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The paper is devoted to the study of Hadamardmultipliers of functions from the abstract Hardy classes generated by rearrangement
invariant spaces. In particular the relation between the existence of such multiplier and the boundedness of the appropriate
convolution operator on spaces of measurable functions is presented. As an application, the description of Hadamard multipliers
into𝐻∞ is given and the Abel type theorem for mentioned Hardy spaces is proved.

1. Introduction

In this paper we analyze so-called Hadamard multipliers
between Hardy spaces of analytic functions. Our approach
is rather general since we study Hardy spaces generated by
rearrangement invariant spaces.The source of inspiration for
the current research lies in the paper of Caveny [1] and a
recent article of Blasco and Pavlović [2], where theHadamard
multipliers of classical Hardy spaces (see [1]) as well as related
notions in more general settings (see [2]) were surveyed.

Let𝐻(D) denote the space of analytic function on the unit
disc D fl {𝑧 ∈ C : |𝑧| < 1}. Given spaces 𝐴, 𝐵 of sequences
modelled on N

0
fl N ∪ {0}, an element {𝜆

𝑛
}
𝑛∈N0

⊂ C is a
multiplier of 𝐴 and 𝐵 if {𝜆

𝑛
𝜉
𝑛
}
𝑛∈N0

∈ 𝐵 for all {𝜉
𝑛
}
𝑛∈N0

∈ 𝐴.
We studymultipliers between spaces of analytic functions𝐸 =
𝐸(D) ⊂ 𝐻(D), identifying with a space 𝐸 a space 𝐸̂ consisting
of Taylor’s coefficients of functions from 𝐸; that is,

𝐸̂ = {{𝑎
𝑛
} :

∞

∑

𝑛=0

𝑎
𝑛
𝑧
𝑛

∈ 𝐸} . (1)

It should be pointed out that in general the description of 𝐸̂ is
a considerable challenging quest even for the classical spaces
𝐸, for example, Hardy spaces 𝐻𝑝 (see [3]). While it is clear
that̂𝐻2 = ℓ2, the characterization of̂𝐻𝑝 is unknown if 𝑝 ̸= 2,
𝑝 < ∞. As a matter of fact, there exists a nice description
of𝐻∞ in terms of convolution operator; see Schur’s theorem
in [4]. Note also the famous Hausdorff-Young inequality,
which adjudicates that ̂𝐻𝑝 ⊂ ℓ𝑝

󸀠

whenever 𝑝 ∈ [1, 2] and

1/𝑝 + 1/𝑝
󸀠

= 1. We also recall (after [5]) that when restricted
to the nonnegative sequences {𝑎

𝑛
} satisfying 𝑎

𝑛
↓ 0, then

{{𝑎
𝑛
} :

∞

∑

𝑛=0

𝑎
𝑛
𝑧
𝑛

∈ 𝐻
𝑝

}

= {{𝑎
𝑛
} :

∞

∑

𝑛=0

(𝑛 + 1)
𝑝−2

𝑎
𝑝

𝑛
< ∞} , 𝑝 ∈ (1,∞) .

(2)

Multipliers when considered between spaces of ana-
lytic functions are often called Hadamard multipliers (or
Hadamard products); that is, given spaces of analytic func-
tions 𝐸 and 𝐹 on D the Hadamard multipliers of 𝐸 and 𝐹 are
defined as

𝐸 ⊙ 𝐹 = {

∞

∑

𝑛=0

𝑎
𝑛
𝑏
𝑛
𝑢
𝑛
: {𝑎
𝑛
} ∈ 𝐸̂, {𝑏

𝑛
} ∈ 𝐹̂} , (3)

where 𝑢
𝑛
: D → C is given by 𝑢

𝑛
(𝑧) = 𝑧

𝑛, 𝑧 ∈ D,
𝑛 ∈ N

0
. We refer the reader to [2, 6] for more information

and background on this topic.
Motivated by thementioned paper of Caveny [1] we study

the Hadamard product between abstract Hardy spaces. Note
that in [1] Hadamard multipliers were considered within the
settings ofHardy spaces𝐻𝑝,𝑝 ∈ [1,∞].We point out that the
study of Hadamard product is a well established issue in the
theory of spaces of analytic functions (see, e.g., [6]); however,
most studies have concentrated on the classical case of Hardy
spaces𝐻𝑝.The purpose of this paper is to extend the research
to more general case of Hardy spaces generated by r.i. spaces.
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2. Rearrangement Invariant and Abstract
Hardy Spaces

