by W.#"" (w) the generalized weighted weak Morrey
space of all measurable functions f for which
= sup su ;0

B 0y (w(B)P

Jw({xeB:|f)|>o)]"* <C

1 lwaeowu

(28)

< 00.

Definition 9. In the unweighted case (when w equals a con-
stant function), one can denote the generalized unweighted
Morrey space by #P¥(R") and weak Morrey space by
WP (R™). That is, let 1 < p < 0o and y satisfy the 9,
condition (26) with 0 < x < 1; one can define

R) [ f 1L

= <w(|B|)J el ) /Pm}’

W (") {fWMW 29)

MY (R") = { felLl (

= sup sup o-|{xeB:|f (%) >a}|l/p

1
B 050 ¥ (|B)"/?

<o},

Note the following:

(i) Ify(x)=1, then #P7Y(w)= L? (R") and WPV (w) =
WL‘ZJ(IR”). Thus, our (weak) Morrey type space is an
extension of the weighted (weak) Lebesgue space.

(i) If w(x) = x* with 0 < x < 1, then .4#PY(w) is just
the weighted Morrey space ZP*(w), and W.Z"Y (w)
is just the weighted weak Morrey space W2 (w).

(iil) If w(x) = 1, below we will show that .#”¥(R") redu-
ces to the generalized Morrey space Z”¥ (R"), and
WY (R™) reduces to the generalized weak Morrey
space WV (R™).

Our main results on the boundedness of T in the Morrey
type spaces 4"V (w) can be formulated as follows.

Theorem 10. Let 1 < p < coand w € A,. Assume that y
satisfies the D, condition (26) with 0 < k < 1; then, the 0-type
Calderén-Zygmund operator Ty is bounded on MY (w).

Theorem 11. Let p = 1 and w € A,. Assume that y satisfies
the D, condition (26) with 0 < x < 1; then, the O-type
Calderén-Zygmund operator Ty is bounded from 4" (w) into
W™ (w).

Let 0 be a nonnegative, nondecreasing function on
= (0,+00) satisfying condition (8), and let [b, Ty] be
the commutator formed by Ty and BMO function b. For
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the strong-type estimate of the linear commutator [b, Ty] in
APY (w) with 1 < p < 0o, we will prove the following.

Theorem 12. Let 1 < p < oo, w € A, andb € BMO(R™).
Assume that 0 satisfies (8) and v satisfies the D, condition
(26) with 0 < k < 1; then, the commutator operator [b, Tg]
is bounded on P (w).

To obtain endpoint estimate for the linear commutator
(b, Ty] in M LY (w), we first need to define the weighted o -
average of a function f over a ball B by means of the weighted
Luxemburg norm; that is, given a Young function & and
w € A, we define (see [13, 14])

. 1 |f ()]
| sy, = inf {0 >0: w(B) JBd( o )

cw(x)dx < 1}.

(30)

When o/(t) = t, this norm is denoted by | - ||, 5 when
d(t) = t-(1+log"t), this norm is also denoted by |- I L1ogL(w),B-
The complementary Young function of ¢-(1+log't) isexp £—1
with mean Luxemburg norm denoted by || - llexp ()5 For
w € A, and for every ball B in R", we can also show the
weighted version of (20). Namely, the following generalized
Holder’s inequality in the weighted setting

d

<C “f”LlogL(w),B ”g”exp L(w),B

is valid (see [14], for instance). Now we introduce new Morrey
type spaces of Llog L type associated with v as follows.

Definition13. Let p = 1,0 < x < 1,y satisfy the D, condition
(26) and w be a weight function on R”. One can denote by
Llog 1 (w) the generalized weighted Morrey space of Llog L

type, the space of all locally integrable functions f defined on

R" with fi .
with finite norm ||f||/%21w Lw)

LlogL (w) - {f € Lloc (w) “f"./lllw L(w) < OO} (32)

where

1Ly o

LlogL

= su {—w(B) .
Flywm)

T RS

Note that t < ¢ - (1 +log"t) for all ¢ > 0; then, for any ball
B c R"andw € A, we have Il < IIfIILIOgL(w)’B by
definition; that is, the inequality

d
£ luiwns = 5z J, I 0l -wrds ,

< ” f"Llog L(w),B
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holds for any ball B ¢ R". From this, we can further see that
when y satisfies the &, condition (26) with 0 < x < 1,

1
B 1
) wt(uw( (1)3» "w(B) j |f G- wix) e
w(B) (35)
"y w®) 11wy
w (B)
Y w®) 1 N sogrcun,s

Hence, we have "7 (w) ¢ A" (w) by definition.

LlogL

Definition 14. In the unweighted case (when w equals a
constant function), one can denote by /[E’;g L(R") the

generalized unweighted Morrey space of Llog L type. That is,
let p = 1 and v satisty the @, condition (26) with 0 < x < 1;
one can define

LlogL( ”)
(36)
={f €L ®) Il azy o < 0}
where
Lo =50 g5 W hogns] - 7

We also consider the special case when v is taken to be
y(x) = x“ with 0 < k < 1 and denote the corresponding
space by g}_’fog L(w).

Definition 15. Let p = 1,0 < k < 1, and w be a weight
function on R". One can denote by )% log (w) the weighted

Morrey space of Llog L type, the space of all locally integrable

n
functions f defined on R” with finite norm || f|| P W)

gi’;cogL (U)) = {f < Lioc (w) : "f“gi’fogL(w) < OO} > (38)
where

Il o

Llo; L

= SI;P {w (B)17K ’ "f“LlogL(w),B} ' (39)

In this situation, we have ™ (w) ¢ £ (w).

LlogL

For the endpoint case, we will also prove the following

weak-type Llog L estimate of the linear commutator [b, Tj]
in the Morrey type space associated with .

