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We first introduce some newMorrey type spaces containing generalized Morrey space and weighted Morrey space as special cases.
Then, we discuss the strong-type and weak-type estimates for a class of Calderón–Zygmund type operators 𝑇𝜃 in these newMorrey
type spaces. Furthermore, the strong-type estimate and endpoint estimate of commutators [𝑏, 𝑇𝜃] formed by 𝑏 and𝑇𝜃 are established.
Also, we study related problems about two-weight, weak-type inequalities for 𝑇𝜃 and [𝑏, 𝑇𝜃] in the Morrey type spaces and give
partial results.

1. Introduction

Calderón–Zygmund singular integral operators and their
generalizations on the Euclidean space R𝑛 have been exten-
sively studied (see [1–5], for instance). In particular, Yabuta
[5] introduced certain 𝜃-type Calderón–Zygmund operators
to facilitate his study of certain classes of pseudodifferential
operators. Following the terminology of Yabuta [5], we intro-
duce the so-called 𝜃-type Calderón–Zygmund operators.

Definition 1. Let 𝜃 be a nonnegative, nondecreasing function
on R+ = (0, +∞) with

∫1
0

𝜃 (𝑡)𝑡 𝑑𝑡 < ∞. (1)

A measurable function 𝐾(⋅, ⋅) on R𝑛 × R𝑛 \ {(𝑥, 𝑥) : 𝑥 ∈ R𝑛}
is said to be a 𝜃-type kernel if it satisfies
(i) 󵄨󵄨󵄨󵄨𝐾 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛 , for any 𝑥 ̸= 𝑦; (2)

(ii) 󵄨󵄨󵄨󵄨𝐾 (𝑥, 𝑦) − 𝐾 (𝑧, 𝑦)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐾 (𝑦, 𝑥) − 𝐾 (𝑦, 𝑧)󵄨󵄨󵄨󵄨
≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛 ⋅ 𝜃 (

|𝑥 − 𝑧|󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨) , for |𝑥 − 𝑧| < 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨2 . (3)

Definition 2. Let 𝑇𝜃 be a linear operator from S(R𝑛) into
its dual S󸀠(R𝑛). One can say that 𝑇𝜃 is a 𝜃-type Calderón–
Zygmund operator if

(1) 𝑇𝜃 can be extended to be a bounded linear operator
on 𝐿2(R𝑛);

(2) there is a 𝜃-type kernel𝐾(𝑥, 𝑦) such that

𝑇𝜃𝑓 (𝑥) fl ∫
R𝑛
𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 (4)

for all 𝑓 ∈ 𝐶∞0 (R𝑛) and for all 𝑥 ∉ supp𝑓, where 𝐶∞0 (R𝑛)
is the space consisting of all infinitely differentiable functions
on R𝑛 with compact supports.

Note that the classical Calderón–Zygmund operator with
standard kernel (see [1, 2]) is a special case of 𝜃-type operator𝑇𝜃 when 𝜃(𝑡) = 𝑡𝛿 with 0 < 𝛿 ≤ 1.
Definition 3. Given a locally integrable function 𝑏 defined on
R𝑛 and given a 𝜃-type Calderón–Zygmund operator 𝑇𝜃, the
linear commutator [𝑏, 𝑇𝜃] is defined for smooth, compactly
supported functions 𝑓 as

[𝑏, 𝑇𝜃] 𝑓 (𝑥) fl 𝑏 (𝑥) ⋅ 𝑇𝜃𝑓 (𝑥) − 𝑇𝜃 (𝑏 ⋅ 𝑓) (𝑥)
= ∫

R𝑛
[𝑏 (𝑥) − 𝑏 (𝑦)]𝐾 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦. (5)
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Throughout the paper, let us suppose that 𝜃 is a nonneg-
ative, nondecreasing function on R+ = (0, +∞) satisfying
condition (1). Let us give the following weighted result of 𝑇𝜃
obtained by Quek and Yang in [6].

Theorem 4 (see [6]). Let 1 ≤ 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝. Then, the𝜃-type Calderón–Zygmund operator 𝑇𝜃 is bounded on 𝐿𝑝𝑤(R𝑛)
for 𝑝 > 1 and bounded from 𝐿1𝑤(R𝑛) into𝑊𝐿1𝑤(R𝑛) for 𝑝 = 1.

Since linear commutator has a greater degree of sin-
gularity than the corresponding 𝜃-type Calderón–Zygmund
operator, we need a slightly stronger version of condition
(8) given below. The following weighted endpoint estimate
for commutator [𝑏, 𝑇𝜃] of the 𝜃-type Calderón–Zygmund
operator was established in [7] under a stronger version of
condition (8) assumed on 𝜃, if 𝑏 ∈ BMO(R𝑛) (for the
unweighted case, see [8]).

Let us now recall the definition of the space of BMO(R𝑛)
(see [9]). BMO(R𝑛) is the Banach function space modulo
constants with the norm ‖ ⋅ ‖∗ defined by

‖𝑏‖∗ fl sup
𝐵

1|𝐵| ∫𝐵 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 𝑑𝑥 < ∞, (6)

where the supremum is taken over all balls 𝐵 in R𝑛 and 𝑏𝐵
stands for the mean value of 𝑏 over 𝐵; that is,

𝑏𝐵 fl 1|𝐵| ∫𝐵 𝑏 (𝑦) 𝑑𝑦. (7)

Theorem 5 (see [7]). Let 𝜃 be a nonnegative, nondecreasing
function on R+ = (0, +∞) with

∫1
0

𝜃 (𝑡) ⋅ 󵄨󵄨󵄨󵄨log 𝑡󵄨󵄨󵄨󵄨𝑡 𝑑𝑡 < ∞, (8)

and let 𝑤 ∈ 𝐴1 and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Then, for all 𝜎 > 0, there
is a constant 𝐶 > 0 independent of 𝑓 and 𝜎 > 0 such that

𝑤 ({𝑥 ∈ R𝑛 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶∫

R𝑛
Φ(󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝜎 ) ⋅ 𝑤 (𝑥) 𝑑𝑥, (9)

whereΦ(𝑡) = 𝑡 ⋅ (1 + log+𝑡) and log+𝑡 = max{log 𝑡, 0}.
On the other hand, the classical Morrey space was

originally introduced by Morrey in [10] to study the local
behavior of solutions to second-order elliptic partial differen-
tial equations. Since then, this space played an important role
in studying the regularity of solutions to partial differential
equations. In [11], Mizuhara introduced the generalized
Morrey spaceL𝑝,Ψ which was later extended and studied by
many authors. In [12], Komori and Shirai defined a version
of the weighted Morrey space L𝑝,𝜅(𝑤) which is a natural
generalization of the weighted Lebesgue space. Let 𝑇𝜃 be the𝜃-type Calderón–Zygmund operator, and let [𝑏, 𝑇𝜃] be its
linear commutator.Themain purpose of this paper is twofold.
We first define a new kind of Morrey type spaces M𝑝,𝜓(𝑤)
containing generalized Morrey space L𝑝,Ψ and weighted

Morrey space L𝑝,𝜅(𝑤) as special cases, and then we will
establish the weighted strong type and endpoint estimates
for 𝑇𝜃 and [𝑏, 𝑇𝜃] in these Morrey type spaces M𝑝,𝜓(𝑤) for
all 1 ≤ 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝. In addition, we will discuss
two-weight, weak-type norm inequalities for 𝑇𝜃 and [𝑏, 𝑇𝜃]
inM𝑝,𝜓(𝑤) and give some partial results.

Throughout this paper, 𝐶 will denote a positive constant
whose value may change at each appearance.We also use𝐴 ≈𝐵 to denote the equivalence of𝐴 and 𝐵; that is, there exist two
positive constants 𝐶1 and 𝐶2 independent of 𝐴 and 𝐵 such
that 𝐶1𝐴 ≤ 𝐵 ≤ 𝐶2𝐴.
2. Statements of the Main Results

2.1. Notation and Preliminaries. LetR𝑛 be the 𝑛-dimensional
Euclidean space of points 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) with norm|𝑥| = (∑𝑛𝑖=1 𝑥2𝑖 )1/2. For 𝑥0 ∈ R𝑛 and 𝑟 > 0, let 𝐵(𝑥0, 𝑟) ={𝑥 ∈ R𝑛 : |𝑥 − 𝑥0| < 𝑟} denote the open ball centered at𝑥0 of radius 𝑟, 𝐵(𝑥0, 𝑟)𝑐 denote its complement, and |𝐵(𝑥0, 𝑟)|
be the Lebesgue measure of the ball 𝐵(𝑥0, 𝑟). A weight 𝑤 is
a nonnegative locally integrable function on R𝑛 that takes
values in (0, +∞) almost everywhere. A weight 𝑤 is said to
belong to Muckenhoupt’s class 𝐴𝑝 for 1 < 𝑝 < ∞, if there
exists a constant 𝐶 > 0 such that

( 1|𝐵| ∫𝐵𝑤 (𝑥) 𝑑𝑥)
1/𝑝 ( 1|𝐵| ∫𝐵𝑤 (𝑥)−𝑝

󸀠/𝑝 𝑑𝑥)1/𝑝󸀠 ≤ 𝐶 (10)

for every ball 𝐵 ⊂ R𝑛, where 𝑝󸀠 is the dual of 𝑝 such that1/𝑝+1/𝑝󸀠 = 1.The class𝐴1 is defined replacing the inequality
above by

1|𝐵| ∫𝐵𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 ⋅ ess inf𝑥∈𝐵
𝑤 (𝑥) (11)

for every ball 𝐵 ⊂ R𝑛. We also define 𝐴∞ = ⋃1≤𝑝<∞ 𝐴𝑝.
Given a ball 𝐵 and 𝜆 > 0, 𝜆𝐵 will denote the ball with the
same center as 𝐵 whose radius is 𝜆 times that of 𝐵. Given
a Lebesgue measurable set 𝐸 and a weight function 𝑤, we
denote the characteristic function of 𝐸 by 𝜒𝐸, the Lebesgue
measure of 𝐸 by |𝐸|, and the weighted measure of 𝐸 by 𝑤(𝐸),
where 𝑤(𝐸) = ∫

𝐸
𝑤(𝑥)𝑑𝑥. It is well known that if 𝑤 ∈ 𝐴𝑝

with 1 ≤ 𝑝 < ∞ (or 𝑤 ∈ 𝐴∞), then 𝑤 satisfies the doubling
condition; that is, for any ball 𝐵, there exists an absolute
constant 𝐶 > 0 such that (see [2])

𝑤 (2𝐵) ≤ 𝐶𝑤 (𝐵) . (12)

Moreover, if𝑤 ∈ 𝐴∞, then for any ball 𝐵 and any measurable
subset 𝐸 of a ball 𝐵, there exists a number 𝛿 > 0 independent
of 𝐸 and 𝐵 such that (see [2])

𝑤 (𝐸)𝑤 (𝐵) ≤ 𝐶(|𝐸||𝐵|)
𝛿 . (13)

Given a weight function 𝑤 on R𝑛, as usual, the weighted
Lebesgue space 𝐿𝑝𝑤(R𝑛) for 1 ≤ 𝑝 < ∞ is defined as the set of
all functions 𝑓 such that

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝𝑤 fl (∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)1/𝑝 < ∞. (14)
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We also denote by𝑊𝐿𝑝𝑤(R𝑛) (1 ≤ 𝑝 < ∞) the weighted weak
Lebesgue space consisting of all measurable functions 𝑓 such
that󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑊𝐿𝑝𝑤 fl sup

𝜆>0

𝜆 ⋅ [𝑤 ({𝑥 ∈ R𝑛 : 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜆})]1/𝑝
< ∞. (15)

We next recall some basic definitions and facts about
Orlicz spaces needed for the proof of the main results. For
further information on the subject, one can see [13]. A
function A is called a Young function if it is continuous,
nonnegative, convex, and strictly increasing on [0, +∞) with
A(0) = 0 and A(𝑡) → +∞ as 𝑡 → +∞. An important
example of Young function isA(𝑡) = 𝑡𝑝(1+log+𝑡)𝑝 with some1 ≤ 𝑝 < ∞. Given a Young function A, we define the A-
average of a function𝑓 over a ball𝐵 bymeans of the following
Luxemburg norm:

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A,𝐵 fl inf {𝜆 > 0 : 1|𝐵| ∫𝐵A(
󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝜆 ) 𝑑𝑥 ≤ 1} . (16)

WhenA(𝑡) = 𝑡𝑝, 1 ≤ 𝑝 < ∞, it is easy to see that

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A,𝐵 = ( 1|𝐵| ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)
1/𝑝 ; (17)

that is, the Luxemburg norm coincides with the normalized𝐿𝑝 norm. Given a Young functionA, we useA to denote the
complementary Young function associated withA. Then, the
following generalized Hölder’s inequality holds for any given
ball 𝐵: 1|𝐵| ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥) ⋅ 𝑔 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A,𝐵 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩A,𝐵 . (18)

In particular, when A(𝑡) = 𝑡 ⋅ (1 + log+𝑡), we know that its
complementary Young function is A(𝑡) ≈ exp(𝑡) − 1. In this
situation, we denote󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿,𝐵 = 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A,𝐵 ,󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩exp𝐿,𝐵 = 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩A,𝐵 . (19)

So we have1|𝐵| ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥) ⋅ 𝑔 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿,𝐵 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩exp𝐿,𝐵 . (20)

2.2. Morrey Type Spaces. Let us begin with the definitions of
the weighted Morrey space and generalized Morrey space.

Definition 6 (see [12]). Let 1 ≤ 𝑝 < ∞, 0 < 𝜅 < 1, and 𝑤 be
a weight function on R𝑛. Then, the weighted Morrey space
L𝑝,𝜅(𝑤) is defined by

L
𝑝,𝜅 (𝑤) fl {𝑓 ∈ 𝐿𝑝loc (𝑤) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L𝑝,𝜅(𝑤)
= sup
𝐵

( 1𝑤 (𝐵)𝜅 ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝 < ∞} ,

(21)

where the supremum is taken over all balls 𝐵 in R𝑛. We also
denote by𝑊L1,𝜅(𝑤) the weighted weak Morrey space of all
measurable functions 𝑓 such that

sup
𝐵

sup
𝜆>0

1𝑤 (𝐵)𝜅 𝜆 ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜆}) ≤ 𝐶
< ∞.

(22)

Let Ψ = Ψ(𝑟), 𝑟 > 0, be a growth function, that is,
a positive increasing function in (0, +∞), and satisfy the
following doubling condition:

Ψ (2𝑟) ≤ 𝐷 ⋅ Ψ (𝑟) , ∀𝑟 > 0, (23)

where 𝐷 = 𝐷(Ψ) ≥ 1 is a doubling constant independent of𝑟.
Definition 7 (see [11]). Let 1 ≤ 𝑝 < ∞ and Ψ be a growth
function in (0, +∞). Then, the generalized Morrey space
L𝑝,Ψ(R𝑛) is defined by

L
𝑝,Ψ (R𝑛) fl {𝑓 ∈ 𝐿𝑝loc (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L𝑝,Ψ
= sup
𝑟>0;𝐵(𝑥0 ,𝑟)

( 1Ψ (𝑟) ∫𝐵(𝑥0 ,𝑟) 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)
1/𝑝 < ∞} ,

(24)

where the supremum is taken over all balls𝐵(𝑥0, 𝑟) inR𝑛 with𝑥0 ∈ R𝑛. One can also denote by𝑊L1,Ψ(R𝑛) the generalized
weak Morrey space of all measurable functions 𝑓 for which

sup
𝐵(𝑥0 ,𝑟)

sup
𝜆>0

1Ψ (𝑟)𝜆 ⋅ 󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 (𝑥0, 𝑟) : 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜆}󵄨󵄨󵄨󵄨 ≤ 𝐶
< ∞.

(25)

In order to unify these two definitions, we now introduce
Morrey type spaces associated with 𝜓 as follows. Let 0 ≤ 𝜅 <1. Assume that 𝜓(⋅) is a positive increasing function defined
in (0, +∞) and satisfies the followingD𝜅 condition:

𝜓 (𝜉)𝜉𝜅 ≤ 𝐶 ⋅
𝜓 (𝜉󸀠)
(𝜉󸀠)𝜅 , for any 0 < 𝜉󸀠 < 𝜉 < +∞, (26)

where 𝐶 > 0 is a constant independent of 𝜉 and 𝜉󸀠.
Definition 8. Let 1 ≤ 𝑝 < ∞, 0 ≤ 𝜅 < 1, 𝜓 satisfy the D𝜅
condition (26), and𝑤 be a weight function onR𝑛. We denote
byM𝑝,𝜓(𝑤) the generalizedweightedMorrey space, the space
of all locally integrable functions 𝑓 with finite norm:󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤)

fl sup
𝐵

( 1𝜓 (𝑤 (𝐵)) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝 ≤ 𝐶

< ∞.
(27)

Then, we know that M𝑝,𝜓(𝑤) becomes a Banach function
space with respect to the norm ‖ ⋅ ‖M𝑝,𝜓(𝑤). Furthermore, we
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denote by𝑊M𝑝,𝜓(𝑤) the generalized weighted weakMorrey
space of all measurable functions 𝑓 for which

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑊M𝑝,𝜓(𝑤) fl sup
𝐵

sup
𝜎>0

1𝜓 (𝑤 (𝐵))1/𝑝 𝜎
⋅ [𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})]1/𝑝 ≤ 𝐶

< ∞.
(28)

Definition 9. In the unweighted case (when 𝑤 equals a con-
stant function), one can denote the generalized unweighted
Morrey space by M𝑝,𝜓(R𝑛) and weak Morrey space by𝑊M𝑝,𝜓(R𝑛). That is, let 1 ≤ 𝑝 < ∞ and 𝜓 satisfy the D𝜅
condition (26) with 0 ≤ 𝜅 < 1; one can define

M
𝑝,𝜓 (R𝑛) fl {𝑓 ∈ 𝐿𝑝loc (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓
= sup
𝐵

( 1𝜓 (|𝐵|) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)
1/𝑝 < ∞} ,

𝑊M
𝑝,𝜓 (R𝑛) fl {𝑓 : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑊M𝑝,𝜓
= sup
𝐵

sup
𝜎>0

1𝜓 (|𝐵|)1/𝑝 𝜎 ⋅ 󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜎}󵄨󵄨󵄨󵄨1/𝑝

< ∞} .

(29)

Note the following:

(i) If𝜓(𝑥)≡1, thenM𝑝,𝜓(𝑤)= 𝐿𝑝𝑤(R𝑛) and𝑊M𝑝,𝜓(𝑤) =𝑊𝐿𝑝𝑤(R𝑛). Thus, our (weak) Morrey type space is an
extension of the weighted (weak) Lebesgue space.

(ii) If 𝜓(𝑥) = 𝑥𝜅 with 0 < 𝜅 < 1, then M𝑝,𝜓(𝑤) is just
the weighted Morrey space L𝑝,𝜅(𝑤), and𝑊M1,𝜓(𝑤)
is just the weighted weak Morrey space𝑊L1,𝜅(𝑤).

(iii) If 𝑤(𝑥) ≡ 1, below we will show thatM𝑝,𝜓(R𝑛) redu-
ces to the generalized Morrey space L𝑝,Ψ(R𝑛), and𝑊M1,𝜓(R𝑛) reduces to the generalized weak Morrey
space𝑊L1,Ψ(R𝑛).

Ourmain results on the boundedness of𝑇𝜃 in theMorrey
type spacesM𝑝,𝜓(𝑤) can be formulated as follows.

Theorem 10. Let 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝. Assume that 𝜓
satisfies theD𝜅 condition (26) with 0 ≤ 𝜅 < 1; then, the 𝜃-type
Calderón–Zygmund operator 𝑇𝜃 is bounded onM𝑝,𝜓(𝑤).
Theorem 11. Let 𝑝 = 1 and 𝑤 ∈ 𝐴1. Assume that 𝜓 satisfies
the D𝜅 condition (26) with 0 ≤ 𝜅 < 1; then, the 𝜃-type
Calderón–Zygmund operator𝑇𝜃 is bounded fromM1,𝜓(𝑤) into𝑊M1,𝜓(𝑤).

Let 𝜃 be a nonnegative, nondecreasing function on
R+ = (0, +∞) satisfying condition (8), and let [𝑏, 𝑇𝜃] be
the commutator formed by 𝑇𝜃 and BMO function 𝑏. For

the strong-type estimate of the linear commutator [𝑏, 𝑇𝜃] in
M𝑝,𝜓(𝑤) with 1 < 𝑝 < ∞, we will prove the following.

Theorem 12. Let 1 < 𝑝 < ∞, 𝑤 ∈ 𝐴𝑝, and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛).
Assume that 𝜃 satisfies (8) and 𝜓 satisfies the D𝜅 condition
(26) with 0 ≤ 𝜅 < 1; then, the commutator operator [𝑏, 𝑇𝜃]
is bounded onM𝑝,𝜓(𝑤).

To obtain endpoint estimate for the linear commutator[𝑏, 𝑇𝜃] in M1,𝜓(𝑤), we first need to define the weighted A-
average of a function𝑓 over a ball𝐵 bymeans of the weighted
Luxemburg norm; that is, given a Young function A and𝑤 ∈ 𝐴∞, we define (see [13, 14])
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A(𝑤),𝐵 fl inf {𝜎 > 0 : 1𝑤 (𝐵) ∫𝐵A(

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝜎 )
⋅ 𝑤 (𝑥) 𝑑𝑥 ≤ 1} .

(30)

When A(𝑡) = 𝑡, this norm is denoted by ‖ ⋅ ‖𝐿(𝑤),𝐵; when
A(𝑡) = 𝑡⋅(1+ log+𝑡), this norm is also denoted by ‖⋅‖𝐿log𝐿(𝑤),𝐵.
The complementary Young function of 𝑡⋅(1+log+𝑡) is exp 𝑡−1
with mean Luxemburg norm denoted by ‖ ⋅ ‖exp𝐿(𝑤),𝐵. For𝑤 ∈ 𝐴∞ and for every ball 𝐵 in R𝑛, we can also show the
weighted version of (20). Namely, the following generalized
Hölder’s inequality in the weighted setting

1𝑤 (𝐵) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥) ⋅ 𝑔 (𝑥)󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿(𝑤),𝐵 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩exp𝐿(𝑤),𝐵

(31)

is valid (see [14], for instance). Nowwe introduce newMorrey
type spaces of 𝐿 log 𝐿 type associated with 𝜓 as follows.