Theorem 16. Let p = 1, w € A}, and b € BMO(R"). Assume
that 0 satisfies (8) and v satisfies the D, condition (26) with
0 < k < 1; then, for any given o > 0 and any ball B c R", there

exists a constant C > 0 independent of f, B, and o > 0 such
that

1
v (w(B))

()

where ©(t) = t - (1 + log't). From the definitions, we can
roughly say that the commutator operator [b, Ty] is bounded

from MY (w) into WY (w).

w({x € B:|[b,Ty] (f) (x)| > o})
(40)

>

Ly
'%LlogL( w)

LlogL

In particular, if we take y(x) = x* with 0 < x < 1, then
we immediately get the following strong-type estimate and
endpoint estimate of Ty and [b, Ty] in the weighted Morrey
spaces ZP*(w) forall0 <x < land 1 < p < oo.

Corollary 17. Let 1 < p < 00,0 < x < L,andw € A,
Then, the 0-type Calderén-Zygmund operator Ty is bounded
on FP*(w).

Corollary18. Let p=1,0<k < 1,and w € A,. Then, the 6-
type Calderén-Zygmund operator Ty is bounded from &"*(w)
into WZ" (w).

Corollary 19. Let1 < p < 00,0 <k <L, w € A, andb €

BMO(R"). Assume that 0 satisfies (8); then, the commutator
operator [b, Ty) is bounded on £P*(w).

Corollary 20. Let p = 1,0 < ¥« < 1, w € A, and
b € BMO(R"). Assume that 0 satisfies (8); then, for any given
o > 0 and any ball B ¢ R", there exists a constant C > 0
independent of f, B, and o > 0 such that

‘w({x € B:|[b,Ty] (f) (x)] > 0})

w (B)*
N
T ez @
where ®(t) = t - (1 + log"t).
Naturally, when w(x) = 1, we have the following un-

weighted results.

Corollary 21. Let 1 < p < 00. Assume that y satisfies the
D, condition (26) with 0 < k < 1; then, the 0-type Calderon-
Zygmund operator Ty is bounded on MY (R").

Corollary 22. Let p = 1. Assume that y satisfies the
D, condition (26) with 0 < «k < 1; then, the O-type
Calderén-Zygmund operator Ty is bounded from M"Y (R™)
into WY (R™).

Corollary 23. Let 1 < p < co andb € BMO(R"). Assume
that 0 satisfies (8) and v satisfies the D, condition (26) with

0 < & < 1; then, the commutator operator [b, Ty] is bounded
on APV (R™M).



Corollary 24. Let p = 1 and b € BMO(R"). Assume that 0
satisfies (8) and y satisfies the D, condition (26) with 0 < k <
1; then, for any given o > 0 and any ball B c R", there exists a
constant C > 0 independent of f, B, and o > 0 such that

w(|B|) [z € B:|[6.Tp] () ()] > o}

(@)

where ®(t) =t - (1 + log"t).

(42)

>

(R™)

‘%L logL

Let ¥ = ¥(r), r > 0, be a growth function with doubling
constant D(¥) : 1 < D(¥) < 2". If, for any fixed x, € R"” and
r > 0, we set y(|B(xy,7)|) = ¥(r), then

v (2" |B (xo.7)])

=y (|B(xp,2r)]) = ¥ (2r). (43)

For the doubling constant D(¥) satisfying 1 < D(¥) < 27,
which means that D(¥) = 2°" for some 0 < x < 1, then we
are able to verify that v is an increasing function and satisfies
the 9, condition (26) with some 0 < k < 1.

Definition 25. Let p = 1 and ¥ be a growth function in
(0,+00). One can denote by ngog L(R") the generalized
Morrey space of Llog L type, which is defined by

LlogL (R )
1 (44)
e Ly ®) < sy o < 0]
where
"f“szi}" L(RY)
) B (s07) )
“ i A Whissnan

In this situation, we also have Qil\ggL(R") c ZYYRM).

From the definitions given above, we get 7Y (R") =

LR, WA (RY) = WL R, and )Y, (RY) =
3;{0’“([!%”) by the choice of W. Thus, by the above

unweighted results (Corollaries 21-24), we can also obtain
strong-type estimate and endpoint estimate of Ty and [b, Ty]
in the generalized Morrey spaces Z7* (R") when 1 < p < co
and V satisfies the doubling condition (23).

Corollary 26. Let 1 < p < oo. Suppose that ¥ satisfies the
doubling condition (23) and 1 < D(¥) < 2"; then, the 0-type
Calderén-Zygmund operator Ty is bounded on ZP¥ (R").

Corollary 27. Let p = 1. Suppose that \V satisfies the doubling
condition (23) and 1 < D(¥) < 2" then, the O-type
Calderén-Zygmund operator Ty is bounded from Z¥ (R")
into WY (RM).
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Corollary 28. Let 1 < p < 0o andb € BMO(R"). Suppose
that 0 satisfies (8) and ¥ satisfies the doubling condition (23)
with 1 < D(¥) < 2" then, the commutator operator [b, Ty] is
bounded on ZPY (R™).

Corollary 29. Let p = 1 and b € BMO(R"). Suppose that 0
satisfies (8) and ¥ satisfies the doubling condition (23) with 1 <
D(¥) < 2"; then, for any given o > 0 and any ball B(x,,r) C
R", there exists a constant C > 0 independent of f, B(x, 1),
and o > 0 such that

5l e Bl [70) ()

(@

where ®(t) = t - (1 + log"t).

)] >}

(46)

>

LY
Z1i0gR")

3. Proof of Theorems 10 and 11

Proof of Theorem 10. Let f € MY (w) with 1 < p < 0o and
w € A . For an arbitrary point x, € R", set B = B(x,, rg) for
the ball centered at x,, and of radius rg, 2B = B(x,, 2r5). We
represent f as

f=f X+ f Xepr =N+ (47)

by the linearity of the 0-type Calderén-Zygmund operator
Ty, we write

1 "
iy (e weoa)

1 "
< iy B0 o wi )
AU B
v (w (B))"/?
=1 +1,.