Definition 13. Let𝑝 = 1, 0 ≤ 𝜅 < 1,𝜓 satisfy theD𝜅 condition
(26), and 𝑤 be a weight function on R𝑛. One can denote by
M
1,𝜓

𝐿 log𝐿(𝑤) the generalized weighted Morrey space of 𝐿 log 𝐿
type, the space of all locally integrable functions𝑓 defined on
R𝑛 with finite norm ‖𝑓‖

M
1,𝜓

𝐿 log𝐿(𝑤)
.

M
1,𝜓

𝐿 log𝐿 (𝑤) fl {𝑓 ∈ 𝐿1loc (𝑤) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓
𝐿 log𝐿(𝑤)

< ∞} , (32)

where

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓
𝐿 log𝐿(𝑤)

fl sup
𝐵

{ 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿(𝑤),𝐵} . (33)

Note that 𝑡 ≤ 𝑡 ⋅ (1 + log+𝑡) for all 𝑡 > 0; then, for any ball𝐵 ⊂ R𝑛 and 𝑤 ∈ 𝐴∞, we have ‖𝑓‖𝐿(𝑤),𝐵 ≤ ‖𝑓‖𝐿 log𝐿(𝑤),𝐵 by
definition; that is, the inequality

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿(𝑤),𝐵 = 1𝑤 (𝐵) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ⋅ 𝑤 (𝑥) 𝑑𝑥
≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿(𝑤),𝐵

(34)
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holds for any ball 𝐵 ⊂ R𝑛. From this, we can further see that
when 𝜓 satisfies theD𝜅 condition (26) with 0 ≤ 𝜅 < 1,

1𝜓 (𝑤 (𝐵)) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ⋅ 𝑤 (𝑥) 𝑑𝑥
= 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ⋅ 1𝑤 (𝐵) ∫𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ⋅ 𝑤 (𝑥) 𝑑𝑥
= 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿(𝑤),𝐵
≤ 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),𝐵 .

(35)

Hence, we haveM1,𝜓
𝐿log𝐿(𝑤) ⊂M1,𝜓(𝑤) by definition.

Definition 14. In the unweighted case (when 𝑤 equals a
constant function), one can denote by M

1,𝜓

𝐿 log𝐿(R𝑛) the
generalized unweightedMorrey space of 𝐿 log 𝐿 type.That is,
let 𝑝 = 1 and 𝜓 satisfy theD𝜅 condition (26) with 0 ≤ 𝜅 < 1;
one can define

M
1,𝜓

𝐿 log𝐿 (R𝑛)
fl {𝑓 ∈ 𝐿1loc (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓

𝐿 log𝐿(R
𝑛) < ∞} , (36)

where

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓
𝐿 log𝐿(R

𝑛) fl sup
𝐵

{ |𝐵|𝜓 (|𝐵|) ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿,𝐵} . (37)

We also consider the special case when 𝜓 is taken to be𝜓(𝑥) = 𝑥𝜅 with 0 < 𝜅 < 1 and denote the corresponding
space byL1,𝜅𝐿 log𝐿(𝑤).
Definition 15. Let 𝑝 = 1, 0 < 𝜅 < 1, and 𝑤 be a weight
function on R𝑛. One can denote by L1,𝜅𝐿 log𝐿(𝑤) the weighted
Morrey space of 𝐿 log 𝐿 type, the space of all locally integrable
functions 𝑓 defined on R𝑛 with finite norm ‖𝑓‖L1,𝜅

𝐿 log𝐿(𝑤)
.

L
1,𝜅
𝐿 log𝐿 (𝑤) fl {𝑓 ∈ 𝐿1loc (𝑤) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L1,𝜅

𝐿 log𝐿(𝑤)
< ∞} , (38)

where

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L1,𝜅
𝐿log𝐿(𝑤)

fl sup
𝐵

{𝑤 (𝐵)1−𝜅 ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿(𝑤),𝐵} . (39)

In this situation, we haveL1,𝜅𝐿 log𝐿(𝑤) ⊂L1,𝜅(𝑤).
For the endpoint case, we will also prove the following

weak-type 𝐿 log 𝐿 estimate of the linear commutator [𝑏, 𝑇𝜃]
in the Morrey type space associated with 𝜓.
Theorem 16. Let 𝑝 = 1, 𝑤 ∈ 𝐴1, and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Assume
that 𝜃 satisfies (8) and 𝜓 satisfies the D𝜅 condition (26) with0 ≤ 𝜅 < 1; then, for any given 𝜎 > 0 and any ball 𝐵 ⊂ R𝑛, there

exists a constant 𝐶 > 0 independent of 𝑓, 𝐵, and 𝜎 > 0 such
that

1𝜓 (𝑤 (𝐵)) ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿 log𝐿(𝑤)

, (40)

where Φ(𝑡) = 𝑡 ⋅ (1 + log+𝑡). From the definitions, we can
roughly say that the commutator operator [𝑏, 𝑇𝜃] is bounded
fromM

1,𝜓

𝐿 log𝐿(𝑤) into𝑊M1,𝜓(𝑤).
In particular, if we take 𝜓(𝑥) = 𝑥𝜅 with 0 < 𝜅 < 1, then

we immediately get the following strong-type estimate and
endpoint estimate of 𝑇𝜃 and [𝑏, 𝑇𝜃] in the weighted Morrey
spacesL𝑝,𝜅(𝑤) for all 0 < 𝜅 < 1 and 1 ≤ 𝑝 < ∞.

Corollary 17. Let 1 < 𝑝 < ∞, 0 < 𝜅 < 1, and 𝑤 ∈ 𝐴𝑝.
Then, the 𝜃-type Calderón–Zygmund operator 𝑇𝜃 is bounded
onL𝑝,𝜅(𝑤).
Corollary 18. Let 𝑝 = 1, 0 < 𝜅 < 1, and 𝑤 ∈ 𝐴1. Then, the 𝜃-
type Calderón–Zygmund operator𝑇𝜃 is bounded fromL1,𝜅(𝑤)
into𝑊L1,𝜅(𝑤).
Corollary 19. Let 1 < 𝑝 < ∞, 0 < 𝜅 < 1, 𝑤 ∈ 𝐴𝑝, and 𝑏 ∈𝐵𝑀𝑂(R𝑛). Assume that 𝜃 satisfies (8); then, the commutator
operator [𝑏, 𝑇𝜃] is bounded onL𝑝,𝜅(𝑤).
Corollary 20. Let 𝑝 = 1, 0 < 𝜅 < 1, 𝑤 ∈ 𝐴1, and𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Assume that 𝜃 satisfies (8); then, for any given𝜎 > 0 and any ball 𝐵 ⊂ R𝑛, there exists a constant 𝐶 > 0
independent of 𝑓, 𝐵, and 𝜎 > 0 such that

1𝑤 (𝐵)𝜅 ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L1,𝜅
𝐿 log𝐿(𝑤)

, (41)

whereΦ(𝑡) = 𝑡 ⋅ (1 + log+𝑡).
Naturally, when 𝑤(𝑥) ≡ 1, we have the following un-

weighted results.

Corollary 21. Let 1 < 𝑝 < ∞. Assume that 𝜓 satisfies the
D𝜅 condition (26) with 0 ≤ 𝜅 < 1; then, the 𝜃-type Calderón–
Zygmund operator 𝑇𝜃 is bounded onM𝑝,𝜓(R𝑛).
Corollary 22. Let 𝑝 = 1. Assume that 𝜓 satisfies the
D𝜅 condition (26) with 0 ≤ 𝜅 < 1; then, the 𝜃-type
Calderón–Zygmund operator 𝑇𝜃 is bounded from M1,𝜓(R𝑛)
into𝑊M1,𝜓(R𝑛).
Corollary 23. Let 1 < 𝑝 < ∞ and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Assume
that 𝜃 satisfies (8) and 𝜓 satisfies the D𝜅 condition (26) with0 ≤ 𝜅 < 1; then, the commutator operator [𝑏, 𝑇𝜃] is bounded
onM𝑝,𝜓(R𝑛).
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Corollary 24. Let 𝑝 = 1 and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Assume that 𝜃
satisfies (8) and 𝜓 satisfies theD𝜅 condition (26) with 0 ≤ 𝜅 <1; then, for any given 𝜎 > 0 and any ball 𝐵 ⊂ R𝑛, there exists a
constant 𝐶 > 0 independent of 𝑓, 𝐵, and 𝜎 > 0 such that

1𝜓 (|𝐵|) ⋅ 󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎}󵄨󵄨󵄨󵄨
≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿 log𝐿(R

𝑛)

, (42)

whereΦ(𝑡) = 𝑡 ⋅ (1 + log+𝑡).
Let Ψ = Ψ(𝑟), 𝑟 > 0, be a growth function with doubling

constant𝐷(Ψ) : 1 ≤ 𝐷(Ψ) < 2𝑛. If, for any fixed 𝑥0 ∈ R𝑛 and𝑟 > 0, we set 𝜓(|𝐵(𝑥0, 𝑟)|) = Ψ(𝑟), then
𝜓 (2𝑛 󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)󵄨󵄨󵄨󵄨) = 𝜓 (󵄨󵄨󵄨󵄨𝐵 (𝑥0, 2𝑟)󵄨󵄨󵄨󵄨) = Ψ (2𝑟) . (43)

For the doubling constant 𝐷(Ψ) satisfying 1 ≤ 𝐷(Ψ) < 2𝑛,
which means that 𝐷(Ψ) = 2𝜅⋅𝑛 for some 0 ≤ 𝜅 < 1, then we
are able to verify that 𝜓 is an increasing function and satisfies
theD𝜅 condition (26) with some 0 ≤ 𝜅 < 1.
Definition 25. Let 𝑝 = 1 and Ψ be a growth function in(0, +∞). One can denote by L1,Ψ𝐿 log𝐿(R𝑛) the generalized
Morrey space of 𝐿 log 𝐿 type, which is defined by

L
1,Ψ
𝐿 log𝐿 (R𝑛)
fl {𝑓 ∈ 𝐿1loc (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L1,Ψ

𝐿 log𝐿(R
𝑛) < ∞} , (44)

where󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩L1,Ψ
𝐿 log𝐿(R

𝑛)

fl sup
𝑟>0;𝐵(𝑥0 ,𝑟)

{󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)󵄨󵄨󵄨󵄨Ψ (𝑟) ⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿 log𝐿,𝐵(𝑥0,𝑟)} .
(45)

In this situation, we also haveL1,Ψ𝐿log𝐿(R𝑛) ⊂L1,Ψ(R𝑛).
From the definitions given above, we get M𝑝,𝜓(R𝑛) =

L𝑝,Ψ(R𝑛), 𝑊M1,𝜓(R𝑛) = 𝑊L1,Ψ(R𝑛), and M
1,𝜓

𝐿 log𝐿(R𝑛) =
L1,Ψ𝐿 log𝐿(R𝑛) by the choice of Ψ. Thus, by the above
unweighted results (Corollaries 21–24), we can also obtain
strong-type estimate and endpoint estimate of 𝑇𝜃 and [𝑏, 𝑇𝜃]
in the generalizedMorrey spacesL𝑝,Ψ(R𝑛)when 1 ≤ 𝑝 < ∞
and Ψ satisfies the doubling condition (23).

Corollary 26. Let 1 < 𝑝 < ∞. Suppose that Ψ satisfies the
doubling condition (23) and 1 ≤ 𝐷(Ψ) < 2𝑛; then, the 𝜃-type
Calderón–Zygmund operator 𝑇𝜃 is bounded onL𝑝,Ψ(R𝑛).
Corollary 27. Let 𝑝 = 1. Suppose thatΨ satisfies the doubling
condition (23) and 1 ≤ 𝐷(Ψ) < 2𝑛; then, the 𝜃-type
Calderón–Zygmund operator 𝑇𝜃 is bounded from L1,Ψ(R𝑛)
into𝑊L1,Ψ(R𝑛).

Corollary 28. Let 1 < 𝑝 < ∞ and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Suppose
that 𝜃 satisfies (8) and Ψ satisfies the doubling condition (23)
with 1 ≤ 𝐷(Ψ) < 2𝑛; then, the commutator operator [𝑏, 𝑇𝜃] is
bounded onL𝑝,Ψ(R𝑛).
Corollary 29. Let 𝑝 = 1 and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Suppose that 𝜃
satisfies (8) andΨ satisfies the doubling condition (23) with 1 ≤𝐷(Ψ) < 2𝑛; then, for any given 𝜎 > 0 and any ball 𝐵(𝑥0, 𝑟) ⊂
R𝑛, there exists a constant 𝐶 > 0 independent of 𝑓, 𝐵(𝑥0, 𝑟),
and 𝜎 > 0 such that

1Ψ (𝑟) ⋅ 󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 (𝑥0, 𝑟) : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎}󵄨󵄨󵄨󵄨
≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L1,Ψ
𝐿 log𝐿(R

𝑛)

, (46)

whereΦ(𝑡) = 𝑡 ⋅ (1 + log+𝑡).
3. Proof of Theorems 10 and 11

Proof of Theorem 10. Let 𝑓 ∈ M𝑝,𝜓(𝑤) with 1 < 𝑝 < ∞ and𝑤 ∈ 𝐴𝑝. For an arbitrary point 𝑥0 ∈ R𝑛, set 𝐵 = 𝐵(𝑥0, 𝑟𝐵) for
the ball centered at 𝑥0 and of radius 𝑟𝐵, 2𝐵 = 𝐵(𝑥0, 2𝑟𝐵). We
represent 𝑓 as

𝑓 = 𝑓 ⋅ 𝜒2𝐵 + 𝑓 ⋅ 𝜒(2𝐵)𝑐 fl 𝑓1 + 𝑓2; (47)

by the linearity of the 𝜃-type Calderón–Zygmund operator𝑇𝜃, we write
1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓1) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

+ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

fl 𝐼1 + 𝐼2.

(48)

Below, we will give the estimates of 𝐼1 and 𝐼2, respectively. By
the weighted 𝐿𝑝 boundedness of 𝑇𝜃 (seeTheorem 4), we have

𝐼1 ≤ 1𝜓 (𝑤 (𝐵))1/𝑝 󵄩󵄩󵄩󵄩𝑇𝜃 (𝑓1)󵄩󵄩󵄩󵄩𝐿𝑝𝑤
≤ 𝐶 ⋅ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫2𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ⋅ 𝜓 (𝑤 (2𝐵))1/𝑝𝜓 (𝑤 (𝐵))1/𝑝 .
(49)

Moreover, since 0 < 𝑤(𝐵) < 𝑤(2𝐵) < +∞when𝑤 ∈ 𝐴𝑝 with1 < 𝑝 < ∞, then by theD𝜅 condition (26) of𝜓 and inequality
(12), we obtain

𝐼1 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ⋅ 𝑤 (2𝐵)𝜅/𝑝𝑤 (𝐵)𝜅/𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) . (50)



Journal of Function Spaces 7

As for the term 𝐼2, it is clear that when 𝑥 ∈ 𝐵 and 𝑦 ∈ (2𝐵)𝑐,
we get |𝑥 − 𝑦| ≈ |𝑥0 − 𝑦|. We then decompose R𝑛 into
a geometrically increasing sequence of concentric balls and
obtain the following pointwise estimate:

󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ ∫
R𝑛

󵄨󵄨󵄨󵄨𝑓2 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦 ≤ 𝐶∫(2𝐵)𝑐
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦

≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦.

(51)

From this, it follows that

𝐼2 ≤ 𝐶 ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦. (52)

By using Hölder’s inequality and 𝐴𝑝 condition on 𝑤, we get
1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦
≤ 1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 (∫2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝐵
𝑤 (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤)

⋅ 𝜓 (𝑤 (2𝑗+1𝐵))
1/𝑝

𝑤 (2𝑗+1𝐵)1/𝑝 .

(53)

Hence,

𝐼2 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))1/𝑝
𝜓 (𝑤 (𝐵))1/𝑝

⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝 .
(54)

Notice that 𝑤 ∈ 𝐴𝑝 ⊂ 𝐴∞ for 1 < 𝑝 < ∞; then, by using
theD𝜅 condition (26) of 𝜓 again, inequality (13), and the fact
that 0 ≤ 𝜅 < 1, we find that

∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))1/𝑝
𝜓 (𝑤 (𝐵))1/𝑝 ⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝
≤ 𝐶∞∑
𝑗=1

𝑤 (𝐵)(1−𝜅)/𝑝
𝑤 (2𝑗+1𝐵)(1−𝜅)/𝑝 ≤ 𝐶

∞∑
𝑗=1

( |𝐵|󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨)
𝛿(1−𝜅)/𝑝

≤ 𝐶∞∑
𝑗=1

( 12(𝑗+1)𝑛 )
𝛿(1−𝜅)/𝑝 ≤ 𝐶,

(55)

which gives our desired estimate 𝐼2 ≤ 𝐶‖𝑓‖M𝑝,𝜓(𝑤). Com-
bining the estimates above for 𝐼1 and 𝐼2 and then taking the
supremum over all balls 𝐵 ⊂ R𝑛, we complete the proof of
Theorem 10.

Proof of Theorem 11. Let 𝑓 ∈ M1,𝜓(𝑤) with 𝑤 ∈ 𝐴1. For an
arbitrary ball 𝐵 = 𝐵(𝑥0, 𝑟𝐵) ⊂ R𝑛, we represent 𝑓 as

𝑓 = 𝑓 ⋅ 𝜒2𝐵 + 𝑓 ⋅ 𝜒(2𝐵)𝑐 fl 𝑓1 + 𝑓2; (56)

then, for any given 𝜎 > 0, by the linearity of the 𝜃-type
Calderón–Zygmund operator 𝑇𝜃, one can write

1𝜓 (𝑤 (𝐵))𝜎 ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 1𝜓 (𝑤 (𝐵))𝜎 ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓1) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })
+ 1𝜓 (𝑤 (𝐵))𝜎
⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 }) fl 𝐼󸀠1 + 𝐼󸀠2.

(57)

We first consider the term 𝐼󸀠1. By the weighted weak (1, 1)
boundedness of 𝑇𝜃 (see Theorem 4), we have

𝐼󸀠1 ≤ 𝐶 ⋅ 1𝜓 (𝑤 (𝐵)) 󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩𝐿1𝑤
= 𝐶 ⋅ 1𝜓 (𝑤 (𝐵)) (∫2𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓(𝑤) ⋅ 𝜓 (𝑤 (2𝐵))𝜓 (𝑤 (𝐵)) .

(58)

Moreover, since 0 < 𝑤(𝐵) < 𝑤(2𝐵) < +∞ when 𝑤 ∈ 𝐴1,
then we apply theD𝜅 condition (26) of 𝜓 and inequality (12)
to obtain that

𝐼󸀠1 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓(𝑤) ⋅ 𝑤 (2𝐵)𝜅𝑤 (𝐵)𝜅 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓(𝑤) . (59)

As for the term 𝐼󸀠2, it follows directly from Chebyshev’s
inequality and the pointwise estimate (51) that

𝐼󸀠2 ≤ 1𝜓 (𝑤 (𝐵))𝜎 ⋅ 2𝜎 ∫𝐵 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥
≤ 𝐶 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦.

(60)

Another application of 𝐴1 condition on 𝑤 gives that

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶 1𝑤 (2𝑗+1𝐵) ⋅ ess inf𝑦∈2𝑗+1𝐵
𝑤 (𝑦)∫

2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦
≤ 𝐶 1𝑤 (2𝑗+1𝐵) (∫2𝑗+1𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑤 (𝑦) 𝑑𝑦)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓(𝑤) ⋅ 𝜓 (𝑤 (2

𝑗+1𝐵))
𝑤 (2𝑗+1𝐵) .

(61)
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Consequently,

𝐼󸀠2 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M1,𝜓(𝑤) ∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))
𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) . (62)

Recall that 𝑤 ∈ 𝐴1 ⊂ 𝐴∞; therefore, by using the D𝜅
condition (26) of 𝜓 again, inequality (13), and the fact that0 ≤ 𝜅 < 1, we get
∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))
𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶

∞∑
𝑗=1

𝑤 (𝐵)1−𝜅
𝑤 (2𝑗+1𝐵)1−𝜅

≤ 𝐶∞∑
𝑗=1

( |𝐵|󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨)
𝛿∗(1−𝜅) ≤ 𝐶∞∑

𝑗=1

( 12(𝑗+1)𝑛 )
𝛿∗(1−𝜅)

≤ 𝐶,

(63)

which implies our desired estimate 𝐼󸀠2 ≤ 𝐶‖𝑓‖M1,𝜓(𝑤).
Summing up the estimates above for 𝐼󸀠1 and 𝐼󸀠2 and then taking
the supremum over all balls 𝐵 ⊂ R𝑛 and all 𝜎 > 0, we finish
the proof of Theorem 11.

4. Proof of Theorems 12 and 16

To prove our main theorems in this section, we need the
following lemma about BMO functions.

Lemma 30. Let 𝑏 be a function in 𝐵𝑀𝑂(R𝑛). Then,

(i) for every ball 𝐵 in R𝑛 and for all 𝑗 ∈ Z+,󵄨󵄨󵄨󵄨𝑏2𝑗+1𝐵 − 𝑏𝐵󵄨󵄨󵄨󵄨 ≤ 𝐶 ⋅ (𝑗 + 1) ‖𝑏‖∗ ; (64)

(ii) for every ball 𝐵 in R𝑛 and for all 𝑤 ∈ 𝐴𝑝 with 1 ≤ 𝑝 <∞,

(∫
𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)1/𝑝 ≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)1/𝑝 . (65)

Proof. For the proof of (i), we refer the reader to [3]. For the
proof of (ii), we refer the reader to [15].

Proof of Theorem 12. Let 𝑓 ∈ M𝑝,𝜓(𝑤) with 1 < 𝑝 < ∞ and𝑤 ∈ 𝐴𝑝. For each fixed ball 𝐵 = 𝐵(𝑥0, 𝑟𝐵) ⊂ R𝑛, as before,
we represent 𝑓 as 𝑓 = 𝑓1 + 𝑓2, where 𝑓1 = 𝑓 ⋅ 𝜒2𝐵 and 2𝐵 =𝐵(𝑥0, 2𝑟𝐵) ⊂ R𝑛. By the linearity of the commutator operator[𝑏, 𝑇𝜃], we write

1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

≤ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓1) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

+ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

fl 𝐽1 + 𝐽2.