(48)

(L Ty () ()P w(x) dx>1/p

Below, we will give the estimates of I; and I,, respectively. By
the weighted L? boundedness of T} (see Theorem 4), we have

< W 1o (FOll.2,

1 p
W <J-ZB If ()" w(x) dx) (49)
v (w(2B)"?

< C|fl sy - y(w B

Moreover, since 0 < w(B) < w(2B) < +cowhenw € A with
1 < p < 00, then by the &, condition (26) of y and inequality
(12), we obtain

w (2B)/?

<C “f”mww o (B)?

<Clflavew- GO
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As for the term I, it is clear that when x € Band y € (2B)",
we get |[x — y| = |x, — y|. We then decompose R" into
a geometrically increasing sequence of concentric balls and
obtain the following pointwise estimate:

1o (R el < [ ||£z_(ﬁ_l aysc|

i g LME ()l dy.

From this, it follows that

A2l
Xo _J’ln

(51)

w(B)P &
L<C (w(B))I,PZIZJHBlj [fDldy. (2)

By using Holder’s inequality and A , condition on w, we get

1
|2j+lBl sz+13lf (J’)|dy
1 » 1/p
: |21 (L;HB |f W w(y) dy)
' (53)
. 1/p
([ w0 a) " < ClfLanma
I,U(w (2j+lB))1/P
w(2j+lB)1/P ’
Hence,
o) 2j+1B 1/p
1< Clfl oy S LB
=1 y(w(B) P
(54)
L_w®"
w (2j+lB)1/P ’

Notice that w € A, ¢ A for 1 < p < oo; then, by using
the 9, condition (26) of y again, inequality (13), and the fact
that 0 < x < 1, we find that

gy(w(s)"”

S oyw®d)P

w (B)"/?
w (2J'+1B)1/P

<C

S wB! ™ i |B]
Sw(2mB) " arp S =\ |27 B

<. (s

which gives our desired estimate I, < C| f| 4»v(,). Com-
bining the estimates above for I; and I, and then taking the
supremum over all balls B ¢ R", we complete the proof of
Theorem 10. O

8(1-x)/p
) (55)

= >

)5(1—K)/P

Proof of Theorem 11. Let f € 4"V (w) withw € A,. For an
arbitrary ball B = B(x,,r5) C R", we represent f as

f=f X+ f Xepr=ht+[f (56)

then, for any given ¢ > 0, by the linearity of the 0-type
Calderén-Zygmund operator Ty, one can write

B ) ] > o)
! o
<—o-w xeB:|T9(f1)(x)|>_)
v 2 o
1
Y w®)’

o / !
E}) = 11 +12.

We first consider the term I,. By the weighted weak (1, 1)
boundedness of T, (see Theorem 4), we have

w({xeB:|T9(f2)(x)| >

I<cC- .

1

:C.m(jwu(xnw(x)dx) (58)

y (w(2B))
v (w(B))
Moreover, since 0 < w(B) < w(2B) < +co when w € A,

then we apply the &, condition (26) of y and inequality (12)
to obtain that

<C "f”/%w(w) :

w (2B)*

'<C "f”/%w(w) W <C "f“/%lw (59)

As for the term I,, it follows directly from Chebyshev’s
inequality and the pointwise estimate (51) that

' 1 2
f < vw®)’ o JB Ty (f>) ()| w (x) dx
(B) (60)
w
1//(w (B))Z|2J+IB| J |f (W)ldy.
Another application of A, condition on w gives that
1
|2j+lB| Lf“B |f (y)| dy
cc— 1. mfw()J Ol
= w@B) Sarts y)l dy
(61)

< Cm ( LJ-HB lf Mlw(y) dy)
v (w(2"B))

<C "f"/ﬂw(w) : w (2j+1B)
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Consequently,
y(@(B)  wm
L <C|f]ln (62
: ”f"“”’”w)j; y(w(B)  w(2/"B) (62)
Recall that w € A, c A_; therefore, by using the 9,

condition (26) of y again, inequality (13), and the fact that
0<x<1,weget

y(w(2"'B)

1 v(w(B))

w (B) X w(B)™
w(2"B) © C,;w(zf“B)l‘”

© ( |p 6*(1—x> 0 8 (1-x)  (63)
g () <L)

™8

J

<C,

which implies our desired estimate Ié < Clfllary -

Summing up the estimates above for I; and I} and then taking
the supremum over all balls B ¢ R” and all o > 0, we finish
the proof of Theorem 11. O

4. Proof of Theorems 12 and 16

To prove our main theorems in this section, we need the
following lemma about BMO functions.

Lemma 30. Let b be a function in BMO(R"). Then,
(i) for every ball Bin R" and forall j € Z*,

by —bg| <C-(j+1)1bl, s (64)

(ii) for every ball B in R" and for allw € A, with 1 < p <
090,

1/p
(J b G~ bylf w(@)dx) < Clbl - w (B (65)
B

Proof. For the proof of (i), we refer the reader to [3]. For the
proof of (ii), we refer the reader to [15]. O

Proof of Theorem 12. Let f € M"Y (w) with 1 < p < co and
w € A,. For each fixed ball B = B(x,,75) ¢ R", as before,
we represent f as f = f, + f,, where f; = f - y,pand 2B =
B(x,,2rg) ¢ R". By the linearity of the commutator operator
[b, Ty], we write

1

1/p
W (JB |16, Tp] (f) ()" w (x) dx>

PR S
v (w(B))"?
+ ;
v (w(B))"?
= ]1 + ]2-

([ Iml () P wear) o

(J-B |6, Ts) (f2) )| w (x) dx)l/P

Journal of Function Spaces

Since T, is bounded on L?(R") for 1 < p < oo and
w € A, then by the well-known boundedness criterion for
the commutators of linear operators, which was obtained by
Alvarez et al. in [16], we know that [b, Ty] is also bounded
on LP(R") foralll < p < coand w € A, whenever
b € BMO(R"). This fact together with the &, condition (26)
of y and inequality (12) implies

e e I T ()l

1 p
iy [ reewa)

v (w(2B))"/?
v (w(B)"?