(66)

Since 𝑇𝜃 is bounded on 𝐿𝑝𝑤(R𝑛) for 1 < 𝑝 < ∞ and𝑤 ∈ 𝐴𝑝, then by the well-known boundedness criterion for
the commutators of linear operators, which was obtained by
Álvarez et al. in [16], we know that [𝑏, 𝑇𝜃] is also bounded
on 𝐿𝑝𝑤(R𝑛) for all 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝, whenever𝑏 ∈ BMO(R𝑛). This fact together with theD𝜅 condition (26)
of 𝜓 and inequality (12) implies

𝐽1 ≤ 1𝜓 (𝑤 (𝐵))1/𝑝 󵄩󵄩󵄩󵄩[𝑏, 𝑇𝜃] (𝑓1)󵄩󵄩󵄩󵄩𝐿𝑝𝑤
≤ 𝐶 ⋅ 1𝜓 (𝑤 (𝐵))1/𝑝 (∫2𝐵 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ⋅ 𝜓 (𝑤 (2𝐵))1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ⋅ 𝑤 (2𝐵)𝜅/𝑝𝑤 (𝐵)𝜅/𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) .

(67)

Let us now turn to the estimate of 𝐽2. By definition, for any𝑥 ∈ 𝐵, we have
󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝐵 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨 . (68)

In the proof of Theorem 10, we have already shown that (see
(51))

󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦. (69)

Following the same arguments as in (51), we can also prove
that

󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝐵 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ ∫
R𝑛

󵄨󵄨󵄨󵄨[𝑏𝐵 − 𝑏 (𝑦)] 𝑓2 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦
≤ 𝐶∫
(2𝐵)𝑐

󵄨󵄨󵄨󵄨[𝑏𝐵 − 𝑏 (𝑦)] 𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦
≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦.

(70)

Hence, from the pointwise estimates above for |𝑇𝜃(𝑓2)(𝑥)|
and |𝑇𝜃([𝑏𝐵 − 𝑏]𝑓2)(𝑥)|, it follows that

𝐽2 ≤ 𝐶𝜓 (𝑤 (𝐵))1/𝑝 (∫𝐵 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)
1/𝑝

⋅ (∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦) + 𝐶



Journal of Function Spaces 9

⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑏2𝑗+1𝐵 − 𝑏𝐵󵄨󵄨󵄨󵄨

⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 + 𝐶 ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ ∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 fl 𝐽3 + 𝐽4 + 𝐽5.
(71)

Below, we will give the estimates of 𝐽3, 𝐽4, and 𝐽5, respectively.
Using (ii) of Lemma 30, Hölder’s inequality, and the 𝐴𝑝
condition, we obtain

𝐽3 ≤ 𝐶 ‖𝑏‖∗
⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝 (

∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦)

≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝐵
𝑤 (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤)

⋅ ∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))1/𝑝
𝜓 (𝑤 (𝐵))1/𝑝 ⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) ,

(72)

where in the last inequality we have used the estimate (55).
Applying (i) of Lemma 30, Hölder’s inequality, and the 𝐴𝑝
condition, we can deduce that

𝐽4 ≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

(𝑗 + 1)󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

(𝑗 + 1)󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝐵
𝑤 (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤)

⋅ ∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝜓 (𝑤 (2𝑗+1𝐵))
1/𝑝

𝜓 (𝑤 (𝐵))1/𝑝 ⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝 .

(73)

For any 𝑗 ∈ Z+, since 0 < 𝑤(𝐵) < 𝑤(2𝑗+1𝐵) < +∞ when𝑤 ∈ 𝐴𝑝 with 1 < 𝑝 < ∞, then by using theD𝜅 condition (26)

of 𝜓 and inequality (13) together with the fact that 0 ≤ 𝜅 < 1,
we thus obtain

∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝜓 (𝑤 (2𝑗+1𝐵))
1/𝑝

𝜓 (𝑤 (𝐵))1/𝑝 ⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝
≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑤 (𝐵)(1−𝜅)/𝑝𝑤 (2𝑗+1𝐵)(1−𝜅)/𝑝
≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( |𝐵|󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨)
𝛿(1−𝜅)/𝑝

≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( 12(𝑗+1)𝑛 )
𝛿(1−𝜅)/𝑝 ≤ 𝐶,

(74)

where the last series is convergent since the exponent 𝛿(1 −𝜅)/𝑝 is positive. This implies our desired estimate 𝐽4 ≤𝐶‖𝑓‖M𝑝,𝜓(𝑤). It remains to estimate the last term 𝐽5. An
application of Hölder’s inequality gives us that

𝐽5 ≤ 𝐶 ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨𝑝󸀠 𝑤 (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝
󸀠 .

(75)

If we set 𝜇(𝑦) = 𝑤(𝑦)−𝑝󸀠/𝑝, then we have 𝜇 ∈ 𝐴𝑝󸀠 because𝑤 ∈ 𝐴𝑝 (see [1, 2]). Thus, it follows from (ii) of Lemma 30
and the 𝐴𝑝 condition that

(∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨𝑝󸀠 𝜇 (𝑦) 𝑑𝑦)1/𝑝
󸀠

≤ 𝐶 ‖𝑏‖∗ ⋅ 𝜇 (2𝑗+1𝐵)1/𝑝󸀠

= 𝐶 ‖𝑏‖∗ ⋅ (∫
2𝑗+1𝐵
𝑤 (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠

≤ 𝐶 ‖𝑏‖∗ ⋅
󵄨󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨󵄨𝑤 (2𝑗+1𝐵)1/𝑝 .

(76)

Therefore, in view of estimate (55), we conclude that

𝐽5 ≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)1/𝑝𝜓 (𝑤 (𝐵))1/𝑝
∞∑
𝑗=1

1
𝑤 (2𝑗+1𝐵)1/𝑝

⋅ (∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤)
⋅ ∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))1/𝑝
𝜓 (𝑤 (𝐵))1/𝑝 ⋅ 𝑤 (𝐵)1/𝑝𝑤 (2𝑗+1𝐵)1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(𝑤) .

(77)
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Summarizing the estimates derived above and then taking the
supremum over all balls 𝐵 ⊂ R𝑛, we complete the proof of
Theorem 12.

Proof of Theorem 16. For any fixed ball 𝐵 = 𝐵(𝑥0, 𝑟𝐵) in R𝑛,
as before, we represent 𝑓 as 𝑓 = 𝑓1 + 𝑓2, where 𝑓1 = 𝑓 ⋅ 𝜒2𝐵
and 2𝐵 = 𝐵(𝑥0, 2𝑟𝐵) ⊂ R𝑛. Then, for any given 𝜎 > 0, by the
linearity of the commutator operator [𝑏, 𝑇𝜃], one can write1𝜓 (𝑤 (𝐵)) ⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})

≤ 1𝜓 (𝑤 (𝐵))
⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓1) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })
+ 1𝜓 (𝑤 (𝐵))
⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })

fl 𝐽󸀠1 + 𝐽󸀠2.

(78)

By usingTheorem 5 and the previous estimate (35), we get

𝐽󸀠1 ≤ 𝐶 ⋅ 1𝜓 (𝑤 (𝐵)) ∫R𝑛 Φ(
󵄨󵄨󵄨󵄨𝑓1 (𝑥)󵄨󵄨󵄨󵄨𝜎 ) ⋅ 𝑤 (𝑥) 𝑑𝑥

= 𝐶 ⋅ 1𝜓 (𝑤 (𝐵)) ∫2𝐵Φ(
󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝜎 ) ⋅ 𝑤 (𝑥) 𝑑𝑥

= 𝐶 ⋅ 𝜓 (𝑤 (2𝐵))𝜓 (𝑤 (𝐵)) ⋅ 1𝜓 (𝑤 (2𝐵)) ∫2𝐵Φ(
󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝜎 )

⋅ 𝑤 (𝑥) 𝑑𝑥
≤ 𝐶 ⋅ 𝜓 (𝑤 (2𝐵))𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (2𝐵)𝜓 (𝑤 (2𝐵))
⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿 log𝐿(𝑤),2𝐵 .

(79)

Moreover, since 0 < 𝑤(𝐵) < 𝑤(2𝐵) < +∞ when 𝑤 ∈ 𝐴1,
then by the D𝜅 condition (26) of 𝜓 and inequality (12), we
have

𝐽󸀠1 ≤ 𝐶 ⋅ 𝑤 (2𝐵)𝜅𝑤 (𝐵)𝜅
⋅ { 𝑤 (2𝐵)𝜓 (𝑤 (2𝐵)) ⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝐵}
≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

,
(80)

which is our desired estimate. We now turn to deal with the
term 𝐽󸀠2. Recall that the following inequality󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝐵 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨 (81)

is valid. So we can further decompose 𝐽󸀠2 as
𝐽󸀠2 ≤ 1𝜓 (𝑤 (𝐵))

⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎4 })
+ 1𝜓 (𝑤 (𝐵))
⋅ 𝑤 ({𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝐵 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎4 })

fl 𝐽󸀠3 + 𝐽󸀠4.

(82)

By using the previous pointwise estimate (51) and Cheby-
shev’s inequality together with (ii) of Lemma 30, we deduce
that

𝐽󸀠3 ≤ 1𝜓 (𝑤 (𝐵))
⋅ 4𝜎 ∫𝐵 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 𝑑𝑦 1𝜓 (𝑤 (𝐵))

⋅ ∫
𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥
≤ 𝐶 ‖𝑏‖∗ ∞∑

𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 𝑑𝑦 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) .

(83)

Furthermore, note that 𝑡 ≤ Φ(𝑡) = 𝑡⋅(1+log+𝑡) for any 𝑡 > 0. It
then follows from the𝐴1 condition and the previous estimate
(34) that

𝐽󸀠3 ≤ 𝐶∞∑
𝑗=1

1𝑤 (2𝑗+1𝐵) ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎

⋅ 𝑤 (𝑦) 𝑑𝑦 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ≤ 𝐶
∞∑
𝑗=1

1𝑤 (2𝑗+1𝐵)
⋅ ∫
2𝑗+1𝐵
Φ(󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 ) ⋅ 𝑤 (𝑦) 𝑑𝑦 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

≤ 𝐶∞∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵
𝑤 (𝐵)𝜓 (𝑤 (𝐵))

= 𝐶∞∑
𝑗=1

{ 𝑤(2𝑗+1𝐵)
𝜓 (𝑤 (2𝑗+1𝐵)) ⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵}

⋅ 𝜓 (𝑤 (2𝑗+1𝐵))𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶
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⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))
𝜓 (𝑤 (𝐵))

⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶 ⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

,
(84)

where in the last inequality we have used estimate (63). On
the other hand, applying the pointwise estimate (70) and
Chebyshev’s inequality, we have

𝐽󸀠4 ≤ 1𝜓 (𝑤 (𝐵)) ⋅ 4𝜎 ∫𝐵 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝐵 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥
≤ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))
⋅ 𝐶𝜎
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝑤 (𝐵)𝜓 (𝑤 (𝐵)) ⋅ 𝐶𝜎
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨

⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 + 𝑤 (𝐵)𝜓 (𝑤 (𝐵))
⋅ 𝐶𝜎
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨 ∫2𝑗+1𝐵
󵄨󵄨󵄨󵄨𝑏2𝑗+1𝐵 − 𝑏𝐵󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

fl 𝐽󸀠5 + 𝐽󸀠6.