IN

(67)
<C ”f"./%l”“’(w) :

w (2B)*/P

<Clflapvwy - w7 -

Clf L areu -

Let us now turn to the estimate of J,. By definition, for any
x € B, we have

|[6:To] (f2) ()] < [b(x) = bs| - [Ty (f2) (x)]

+|Tg ([b5 = ] f>) (x)|-

In the proof of Theorem 10, we have already shown that (see

(51)

175 (£2) (0] < czlz,ﬂBlj FOldy. ()

Following the same arguments as in (51), we can also prove
that

Ty ([bs - ] f>) (x)] < JR" |[b3 —ll; (_y)y]lnfz () dy

a-b OO,

|x0 —)’|n

<C j (70)
(@B)°

v |
< |21 B LmB |b(y) = bg| - |f ()] dy-

Hence, from the pointwise estimates above for |Ty(f,)(x)|

and |Ty([bg — b] f,)(x)|, it follows that
C » 1/p
J, < W (L b (x) = bg|” w (x) dx)

<Z|2]+IB| Jl“B |f (y)ldy> +C
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S w (B)V/P OZO: .1 J |b2j+13 B bBl ofly}?nd ililequality (13) together with the fact that 0 < x < 1,
e (B))I/P],:1|2J+IB| 2it1B we thus obtain
[} j+1 p
d w®B"? { Y (j+1)- y(w(2'B)) _w®
Oy c (B))I/PZ|2J+IB| = y(w®)?  w(2+1B)?
(o) ) w (B)(I—K)/p
gl = . ) ———
J‘2]+1 |b(y J BI |f(y)|dy ]3+]4+]5 SCFZI (J+ w(2j+1B)(1—K)/P
(71) (74)

0 8(1-x)/p
_CZ(j+1)-(lL|)

Below, we will give the estimates of J5, J,, and Js, respectively. =1 [27+1B|

Using (ii) of Lemma 30, Holder’s inequality, and the A,

condition, we obtain © 1 \%(-x)/p

SCZ ]+ )(Z(JT)”> <C,
J; < Clibll. )
where the last series is convergent since the exponent §(1 —

w(B)l/P OZO: J | d k)/p is positive. This implies our desired estimate J, <
|21+13| 2J+1B Y

v (w (B))I/P Cllfll zpww)- It remains to estimate the last term Js. An
application of Holder’s inequality gives us that
w®B" {1 p oo
< Clpl. - 72 w(B)""? 1
Ip & |2i+1B Js<C- -
v (w (B)) ]=1| I 5 v (w (B))l/Pj:1|2]+lB|
1/p
w(y)dy) (72) Ip

<LJHB [f DI w(y)dy ( L F O w () dy) (75)

([, w07 ay)" <ClflLunme PR
2/*1B ) <LJ'“B lb (y) = bywig|” w(y) d}’) .

0 j+l p ’
NV (w (2 B)) ) w(B)"? If we set u(y) = w(y)? /P then we have u € A, because

il v (B))l/p w (2j+13)1/p weA, (see [1, 2]). Thus, it follows from (ii) of Lemma 30

and the A » condition that

<J . |b()’) — by P U
2/*1B

<Clbl. '#(szB)l/p,

<Clflarviw -

1/p'
. . . . () dy)
where in the last inequality we have used the estimate (55).
Applying (i) of Lemma 30, Holder’s inequality, and the A,
condition, we can deduce that

w2 (j+1) b o)t
el y ~ctel. ([ wo)y"ay)
J, < Clbll, 1l,(w(B))l/pZ:|21+IB| LJHB |f(y)| Y 2itlp
27|
B X(j+1 ng*.—l .
<cppl. . ~® (j+1) Il o (21B)7

y (w(B)"/? 5|27 B
Therefore, in view of estimate (55), we conclude that

1/p
P
LMB FOIF w(y)dy) 73) L <Clbl. w(B)”P §
(wBN? Sw( sz)l/P

{
([ wir ™ ay)” <clfl 1
(L0r7er) o <L%UU|WUWAMSCWMMw

l//(w (ZjHB))l/p w(B)l/P (77)

';(j T wE” e ey’ L@
yw®B)?  w(2inp)'?

j=1

For any j € Z*, since 0 < w(B) < w(2'B) < +0o when
<C|f ”.%P""(w)

w € A, with1 < p < oo, then by using the P, condition (26)
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Summarizing the estimates derived above and then taking the
supremum over all balls B ¢ R", we complete the proof of
Theorem 12. O

Proof of Theorem 16. For any fixed ball B = B(x,, 1) in R”,
as before, we represent f as f = f, + f,, where f; = f - x;3
and 2B = B(x,, 2rz) ¢ R". Then, for any given o > 0, by the
linearity of the commutator operator [b, Ty], one can write

w(wl(B)) ‘w({x € B:[[b,Ty] (f) (x)] > 0})
1
=Y w®)
o
w(fxen:lbn] () ) > 2)) n
1
Y w®)
w(freB: 1) (1) @) > 7))
=] + ;.

By using Theorem 5 and the previous estimate (35), we get

/ 1 |f1 (x)|

hgc'w@mm)kfb( o )'w“”“
B 1 |f (x)]
‘waw»L®<o )wm“

o vweB) 1 J @('f(x)|>
v (w(B)) y(w(2B)) ) o (79)

~w(x)dx
YWEB) _w(B)
v(w(B) v (w(2B)
(HC) -
g Llog L(w),2B

Moreover, since 0 < w(B) < w(2B) < +co whenw € A,
then by the 9, condition (26) of y and inequality (12), we
have

) w (2B)*
]1 = C-: w(B)K
ot MO
v (w(2B)) O/l LlogL(w).2B (80)
).,
7 gty w)

which is our desired estimate. We now turn to deal with the
term J;. Recall that the following inequality

[0, Tp] (f2) ()] < [b(x) = b - [Ty (f2) (%)]
+|Tp ([bg — b] £5) ()]

Journal of Function Spaces

is valid. So we can further decompose J as

’ 1
fs @)

w({xeB:lb@-bl 5 () @I> 5}

_ (82)
" Y (wB)

w({x €B:|Ty([bg

=I5+ I,

bl f,) (x)] > %})

By using the previous pointwise estimate (51) and Cheby-
shev’s inequality together with (ii) of Lemma 30, we deduce
that

' 1
s S w®)

2 o=l 175 () (0] w ()
0 JB

S lf W) 1
= Cj;|21'+13| LMB o dyv/(w (B)) (83)

. JB |b (x) - bBl w(x)dx

J O, _w®

SR
< C|b]. - .

Furthermore, note thatt < ®(t) = t-(1+log't) foranyt > 0.1t
then follows from the A, condition and the previous estimate
(34) that

PR lf ()]
J5 < Cj;w(zj“B) LJ“B o

w (B) < 1
<C) ———
wwwf:;MwW

'LJ.HB@(@)WU)&WW
SCZ<DG§>
- iy

y(w(@B))

v (w (B))

w(y)dy
w (B)
(w(B))

w (B)
LlogL(w),2’*'B v (LU (B))

(%)
o

w (B)
w(2/41B) ~

LlogL(w),Zj”B}
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In the last inequality, we have used the well-known fact that

H(MN| Qv (w(@"B))
i V@) (see [14)
- bB"expL w.s < Clbl,, forany ball Bc R". (88)
ﬂ <C-|® m , It is equivalent to the inequality
w (2]+IB) o ﬂl,l‘ﬂ (w)
i (84) LJ ex (M>w(y)dys(?, (89)
w(B) Js G lIbll.

where in the last inequality we have used estimate (63). On  which is just a corollary of the well-known John-Nirenberg’s
the other },1and, applying the pointwise estimate (70) and  inequality (see [9]) and the comparison property of A,
Chebyshev’s inequality, we have weights. Hence, by estimate (63),

' 1 Ji<Clbl,
Jas v (w(B)) GJ Ty ([bg = b] f>) ()| w (x) dx > N
w (B) .i{ (2*'B) H (UU }
- 14 (w (B)) =1 w (w 21+IB)) LlogL(w),2/*'B
Cy_ 1 y(w(2"'B))  w(B)
S L H e O 1 O el L o
) 2i+1B))
b (89 ' ®<m> v (w(
wwwDGZP“MwaU)%B| H o Nag,wm v @ B)
o) o fo(W)]
w(2/*'B) 7 Sy, w

. d
|f (D) dy + v @®)

For the last term ]é, we proceed as follows. Using (i) of
Lemma 30 together with the facts w € A; andt < O(t) =

CS 1
o2 277 B| LMB (b5 = bs| -1 f (¥)| dy
t- (1 +log"t), we deduce that

=+l o)
!
: b
For the term J, since w € A, by the A; condition and the J = Z G+ 1)1l |2J+1B|
fact that t < O(¢),
B
¢ w® |, Eﬁﬂ@< ST P XARIL]
Js < Z ,[ |6 (¥) = by B0 w(B)) i
T o 1// (w(B) & 21+1B) j+ig
1 1f Ol
f)|w(y)dy " w("1B) LJHB . ~w(y)dy <C|bl.
Lw® 1 J o w (B) 2 (j+1) f )]
lﬂwwD;w@ﬁW)W*lw b ' 2 (27 B) LWQ(_?_>
®<Mﬁﬂ)w@yw ‘w(y)dy = Clbl, o1
o
0 2]+1B |f|
Furthermore, we use the generalized Holder’s inequality with : Z —
: : v (w ZJ“B))
weight (31) to obtain LlogL(w),2/*' B
2/*'B
];SC'& (]+l)w(w( )) w(B) <
v (w(B)) y(w(B)  w(2/*'B)
\ |f] oo (w(27"'B))
: ||b_bj+13“ex w),20*1 q)(_ . m i . V/—
Z ’ pLITE 9 /lltogLw),27*' B ®7) ® Iy, w) J—Zl G+ v (w(B))
<Clpl. <|f|) w®B
v (w(B) w(B)) iz 9 /lltiogLw) 21 w (2/*1B)



12

Recall that w € A; ¢ A_,. We can now argue exactly as we
did in the estimation of (74) to get

S y(w(2B))  w(B)
2 ) T w®) w@B)
w(B)l—K

SCE(]‘+1)-

v (92)

00 |B| 8 (1-x)
i+1)- -
€U+ (p)

1 8" (1-«)
<CZ(]+1 < ]+1)> <C.

Let us now substitute this estimate (92) into the term ]é; we
get the desired inequality

o ()
o

This completes the proof of Theorem 16. O

(93)

Ly
4 LlogL(w)

5. Partial Results on Two-Weight Problems

In the last section, we consider related problems about two-
weight, weak-type (p, p) inequalities with 1 < p < co. Let 7
be the classical Calderon-Zygmund operator with standard
kernel; that is, & = Ty when 0(t) = 2 with0 < 8 < 1.
It is well known that 7 is a bounded operator on L? (R")
forall1 < p < coandw € A, and, of course, 7 is a
bounded operator from Lf (R") into WL? (R"). In the two-
weight context, however, the A | condition is “not” sufficient
for the weak-type (p, p) inequality for 7. More precisely,
given a pair of weights (u,v) and p, 1 < p < oo, the weak-
type inequality

({x e R":|T f (x)| > 0})
C , (94)
< = JW |f(x)| v(x)dx
does not hold if (u,v) € A P there exists a positive constant C
such that, for every cube Q c R”,

1 e/ o 1/p
— d — Pirg <C
(IQI Jou ) <IQI RE x) < 95)