(85)

For the term 𝐽󸀠5, since 𝑤 ∈ 𝐴1, by the 𝐴1 condition and the
fact that 𝑡 ≤ Φ(𝑡),
𝐽󸀠5 ≤ 𝐶𝜎 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

∞∑
𝑗=1

1𝑤 (2𝑗+1𝐵) ∫2𝑗+1𝐵 󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑤 (𝑦) 𝑑𝑦

≤ 𝐶 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))
∞∑
𝑗=1

1𝑤 (2𝑗+1𝐵) ∫2𝑗+1𝐵 󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ Φ(󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 )𝑤 (𝑦) 𝑑𝑦.

(86)

Furthermore, we use the generalized Hölder’s inequality with
weight (31) to obtain

𝐽󸀠5 ≤ 𝐶 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))
⋅ ∞∑
𝑗=1

󵄩󵄩󵄩󵄩𝑏 − 𝑏2𝑗+1𝐵󵄩󵄩󵄩󵄩exp𝐿(𝑤),2𝑗+1𝐵 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵
≤ 𝐶 ‖𝑏‖∗ ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

∞∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵 .
(87)

In the last inequality, we have used the well-known fact that
(see [14])󵄩󵄩󵄩󵄩𝑏 − 𝑏𝐵󵄩󵄩󵄩󵄩exp𝐿(𝑤),𝐵 ≤ 𝐶 ‖𝑏‖∗ , for any ball 𝐵 ⊂ R𝑛. (88)

It is equivalent to the inequality

1𝑤 (𝐵) ∫𝐵 exp(
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵󵄨󵄨󵄨󵄨𝑐0 ‖𝑏‖∗ )𝑤 (𝑦) 𝑑𝑦 ≤ 𝐶, (89)

which is just a corollary of the well-known John–Nirenberg’s
inequality (see [9]) and the comparison property of 𝐴1
weights. Hence, by estimate (63),

𝐽󸀠5 ≤ 𝐶 ‖𝑏‖∗
⋅ ∞∑
𝑗=1

{ 𝑤(2𝑗+1𝐵)
𝜓 (𝑤 (2𝑗+1𝐵)) ⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵}

⋅ 𝜓 (𝑤 (2𝑗+1𝐵))𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶
⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

∞∑
𝑗=1

𝜓 (𝑤 (2𝑗+1𝐵))
𝜓 (𝑤 (𝐵))

⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶 ⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

.

(90)

For the last term 𝐽󸀠6, we proceed as follows. Using (i) of
Lemma 30 together with the facts 𝑤 ∈ 𝐴1 and 𝑡 ≤ Φ(𝑡) =𝑡 ⋅ (1 + log+𝑡), we deduce that
𝐽󸀠6 ≤ 𝐶 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

∞∑
𝑗=1

(𝑗 + 1) ‖𝑏‖∗ ⋅ 1󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨
⋅ ∫
2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 𝑑𝑦 ≤ 𝐶 ⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))
∞∑
𝑗=1

(𝑗 + 1) ‖𝑏‖∗
⋅ 1𝑤 (2𝑗+1𝐵) ∫2𝑗+1𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 ⋅ 𝑤 (𝑦) 𝑑𝑦 ≤ 𝐶 ‖𝑏‖∗
⋅ 𝑤 (𝐵)𝜓 (𝑤 (𝐵))

∞∑
𝑗=1

(𝑗 + 1)𝑤 (2𝑗+1𝐵) ∫2𝑗+1𝐵Φ(
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝜎 )

⋅ 𝑤 (𝑦) 𝑑𝑦 = 𝐶 ‖𝑏‖∗
⋅ ∞∑
𝑗=1

{ 𝑤(2𝑗+1𝐵)
𝜓 (𝑤 (2𝑗+1𝐵)) ⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿log𝐿(𝑤),2𝑗+1𝐵}

⋅ (𝑗 + 1) ⋅ 𝜓 (𝑤 (2𝑗+1𝐵))𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) ≤ 𝐶
⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝜓 (𝑤 (2𝑗+1𝐵))𝜓 (𝑤 (𝐵))
⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵) .

(91)
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Recall that 𝑤 ∈ 𝐴1 ⊂ 𝐴∞. We can now argue exactly as we
did in the estimation of (74) to get

∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝜓 (𝑤 (2𝑗+1𝐵))𝜓 (𝑤 (𝐵)) ⋅ 𝑤 (𝐵)𝑤 (2𝑗+1𝐵)
≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑤 (𝐵)1−𝜅𝑤 (2𝑗+1𝐵)1−𝜅
≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( |𝐵|󵄨󵄨󵄨󵄨2𝑗+1𝐵󵄨󵄨󵄨󵄨)
𝛿∗(1−𝜅)

≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( 12(𝑗+1)𝑛 )
𝛿∗(1−𝜅) ≤ 𝐶.

(92)

Let us now substitute this estimate (92) into the term 𝐽󸀠6; we
get the desired inequality

𝐽󸀠6 ≤ 𝐶 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ(
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜎 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩M1,𝜓
𝐿log𝐿(𝑤)

. (93)

This completes the proof of Theorem 16.

5. Partial Results on Two-Weight Problems

In the last section, we consider related problems about two-
weight, weak-type (𝑝, 𝑝) inequalities with 1 < 𝑝 < ∞. LetT
be the classical Calderón–Zygmund operator with standard
kernel; that is, T = 𝑇𝜃 when 𝜃(𝑡) = 𝑡𝛿 with 0 < 𝛿 ≤ 1.
It is well known that T is a bounded operator on 𝐿𝑝𝑤(R𝑛)
for all 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝, and, of course, T is a
bounded operator from 𝐿𝑝𝑤(R𝑛) into𝑊𝐿𝑝𝑤(R𝑛). In the two-
weight context, however, the 𝐴𝑝 condition is “not” sufficient
for the weak-type (𝑝, 𝑝) inequality for T. More precisely,
given a pair of weights (𝑢, V) and 𝑝, 1 < 𝑝 < ∞, the weak-
type inequality

𝑢 ({𝑥 ∈ R𝑛 : 󵄨󵄨󵄨󵄨T𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶𝜎𝑝 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥

(94)

does not hold if (𝑢, V) ∈ 𝐴𝑝: there exists a positive constant𝐶
such that, for every cube 𝑄 ⊂ R𝑛,
( 1|𝑄| ∫𝑄 𝑢 (𝑥) 𝑑𝑥)

1/𝑝 ( 1|𝑄| ∫𝑄 V (𝑥)−𝑝
󸀠/𝑝 𝑑𝑥)1/𝑝󸀠 ≤ 𝐶

< ∞;
(95)

one can see [17, 18] for some counterexamples. Here, all cubes
are assumed to have their sides parallel to the coordinate
axes; 𝑄(𝑥0, ℓ) will denote the cube centered at 𝑥0 and has
side length ℓ. In [17, 19], Cruz-Uribe and Pérez considered
the problem of finding sufficient conditions on a pair of
weights (𝑢, V) such that T satisfies the weak-type (𝑝, 𝑝)
inequality (94) (1 < 𝑝 < ∞). They showed in [19] that if

we strengthened the 𝐴𝑝 condition (95) by adding a “power
bump” to the left-hand term, then inequality (94) holds for
all 𝑓 ∈ 𝐿𝑝V(R𝑛). More specifically, if there exists a number𝑟 > 1 such that, for every cube 𝑄 in R𝑛,

( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)
1/(𝑟𝑝) ( 1|𝑄| ∫𝑄 V (𝑥)−𝑝

󸀠/𝑝 𝑑𝑥)1/𝑝󸀠

≤ 𝐶 < ∞,
(96)

then the classical Calderón–ZygmundoperatorT is bounded
from 𝐿𝑝V(R𝑛) into 𝑊𝐿𝑝𝑢(R𝑛). Moreover, in [17], the authors
improved this result by replacing the “power bump” in (96) by
a smaller “Orlicz bump.” To bemore precise, they introduced
the following𝐴𝑝-type condition in the scale of Orlicz spaces:
‖𝑢‖1/𝑝
𝐿(log𝐿)𝑝−1+𝛿 ,𝑄( 1|𝑄| ∫𝑄 V (𝑥)−𝑝

󸀠/𝑝 𝑑𝑥)1/𝑝󸀠 ≤ 𝐶 < ∞,
𝛿 > 0,

(97)

where ‖𝑢‖𝐿(log𝐿)𝑝−1+𝛿,𝑄 is the mean Luxemburg norm of 𝑢 on
cube 𝑄 with Young function A(𝑡) = 𝑡 ⋅ (1 + log+𝑡)𝑝−1+𝛿. It
was shown that inequality (94) still holds under the 𝐴𝑝-type
condition on (𝑢, V), and this result is sharp since it does not
hold in general when 𝛿 = 0.

On the other hand, the following Sharp function estimate
for 𝑇𝜃 was established in [8]: there exists some 𝛿, 0 < 𝛿 < 1,
and a positive constant𝐶 = 𝐶𝛿 such that, for any𝑓 ∈ 𝐶∞0 (R𝑛)
and 𝑥 ∈ R𝑛,

[𝑀♯ (󵄨󵄨󵄨󵄨𝑇𝜃𝑓󵄨󵄨󵄨󵄨𝛿) (𝑥)]1/𝛿 ≤ 𝐶𝑀𝑓 (𝑥) , (98)

where 𝑀 is the standard Hardy–Littlewood maximal oper-
ator and 𝑀♯ is the well-known Sharp maximal operator
defined as

𝑀♯𝑓 (𝑥) fl sup
𝑥∈𝑄

1|𝑄| ∫𝑄 󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓𝑄󵄨󵄨󵄨󵄨 𝑑𝑦. (99)

Here, the supremum is taken over all the cubes containing 𝑥
and 𝑓𝑄 denotes the mean value of 𝑓 over 𝑄; namely, 𝑓𝑄 =(1/|𝑄|) ∫

𝑄
𝑓(𝑥)𝑑𝑥. It was pointed out in [19] (Remark 1.3)

that, by using this Sharp function estimate (98), we can also
show inequality (94) is true for more general operator 𝑇𝜃,
under condition (96) on (𝑢, V). Then, we obtain a sufficient
condition for 𝑇𝜃 to be weak (𝑝, 𝑝) with 1 < 𝑝 < ∞.

Theorem 31. Let 1 < 𝑝 < ∞. Given a pair of weights (𝑢, V),
suppose that, for some 𝑟 > 1 and for all cubes 𝑄,
( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)

1/(𝑟𝑝) ( 1|𝑄| ∫𝑄 V (𝑥)−𝑝
󸀠/𝑝 𝑑𝑥)1/𝑝󸀠

≤ 𝐶 < ∞.
(100)

Then, the 𝜃-type Calderón–Zygmund operator 𝑇𝜃 satisfies the
weak-type (𝑝, 𝑝) inequality:

𝑢 ({𝑥 ∈ R𝑛 : 󵄨󵄨󵄨󵄨𝑇𝜃𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶𝜎𝑝 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥,

(101)

where 𝐶 does not depend on 𝑓 and 𝜎 > 0.
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We want to extendTheorem 31 to theMorrey type spaces.
In order to do so, we need to define Morrey type spaces
associated with 𝜓 with two weights.