< 003

one can see [17, 18] for some counterexamples. Here, all cubes
are assumed to have their sides parallel to the coordinate
axes; Q(x,,¢) will denote the cube centered at x, and has
side length €. In [17, 19], Cruz-Uribe and Pérez considered
the problem of finding sufficient conditions on a pair of
weights (u,v) such that I satisfies the weak-type (p, p)
inequality (94) (1 < p < ©0). They showed in [19] that if

Journal of Function Spaces

we strengthened the A | condition (95) by adding a “power
bump” to the left-hand term, then inequality (94) holds for
all f e LE(R"). More specifically, if there exists a number
r > 1 such that, for every cube Q in R",

1 1/(TP) 1 , l/P,
1 "d o -p/p d )
<IQ| JQ”(") x> (IQI JQV(’C) *] o)

<C < oo,

then the classical Calderén-Zygmund operator  is bounded
from LE(R") into WL?(R"). Moreover, in [17], the authors
improved this result by replacing the “power bump” in (96) by
a smaller “Orlicz bump.” To be more precise, they introduced
the following A ,-type condition in the scale of Orlicz spaces:

1/p
p 1 -p'lp
W (75 J,ro7rax) " cccco

6>0,

97)

where |Jul| LllogL)**.Q is the mean Luxemburg norm of u on
cube Q with Young function #/(t) = ¢ - (1 + log*t)?™*° It
was shown that inequality (94) still holds under the A ,-type
condition on (u, v), and this result is sharp since it does not
hold in general when & = 0.

On the other hand, the following Sharp function estimate
for T, was established in [8]: there exists some §,0 < § < 1,
and a positive constant C = Cgq such that, forany f € C;°(R")
and x € R”,

[ (1) 0] " < cmar . 98)

where M is the standard Hardy-Littlewood maximal oper-

ator and M is the well-known Sharp maximal operator
defined as

M f (x) = e ATe] J |f (») - fol dy. (99)

Here, the supremum is taken over all the cubes containing x
and fq denotes the mean value of f over Q; namely, f, =

(1/1QD IQ f(x)dx. It was pointed out in [19] (Remark 1.3)

that, by using this Sharp function estimate (98), we can also
show inequality (94) is true for more general operator Ty,
under condition (96) on (u, v). Then, we obtain a sufficient
condition for T, to be weak (p, p) with 1 < p < co.

Theorem 31. Let 1 < p < 0o. Given a pair of weights (u,v),
suppose that, for some r > 1 and for all cubes Q,

1 . 1ep) 1 4 i 1/p'
<@L”(’C) dx) (@LV(’C) dx) (100)

<C< 0.

Then, the 0-type Calderén-Zygmund operator Ty satisfies the
weak-type (p, p) inequality:

u({x e R" Ty f (x)| > a})
< EJ |f ()| v (x) dx
<) ,

where C does not depend on f and o > 0.

(101)
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We want to extend Theorem 31 to the Morrey type spaces.
In order to do so, we need to define Morrey type spaces
associated with y with two weights.

Definition 32. Let 1 < p < 00,0 < k < 1, and y satisty the
2, condition (26). For two weights  and v, one can denote by
MY (v, u) the generalized weighted Morrey space, the space
of all locally integrable functions f with finite norm.

‘%P’W (V’ u) = {f G loc (V) ”f"ﬂ["lf(v u) < OO} (102)
where the norm is given by
”f”.%l”“’(v,u)
(103)

( | @l v )I/P
= Su _— X V(X X .
> \y@(@Q) Jo

Note that

(i) ifu = v = w, then APY (v, u) is the space PY (w) in
Definition 8;

(ii) if y(x) = x* with 0 < x < 1, then #PY (v, u) is just the
weighted Morrey space with two weights £7*(v,u),
which was introduced by Komori and Shirai in [12].

We are now ready to prove the following result.

Theorem 33. Let 1 < p < coandu € A,. Given a pair of
weights (u, v), suppose that, for some r > 1 and for all cubes Q,

1 1/(TP) 1 o 1/?’
_ "d - p'/p d >
<|Q| JQu(x) x) <|Q| JQV(x) * (104)

< C < oo.

If v satisfies the D, condition (26) with 0 < k < 1, then
the 0-type Calderén-Zygmund operator T, is bounded from
MPY (v, 1) into WPV (u).

Proof of Theorem 33. Let f € MPY(v,u) with 1 < p < oo.
For any cube Q = Q(x,,¢) ¢ R"and A > 0, we will denote by
AQ the cube concentric with Q whose each edge is A times as
long; that is, AQ = Q(x,, A£). Let

f=1f"xatf Xeq=hH+Tw

where x, denotes the characteristic function of 2Q = Q(x,
2¢). Then, for any given o > 0, we write

(105)

1
v (u(Q)"?
1
v (u(Q)Y?

u({x €Q: Ty (f) )| > %})]W

o [u(fr e Q: [Ty (f) (0] > D]

+ ;10'
v (u(Q)YP

13

1/p

: [u({x €Q: Ty (fr) )] > %})]

=K, +K,.
(106)

Using Theorem 31, the &, condition (26) of y, and inequality
(12) (consider cube Q instead of ball B), we get

1
< C -
v Q)P

—c. L (LQ|f(x)|P v(x)dx>1/P

([ 15 er veax)”

v w(Q)"?
" (107)
v (1 (2Q))
<C o R i i 7L
< "f“./% (v,u) l[/(u (Q))l/p
2Q x/p
< ClfLarvin oy =W aomi

Asfor the term K, using the same methods and steps as those
we dealt with I, in Theorem 10, we can also obtain that, for any

XEQ,

[T (f2) (x)I—CZ|ZJ+1Q|J [f Wldy- (08)

This pointwise estimate together with Chebyshev’s inequality
implies

2 1/p
K2 < W . (JQ |T9 (fz) (x)|pu(x) dx)

u@'"?
1//(u (Q))l/pZ|21+1Q| L g |f (y)|dy.

(109)

Moreover, an application of Holder’s inequality gives that

o M@ 1
Ty w517

'(L,ﬂ' DI v y)dy>l/p

. /p'
([ ") <Cl s 10

v 2y (@)’

vu@)ts  2q|

'Ip 1/p'
: <J v dy>
21Q




14

Forany j € Z*, since 0 < u(Q) < u(2’"'Q) < +o0o when u
is a weight function, then by the 9, condition (26) of y with
0 <k < 1, we can see that

y(u(2Q)”  u(27Q)”
< .
v w(Q)"? u(Q)M*

In addition, we apply Holder’s inequality with exponent r to
get

(111)

u(y)dy

u(2Q) - |

2j+1Q

/7! r
qQl (J u(y)dy
2i71Q

Hence, in view of (111) and (112) derived above, we have

u(Q
(2]+1Q) (1-x)/p

” (112)

< 'zj“

K;<C "f”./%P‘V(vu) Z

u (2j+1Q)1/P

L 1y
g <J V(y)P/de>

(o)
<C ||f||./%P"V(v,u) Z

Su (2j+1Q)(1*K)/P

. 1/(rp)
<J u(y) dy>
2i71Q

: 1
-p/p
([ ) < Clf L

¢ u@Q"
. mu (2]’+1Q)(17K)/P.

(113)

. '2j+1Q|1/(r'P)

2771Q]

The last inequality is obtained by condition (96) on (u,v).
Furthermore, by our additional hypothesis on u : u € A,
and inequality (13) (consider cube Q instead of ball B), we get

8(1-1)/
§ u@Qr Z( o] ) e
Fu@nQ ™ T S\ (114)
© ] \S-R)/p
< CZ (W) <C,
j=1
which implies our desired estimate K, < Cllfll yrv (-

Summing up the estimates above for K; and K, and then
taking the supremum over all cubes Q ¢ R” and all o > 0,
we finish the proof of Theorem 33. O

Let M denote the Hardy-Littlewood maximal operator
and M* denote the Sharp maximal operator. For 8 > 0, we

M (1) = [m (1)) "

M) = [t (111)]™.

(115)
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The maximal function associated with &/(t) = £(1 + log"t) is
defined as

MLlogLf (x) = ilelg ||f HLlogL,Q’ (116)
where the supremum is taken over all the cubes containing
x. Letb € BMO(R") and [b, T,] be the commutator of the 6-
type Calderén-Zygmund operator. In [8], it was proved that
if @ satisfies condition (8), then, for 0 < § < & < 1, there exists
a positive constant C = Cj, such that, for any f € C;°(R")
and x € R”,

M; ([6.Ty] f) (x)

< CIbll, (M, (Tof) (x) + Mpogr f (%)).

Using this Sharp function estimate (117) and following the
idea of the proofin [19], we can also establish the two-weight,
weak-type norm inequality for [b, Ty].

(117)

Theorem 34. Let 1 < p < co andb € BMO(R"). Given a
pair of weights (u,v), suppose that, for some r > 1 and for all
cubes Q,

1 oo
(@ J uxy dx) v, osC<o0 9

where d(t) = t* (1 +log"t)?’ is a Young function. If0 satisfies

(8), then the commutator operator [b, Ty] satisfies the weak-
type (p, p) inequality:

u({x € R":|[b,Ty] f (x)] > o})
(119)

9 P
< o7 JRn |f 0] v (x)dx,
where C > 0 does not depend on f and o > 0.

We will extend Theorem 34 to the Morrey type spaces. In
order to do so, we need the following key lemma.

Lemma 35. Given three Young functions of, 9, and € such
that, for all t > 0,

A B <), (120)

where o\ (t) is the inverse function of 9/(t), then one has the
following generalized Holder’s inequality due to O’Neil [20]: for
any cube Q ¢ R" and all functions f and g,

If - gleq <205 luoldlae:

Theorem 36. Let 1 < p < 0o, u € A, andb € BMO(R").
Given a pair of weights (u, v), suppose that, for somer > 1 and
for all cubes Q,

(121)

(g [ e dx>1/(rp) [77], <C<co, (122)
Ql Jo Q>

where (t) = tpl(l + log+t)P’. If 0 satisfies (8) and v satisfies
the D, condition (26) with 0 < k < 1, then the commutator
operator [b, Ty] is bounded from APV (v,u) into W MPY (u).
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Proof of Theorem 36. Let f € M"Y (v,u) with 1 < p < oo.
For an arbitrary cube Q = Q(x,, £) in R", as before, we set

f=hHh+1»
Hh=1 Xo
2= 1 X

Then, for any given o > 0, we write
1

v’

Ju(fx € Q:|[B.Ty] (f) )] > a})]'”
1
Sy’

. [u({x €eQ:|[b.Ty) (fi) ()] > %})]I/P

P
v u(@Q)"?

Ju([rea:bnim @l>2))] " =

!
+ K.

(123)

(124)

Using Theorem 34, the 2, condition (26) of v, and inequality
(12) (consider cube Q instead of ball B), we get

1 "
Y@@ (JR Ifi )7 v (x) dx)

) 1/p
TG (La f el v dx)

v (u(2Q))/?
v (u(Q)"?

Q"
L;(QW < C|\ fllaow v -

Next we estimate K;. For any x € Q, from the definition of
[b, Ty], we can see that

|[b, Te] (fz) (x)| <

K <C

(125)

<C|f "/%P*"‘(v,u) :

<C|f "/%P*"‘(v,u) :

|b(x) = bo| - [T (f2) ()]

+ [Ty ([bg = b] £3) ()] (126)
=&(x) +7(x).
Thus, we have
' 1 . o 1/p
2 @’ [«({xe@:e> 3} )]
! (127)

+ —
v’

. [u({x €Q:n(x)> %})]I/P = Kg +Ki.
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For the term Kg, it follows from the pointwise estimate (108)
mentioned above and Chebyshev’s inequality that

, 4 1/p
K3 < W . <JQ |€ (x)|Pu(x) dX)

< , 1p
< o ([ b -l wra)