Definition 32. Let 1 ≤ 𝑝 < ∞, 0 ≤ 𝜅 < 1, and 𝜓 satisfy the
D𝜅 condition (26). For twoweights𝑢 and V, one can denote by
M𝑝,𝜓(V, 𝑢) the generalized weighted Morrey space, the space
of all locally integrable functions 𝑓 with finite norm.

M
𝑝,𝜓 (V, 𝑢) fl {𝑓 ∈ 𝐿𝑝loc (V) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) < ∞} , (102)

where the norm is given by
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)

fl sup
𝑄

( 1𝜓 (𝑢 (𝑄)) ∫𝑄 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥)
1/𝑝 . (103)

Note that

(i) if 𝑢 = V = 𝑤, thenM𝑝,𝜓(V, 𝑢) is the spaceM𝑝,𝜓(𝑤) in
Definition 8;

(ii) if𝜓(𝑥) = 𝑥𝜅 with 0 < 𝜅 < 1, thenM𝑝,𝜓(V, 𝑢) is just the
weighted Morrey space with two weights L𝑝,𝜅(V, 𝑢),
which was introduced by Komori and Shirai in [12].

We are now ready to prove the following result.

Theorem 33. Let 1 < 𝑝 < ∞ and 𝑢 ∈ 𝐴∞. Given a pair of
weights (𝑢, V), suppose that, for some 𝑟 > 1 and for all cubes𝑄,
( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)

1/(𝑟𝑝) ( 1|𝑄| ∫𝑄 V (𝑥)−𝑝
󸀠/𝑝 𝑑𝑥)1/𝑝󸀠

≤ 𝐶 < ∞.
(104)

If 𝜓 satisfies the D𝜅 condition (26) with 0 ≤ 𝜅 < 1, then
the 𝜃-type Calderón–Zygmund operator 𝑇𝜃 is bounded from
M𝑝,𝜓(V, 𝑢) into𝑊M𝑝,𝜓(𝑢).
Proof of Theorem 33. Let 𝑓 ∈ M𝑝,𝜓(V, 𝑢) with 1 < 𝑝 < ∞.
For any cube𝑄 = 𝑄(𝑥0, ℓ) ⊂ R𝑛 and 𝜆 > 0, we will denote by𝜆𝑄 the cube concentric with𝑄 whose each edge is 𝜆 times as
long; that is, 𝜆𝑄 = 𝑄(𝑥0, 𝜆ℓ). Let

𝑓 = 𝑓 ⋅ 𝜒2𝑄 + 𝑓 ⋅ 𝜒(2𝑄)𝑐 fl 𝑓1 + 𝑓2, (105)

where 𝜒2𝑄 denotes the characteristic function of 2𝑄 = 𝑄(𝑥0,2ℓ). Then, for any given 𝜎 > 0, we write
1𝜓 (𝑢 (𝑄))1/𝑝 𝜎 ⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})]1/𝑝
≤ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎
⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓1) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })]

1/𝑝

+ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎

⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })]
1/𝑝

fl 𝐾1 + 𝐾2.
(106)

UsingTheorem 31, theD𝜅 condition (26) of𝜓, and inequality
(12) (consider cube 𝑄 instead of ball 𝐵), we get
𝐾1 ≤ 𝐶 ⋅ 1𝜓 (𝑢 (𝑄))1/𝑝 (∫R𝑛 󵄨󵄨󵄨󵄨𝑓1 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥)

1/𝑝

= 𝐶 ⋅ 1𝜓 (𝑢 (𝑄))1/𝑝 (∫2𝑄 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ⋅ 𝜓 (𝑢 (2𝑄))1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ⋅ 𝑢 (2𝑄)𝜅/𝑝𝑢 (𝑄)𝜅/𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) .

(107)

As for the term𝐾2, using the samemethods and steps as those
we dealt with 𝐼2 inTheorem 10,we can also obtain that, for any𝑥 ∈ 𝑄,

󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦. (108)

This pointwise estimate together with Chebyshev’s inequality
implies

𝐾2 ≤ 2𝜓 (𝑢 (𝑄))1/𝑝 ⋅ (∫𝑄 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑢 (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦.

(109)

Moreover, an application of Hölder’s inequality gives that

𝐾2 ≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 V (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)
⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝

∞∑
𝑗=1

𝜓 (𝑢 (2𝑗+1𝑄))1/𝑝󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 .

(110)
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For any 𝑗 ∈ Z+, since 0 < 𝑢(𝑄) < 𝑢(2𝑗+1𝑄) < +∞ when 𝑢
is a weight function, then by theD𝜅 condition (26) of 𝜓 with0 ≤ 𝜅 < 1, we can see that

𝜓 (𝑢 (2𝑗+1𝑄))1/𝑝
𝜓 (𝑢 (𝑄))1/𝑝 ≤ 𝑢 (2𝑗+1𝑄)

𝜅/𝑝

𝑢 (𝑄)𝜅/𝑝 . (111)

In addition, we apply Hölder’s inequality with exponent 𝑟 to
get

𝑢 (2𝑗+1𝑄) = ∫
2𝑗+1𝑄
𝑢 (𝑦) 𝑑𝑦

≤ 󵄨󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨󵄨1/𝑟󸀠 (∫
2𝑗+1𝑄
𝑢 (𝑦)𝑟 𝑑𝑦)1/𝑟 .

(112)

Hence, in view of (111) and (112) derived above, we have

𝐾2 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

⋅ 𝑢 (2𝑗+1𝑄)
1/𝑝

󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

⋅ 󵄨󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨󵄨
1/(𝑟󸀠𝑝)

󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫
2𝑗+1𝑄
𝑢 (𝑦)𝑟 𝑑𝑦)1/(𝑟𝑝)

⋅ (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)
⋅ ∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝 .

(113)

The last inequality is obtained by condition (96) on (𝑢, V).
Furthermore, by our additional hypothesis on 𝑢 : 𝑢 ∈ 𝐴∞
and inequality (13) (consider cube𝑄 instead of ball 𝐵), we get
∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝 ≤ 𝐶

∞∑
𝑗=1

( |𝑄|󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨)
𝛿(1−𝜅)/𝑝

≤ 𝐶∞∑
𝑗=1

( 12(𝑗+1)𝑛 )
𝛿(1−𝜅)/𝑝 ≤ 𝐶,

(114)

which implies our desired estimate 𝐾2 ≤ 𝐶‖𝑓‖M𝑝,𝜓(V,𝑢).
Summing up the estimates above for 𝐾1 and 𝐾2 and then
taking the supremum over all cubes 𝑄 ⊂ R𝑛 and all 𝜎 > 0,
we finish the proof of Theorem 33.

Let 𝑀 denote the Hardy–Littlewood maximal operator
and𝑀♯ denote the Sharp maximal operator. For 𝛿 > 0, we
define

𝑀𝛿 (𝑓) fl [𝑀(󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝛿)]1/𝛿 ,
𝑀♯
𝛿
(𝑓) fl [𝑀♯ (󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝛿)]1/𝛿 .

(115)

The maximal function associated withA(𝑡) = 𝑡(1 + log+𝑡) is
defined as

𝑀𝐿log𝐿𝑓 (𝑥) fl sup
𝑥∈𝑄

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿log𝐿,𝑄 , (116)

where the supremum is taken over all the cubes containing𝑥. Let 𝑏 ∈ BMO(R𝑛) and [𝑏, 𝑇𝜃] be the commutator of the 𝜃-
type Calderón–Zygmund operator. In [8], it was proved that
if 𝜃 satisfies condition (8), then, for 0 < 𝛿 < 𝜀 < 1, there exists
a positive constant 𝐶 = 𝐶𝛿,𝜀 such that, for any 𝑓 ∈ 𝐶∞0 (R𝑛)
and 𝑥 ∈ R𝑛,

𝑀♯
𝛿
([𝑏, 𝑇𝜃] 𝑓) (𝑥)
≤ 𝐶 ‖𝑏‖∗ (𝑀𝜀 (𝑇𝜃𝑓) (𝑥) + 𝑀𝐿log𝐿𝑓 (𝑥)) . (117)

Using this Sharp function estimate (117) and following the
idea of the proof in [19], we can also establish the two-weight,
weak-type norm inequality for [𝑏, 𝑇𝜃].
Theorem 34. Let 1 < 𝑝 < ∞ and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Given a
pair of weights (𝑢, V), suppose that, for some 𝑟 > 1 and for all
cubes 𝑄,

( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)
1/(𝑟𝑝) 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,𝑄 ≤ 𝐶 < ∞, (118)

whereA(𝑡) = 𝑡𝑝󸀠(1 + log+𝑡)𝑝󸀠 is a Young function. If 𝜃 satisfies
(8), then the commutator operator [𝑏, 𝑇𝜃] satisfies the weak-
type (𝑝, 𝑝) inequality:

𝑢 ({𝑥 ∈ R𝑛 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] 𝑓 (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})
≤ 𝐶𝜎𝑝 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥,

(119)

where 𝐶 > 0 does not depend on 𝑓 and 𝜎 > 0.
We will extendTheorem 34 to the Morrey type spaces. In

order to do so, we need the following key lemma.

Lemma 35. Given three Young functions A, B, and C such
that, for all 𝑡 > 0,

A
−1 (𝑡) ⋅B−1 (𝑡) ≤ C−1 (𝑡) , (120)

whereA−1(𝑡) is the inverse function of A(𝑡), then one has the
following generalized Hölder’s inequality due to O’Neil [20]: for
any cube 𝑄 ⊂ R𝑛 and all functions 𝑓 and 𝑔,󵄩󵄩󵄩󵄩𝑓 ⋅ 𝑔󵄩󵄩󵄩󵄩C,𝑄 ≤ 2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A,𝑄 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩B,𝑄 . (121)

Theorem 36. Let 1 < 𝑝 < ∞, 𝑢 ∈ 𝐴∞, and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛).
Given a pair of weights (𝑢, V), suppose that, for some 𝑟 > 1 and
for all cubes 𝑄,

( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)
1/(𝑟𝑝) 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,𝑄 ≤ 𝐶 < ∞, (122)

whereA(𝑡) = 𝑡𝑝󸀠(1 + log+𝑡)𝑝󸀠 . If 𝜃 satisfies (8) and 𝜓 satisfies
the D𝜅 condition (26) with 0 ≤ 𝜅 < 1, then the commutator
operator [𝑏, 𝑇𝜃] is bounded fromM𝑝,𝜓(V, 𝑢) into𝑊M𝑝,𝜓(𝑢).
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Proof of Theorem 36. Let 𝑓 ∈ M𝑝,𝜓(V, 𝑢) with 1 < 𝑝 < ∞.
For an arbitrary cube 𝑄 = 𝑄(𝑥0, ℓ) in R𝑛, as before, we set

𝑓 = 𝑓1 + 𝑓2,
𝑓1 = 𝑓 ⋅ 𝜒2𝑄,
𝑓2 = 𝑓 ⋅ 𝜒(2𝑄)𝑐 .

(123)

Then, for any given 𝜎 > 0, we write
1𝜓 (𝑢 (𝑄))1/𝑝 𝜎

⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎})]1/𝑝
≤ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎
⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓1) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })]

1/𝑝

+ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎
⋅ [𝑢 ({𝑥 ∈ 𝑄 : 󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 > 𝜎2 })]

1/𝑝

fl 𝐾󸀠1
+ 𝐾󸀠2.