<Z|2]+1Q| J |f (y)ldy> <C

_u@'" 5
v @ (@Q)'"?5277Q|

(128)

J L rOldy,
241Q

where in the last inequality we have used the fact that
Lemma 30(ii) still holds when u is an A weight with B
replaced by Q. Repeating the arguments in the proof of
Theorem 33, we can show that Kg < ClfIlszz (v )+ As for the

term K}, using the same methods and steps as those we dealt
with J, in Theorem 12, we can show the following pointwise
estimate as well:

1 (x) = |Ty ([bg - b] f,) ()]

< 1 (129)
< CZ |2j+1Q| JZf*lQ |b ()/) - bQ| ’ |f (y)l dy
j=1

This together with Chebyshev’s inequality yields

) 4 p 1/p
K, < v (u (Q))l/p ’ (JQ |7l(x)| u (x) dx>

@ §

<C- - b,
< w(u(Q))l/‘D Z|21+1Q| J21+1Q| (y) Ql

1f ()l dy

Cu(@Y
v Q)P

- 1
. : b(y) -
jlez”lQI L*lQl )

u(Q)V?
v w(@Q)"?

S 1
D) g bl Oy
iz

<C

(130)

byng| - |f (¥)|dy
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An application of Hélder’s inequality yields that

) u(@Q? &
K.<C-
= ww@wpzpmq

'(L.HQ| DI v(y) dy>w

P e\
(J b(y) = byagl” v(») dy>
2]+1Q

u(Q)V?
v (u(@Q)"?

()

277Q)

!

(131)

<C "f“./%P’W(V,u) :

|21'+1Q'1/P'

j=1
’ ”(b ~byng) - Vﬁl/P“%,zf*‘Q’

where €(t) = ' isa Young function. For 1 < p < o0, we

know the inverse function of €(¢) is €' (t) = t'/? " Observe
that

1/p

Ty = = — (1+log"t)

1+log't (132)
= (1) B ),

where

~ P +0 P
d(t)=t? (1+log't) , (133)
B (t) = exp (t) - 1.

Thus, by Lemma 35 and estimate (88) (when w = 1), we have

“(b - b2j+1Q) : V_l/p"g’zjﬂQ

<Clp- bzf“Q“@,zi’“Q ’ ||V71/P“‘9/,2J“Q (134)

<Cloll. - v 7], g -

Moreover, in view of (111) and (112), we can deduce that
©y (ZjHQ)K/p

K, <CJpl, : ST
5 151 Hf”/%l"”(v,u)j; u(Q)K/p

u@"”

|2j+1Q|l/P ' "V_I/P“M,ZJ“Q = Clbl, "f“/”"’“’(m)

U@
Pt (2j+1Q)(17;<)/P

) e
(g g @ 85) 1 g
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u(Q
(2]+1Q)(1 ©)/p

<C "f"/mmu) Z
<C "f"/ﬂp""(v,u) :

(135)

The last inequality is obtained by condition (122) on (u,v)
and estimate (114). It remains to estimate the last term Ké.
Applying Lemma 30(i) (use Q instead of B) and Holder’s
inequality, we get

oo QT S GBI

T yw@rE Q)
1/p

. gy<c. 4Q

J;MO |f (y)l Y < 1//(” (Q))l/p

(j+1) 1ol

Q) (LMQ fF DI v(y) dy>1/p

T8

(136)
—'ip 1/p'
: (LJ'“Q v ()’) dy> <C ||f||/ﬂp»\1/(v,u)

u @ Q.
RS 1
wwwﬁ”;0+)

v (u(277'Q e . 1p
A |(2]'+1Q|)) (Li‘rle(y) p/pdy>

Let €(t) and /() be the same as before. Obviously, €(t) <
d(t) for all t > 0; then, for any cube Q ¢ R", we have
[ fllzq < I flyq by definition, which implies that condition
(122) is stronger than condition (96). This fact together with
(111) and (112) yields

u (Q)(I*K)/P

[ee]
! .
<C ||f||//zl’"”(v,u) J:zl (] + 1) ' u (2j+1Q)(1—K)/p

S A R
n 14 y y
|2J+1Q| i1q

u (Q)(l—K)/P
(271Q)

. 1/(rp)
(J u(y) dy)
2]+1Q

co

< Clflapvan 2. G+ 1)
=1

' (137)

|2]+1Q' 1/ p)

277Q]



Journal of Function Spaces

Moreover, by our additional hypothesison u : u € A and
inequality (13) (use Q instead of B), we finally obtain

S u (@
1) —=
j;(]+ ) u(szQ)(px)/p

& i \?
<C i+1)- , 138

8(1-x)/p
e

o) ' 1
< CZ (j+1)- <—2(j+1)n
st

which in turn gives that K| < C||f] WP (v SUmming up all
the estimates above and then taking the supremum over all
cubes Q ¢ R" and all 0 > 0, we therefore conclude the proof
of Theorem 36. O

In particular, if we take y(x) = x* with 0 < x < 1, then we
immediately get the following two-weight, weak-type (p, p)
inequalities for Ty and [b, Ty] in the weighted Morrey spaces.

Corollary 37. Let1 < p < 00,0 <k < 1,andu € A,. Given
a pair of weights (u, v), suppose that, for some r > 1 and for all
cubes Q,

i

1 1ep) s 4 . 1/p
_ "d - p /Pd )
<|QI IQ” ) x) (IQI L VT )

<C < oo.

Then, the 0-type Calderon-Zygmund operator Ty is bounded
from FP*(v,u) into W LP*(u).

Corollary 38. Let 1 < p < 00,0 < x < L, u € A, and
b € BMO(R"). Given a pair of weights (u, v), suppose that, for
some r > 1 and for all cubes Q,

<L J u(x) dx)l/(rp) ”vfl/p" < C < 00, (140)
QI Jo Q-

where (t) = tP,(l + log+t)P,. If 6 satisfies (8), then the
commutator operator [b, T, is bounded from FP*(v,u) into
W ZP*(u).
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