(124)

UsingTheorem 34, theD𝜅 condition (26) of𝜓, and inequality
(12) (consider cube 𝑄 instead of ball 𝐵), we get
𝐾󸀠1 ≤ 𝐶 ⋅ 1𝜓 (𝑢 (𝑄))1/𝑝 (∫R𝑛 󵄨󵄨󵄨󵄨𝑓1 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥)

1/𝑝

= 𝐶 ⋅ 1𝜓 (𝑢 (𝑄))1/𝑝 (∫2𝑄 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 V (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ⋅ 𝜓 (𝑢 (2𝑄))1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ⋅ 𝑢 (2𝑄)𝜅/𝑝𝑢 (𝑄)𝜅/𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) .

(125)

Next we estimate 𝐾󸀠2. For any 𝑥 ∈ 𝑄, from the definition of[𝑏, 𝑇𝜃], we can see that󵄨󵄨󵄨󵄨[𝑏, 𝑇𝜃] (𝑓2) (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝑄󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑇𝜃 (𝑓2) (𝑥)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝑄 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨

fl 𝜉 (𝑥) + 𝜂 (𝑥) .
(126)

Thus, we have

𝐾󸀠2 ≤ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎 ⋅ [𝑢 ({𝑥 ∈ 𝑄 : 𝜉 (𝑥) > 𝜎4 })]
1/𝑝

+ 1𝜓 (𝑢 (𝑄))1/𝑝 𝜎
⋅ [𝑢 ({𝑥 ∈ 𝑄 : 𝜂 (𝑥) > 𝜎4 })]

1/𝑝

fl 𝐾󸀠3 + 𝐾󸀠4.
(127)

For the term 𝐾󸀠3, it follows from the pointwise estimate (108)
mentioned above and Chebyshev’s inequality that

𝐾󸀠3 ≤ 4𝜓 (𝑢 (𝑄))1/𝑝 ⋅ (∫𝑄 󵄨󵄨󵄨󵄨𝜉 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑢 (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶𝜓 (𝑢 (𝑄))1/𝑝 ⋅ (∫𝑄 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝑄󵄨󵄨󵄨󵄨𝑝 𝑢 (𝑥) 𝑑𝑥)
1/𝑝

⋅ (∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦) ≤ 𝐶

⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦,

(128)

where in the last inequality we have used the fact that
Lemma 30(ii) still holds when 𝑢 is an 𝐴∞ weight with 𝐵
replaced by 𝑄. Repeating the arguments in the proof of
Theorem 33, we can show that 𝐾󸀠3 ≤ 𝐶‖𝑓‖M𝑝,𝜓(V,𝑢). As for the
term𝐾󸀠4, using the same methods and steps as those we dealt
with 𝐽2 in Theorem 12, we can show the following pointwise
estimate as well:

𝜂 (𝑥) = 󵄨󵄨󵄨󵄨𝑇𝜃 ([𝑏𝑄 − 𝑏] 𝑓2) (𝑥)󵄨󵄨󵄨󵄨
≤ 𝐶∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝑄󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦. (129)

This together with Chebyshev’s inequality yields

𝐾󸀠4 ≤ 4𝜓 (𝑢 (𝑄))1/𝑝 ⋅ (∫𝑄 󵄨󵄨󵄨󵄨𝜂 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑢 (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝 ⋅
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝑄󵄨󵄨󵄨󵄨

⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦
≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
⋅ ∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝑄󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

+ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
⋅ ∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑏2𝑗+1𝑄 − 𝑏𝑄󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

fl 𝐾󸀠5 + 𝐾󸀠6.

(130)
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An application of Hölder’s inequality yields that

𝐾󸀠5 ≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝 ⋅
∞∑
𝑗=1

1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨
⋅ (∫
2𝑗+1𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 V (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏2𝑗+1𝑄󵄨󵄨󵄨󵄨𝑝󸀠 V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝
󸀠

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
⋅ ∞∑
𝑗=1

𝜓 (𝑢 (2𝑗+1𝑄))1/𝑝󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨󵄨1/𝑝󸀠

⋅ 󵄩󵄩󵄩󵄩󵄩(𝑏 − 𝑏2𝑗+1𝑄) ⋅ V−1/𝑝󵄩󵄩󵄩󵄩󵄩C,2𝑗+1𝑄 ,

(131)

where C(𝑡) = 𝑡𝑝󸀠 is a Young function. For 1 < 𝑝 < ∞, we
know the inverse function of C(𝑡) is C−1(𝑡) = 𝑡1/𝑝󸀠 . Observe
that

C
−1 (𝑡) = 𝑡1/𝑝󸀠 = 𝑡1/𝑝󸀠1 + log+𝑡 (1 + log+𝑡)

= A−1 (𝑡) ⋅B−1 (𝑡) ,
(132)

where

A (𝑡) ≈ 𝑡𝑝󸀠 (1 + log+𝑡)𝑝󸀠 ,
B (𝑡) ≈ exp (𝑡) − 1. (133)

Thus, by Lemma 35 and estimate (88) (when 𝑤 ≡ 1), we have
󵄩󵄩󵄩󵄩󵄩(𝑏 − 𝑏2𝑗+1𝑄) ⋅ V−1/𝑝󵄩󵄩󵄩󵄩󵄩C,2𝑗+1𝑄
≤ 𝐶 󵄩󵄩󵄩󵄩𝑏 − 𝑏2𝑗+1𝑄󵄩󵄩󵄩󵄩B,2𝑗+1𝑄 ⋅ 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,2𝑗+1𝑄
≤ 𝐶 ‖𝑏‖∗ ⋅ 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,2𝑗+1𝑄 .

(134)

Moreover, in view of (111) and (112), we can deduce that

𝐾󸀠5 ≤ 𝐶 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

𝑢 (2𝑗+1𝑄)𝜅/𝑝
𝑢 (𝑄)𝜅/𝑝

⋅ 𝑢 (𝑄)1/𝑝󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨1/𝑝 ⋅
󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,2𝑗+1𝑄 ≤ 𝐶 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)

⋅ ∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

⋅ ( 1󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 ∫2𝑗+1𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)
1/(𝑟𝑝) ⋅ 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,2𝑗+1𝑄

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

𝑢 (𝑄)(1−𝜅)/𝑝
𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) .
(135)

The last inequality is obtained by condition (122) on (𝑢, V)
and estimate (114). It remains to estimate the last term 𝐾󸀠6.
Applying Lemma 30(i) (use 𝑄 instead of 𝐵) and Hölder’s
inequality, we get

𝐾󸀠6 ≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
∞∑
𝑗=1

(𝑗 + 1) ‖𝑏‖∗󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨
⋅ ∫
2𝑗+1𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 ≤ 𝐶 ⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝
⋅ ∞∑
𝑗=1

(𝑗 + 1) ‖𝑏‖∗󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫2𝑗+1𝑄
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑝 V (𝑦) 𝑑𝑦)1/𝑝

⋅ (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)
⋅ 𝑢 (𝑄)1/𝑝𝜓 (𝑢 (𝑄))1/𝑝

∞∑
𝑗=1

(𝑗 + 1)

⋅ 𝜓 (𝑢 (2𝑗+1𝑄))
1/𝑝

󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 .

(136)

Let C(𝑡) and A(𝑡) be the same as before. Obviously, C(𝑡) ≤
A(𝑡) for all 𝑡 > 0; then, for any cube 𝑄 ⊂ R𝑛, we have‖𝑓‖C,𝑄 ≤ ‖𝑓‖A,𝑄 by definition, which implies that condition
(122) is stronger than condition (96). This fact together with
(111) and (112) yields

𝐾󸀠6 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑢 (𝑄)(1−𝜅)/𝑝𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

⋅ 𝑢 (2𝑗+1𝑄)
1/𝑝

󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢) ∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑢 (𝑄)(1−𝜅)/𝑝𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

⋅ 󵄨󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨󵄨
1/(𝑟󸀠𝑝)

󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨 (∫
2𝑗+1𝑄
𝑢 (𝑦)𝑟 𝑑𝑦)1/(𝑟𝑝)

⋅ (∫
2𝑗+1𝑄

V (𝑦)−𝑝󸀠/𝑝 𝑑𝑦)1/𝑝󸀠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩M𝑝,𝜓(V,𝑢)
⋅ ∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑢 (𝑄)(1−𝜅)/𝑝𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝 .

(137)
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Moreover, by our additional hypothesis on 𝑢 : 𝑢 ∈ 𝐴∞ and
inequality (13) (use 𝑄 instead of 𝐵), we finally obtain

∞∑
𝑗=1

(𝑗 + 1) ⋅ 𝑢 (𝑄)(1−𝜅)/𝑝𝑢 (2𝑗+1𝑄)(1−𝜅)/𝑝

≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( |𝑄|󵄨󵄨󵄨󵄨2𝑗+1𝑄󵄨󵄨󵄨󵄨)
𝛿(1−𝜅)/𝑝

≤ 𝐶∞∑
𝑗=1

(𝑗 + 1) ⋅ ( 12(𝑗+1)𝑛 )
𝛿(1−𝜅)/𝑝 ≤ 𝐶,

(138)

which in turn gives that 𝐾󸀠6 ≤ 𝐶‖𝑓‖M𝑝,𝜓(V,𝑢). Summing up all
the estimates above and then taking the supremum over all
cubes 𝑄 ⊂ R𝑛 and all 𝜎 > 0, we therefore conclude the proof
of Theorem 36.

In particular, if we take𝜓(𝑥) = 𝑥𝜅 with 0 < 𝜅 < 1, then we
immediately get the following two-weight, weak-type (𝑝, 𝑝)
inequalities for 𝑇𝜃 and [𝑏, 𝑇𝜃] in the weighted Morrey spaces.

Corollary 37. Let 1 < 𝑝 < ∞, 0 < 𝜅 < 1, and 𝑢 ∈ 𝐴∞. Given
a pair of weights (𝑢, V), suppose that, for some 𝑟 > 1 and for all
cubes 𝑄,
( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)

1/(𝑟𝑝) ( 1|𝑄| ∫𝑄 V (𝑥)−𝑝
󸀠/𝑝 𝑑𝑥)1/𝑝󸀠

≤ 𝐶 < ∞.
(139)

Then, the 𝜃-type Calderón–Zygmund operator 𝑇𝜃 is bounded
fromL𝑝,𝜅(V, 𝑢) into𝑊L𝑝,𝜅(𝑢).
Corollary 38. Let 1 < 𝑝 < ∞, 0 < 𝜅 < 1, 𝑢 ∈ 𝐴∞, and𝑏 ∈ 𝐵𝑀𝑂(R𝑛). Given a pair of weights (𝑢, V), suppose that, for
some 𝑟 > 1 and for all cubes 𝑄,

( 1|𝑄| ∫𝑄 𝑢 (𝑥)𝑟 𝑑𝑥)
1/(𝑟𝑝) 󵄩󵄩󵄩󵄩󵄩V−1/𝑝󵄩󵄩󵄩󵄩󵄩A,𝑄 ≤ 𝐶 < ∞, (140)

where A(𝑡) = 𝑡𝑝󸀠(1 + log+𝑡)𝑝󸀠 . If 𝜃 satisfies (8), then the
commutator operator [𝑏, 𝑇𝜃] is bounded from L𝑝,𝜅(V, 𝑢) into𝑊L𝑝,𝜅(𝑢).
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