Let (Ω, Σ, 𝜇) be a complete 𝜎-finite measure space and
let 𝐿0(Ω) fl 𝐿

0

(Ω, Σ, 𝜇) denote the space of real valued
measurable functions onΩwith the topology of convergence
in measure on 𝜇-finite sets. The order |𝑥| ⩽ |𝑦| means that
|𝑥(𝜔)| ⩽ |𝑦(𝜔)| for 𝜇-almost all 𝜔 ∈ Ω. If a real Banach space
𝑋 ⊂ 𝐿

0

(Ω) is such that there exists 𝑢 ∈ 𝑋with 𝑢 > 0 𝜇-a.e. on
Ω and |𝑥| ⩽ |𝑦|with 𝑥 ∈ 𝐿0(Ω) and 𝑦 ∈ 𝑋 implies 𝑥 ∈ 𝑋with
‖𝑥‖
𝑋
⩽ ‖𝑦‖

𝑋
, then 𝑋 is said to be a Banach lattice (on Ω or

on (Ω, 𝜇)). If in addition,𝑋 contains, along with a function𝑓,
every function 𝑔 equimeasurable with 𝑓, ‖𝑓‖

𝑋
= ‖𝑔‖

𝑋
, then

we say that𝑋 is rearrangement invariant (r.i. space for short).
Throughout the paperwewill consider complex r.i. spaces.

The term complex r.i. space refers to the complexification of
a real r.i. space; that is, if 𝑋 denotes the (real) r.i. space, the
complexification𝑋(C) of𝑋 is the Banach space of all complex
valued measurable functions 𝑥 on Ω such that the element
|𝑥| defined by |𝑥|(𝜔) = |𝑥(𝜔)| for 𝜔 ∈ Ω is in 𝑋 and ‖𝑥‖ =
‖|𝑥|‖
𝑋
. For the simplicity of presentation, we will often write

r.i. space instead of a complex r.i. space and avoid the use of
symbol𝑋(C). An (real) r.i. function space𝑋 on (Ω, 𝜇) is said
to be order continuous if every nonnegative nonincreasing
sequence in𝑋 which converges a.e. to 0 converges to 0 in the
norm topology of𝑋. If𝑋 is an order continuous r.i. space on
(Ω, Σ, 𝜇), then the dual space𝑋∗ can be identified in a natural
waywith theKöthe dual space (𝑋󸀠, ‖⋅‖

𝑋
󸀠) of all𝑥 ∈ 𝐿0(Ω) such

that 𝑥𝑦 ∈ 𝐿1(Ω), for all 𝑦 ∈ 𝑋. An r.i. space 𝑋 is said to be
maximal (or to have the Fatou property), if, for any sequence
(𝑥
𝑛
) of nonnegative elements from 𝑋 such that 𝑥

𝑛
↑ 𝑥 for

𝑥 ∈ 𝐿
0

(Ω) and sup {‖𝑥
𝑛
‖
𝑋
: 𝑛 ∈ N} < ∞, one has 𝑥 ∈ 𝑋

and ‖𝑥
𝑛
‖
𝑋
→ ‖𝑥‖

𝑋
.

In the sequel we will use the well-known concept of Boyd
indices. Recall that for an r.i. space𝑋 on T we define dilation
operators 𝐷

𝑠
: 𝑋 → 𝑋, 𝑠 > 0, by 𝐷

𝑠
𝑓(𝑡) = 𝑓(𝑡/𝑠) for all

𝑡 ⩽ 2𝜋min{1, 𝑠} and 𝐷
𝑠
𝑓(𝑡) = 0 for 2𝜋𝑠 < 𝑡 ⩽ 2𝜋. Boyd

indices 𝑝
𝑋
and 𝑞
𝑋
are then defined by

𝑝
𝑋
= lim
𝑠→∞

log 𝑠
log 󵄩󵄩󵄩󵄩𝐷𝑠

󵄩󵄩󵄩󵄩

,

𝑞
𝑋
= lim
𝑠→0
+

log 𝑠
log 󵄩󵄩󵄩󵄩𝐷𝑠

󵄩󵄩󵄩󵄩

.

(4)

It follows that𝑝
𝑋
, 𝑞
𝑋
∈ [1,∞] and𝑝

𝑋
⩽ 𝑞
𝑋
.Moreover 1/𝑝

𝑋
+

1/𝑝
𝑋
󸀠 = 1 and 1/𝑞

𝑋
+ 1/𝑞
𝑋
󸀠 = 1 (see [7, p. 131]).

Let 𝑋 be a complex r.i. space on T fl [0, 2𝜋). Denote by
𝐻𝑋 the space of all 𝑓 ∈ 𝐻(D) such that sup {‖𝑓

𝑟
(𝑒
𝑖⋅

)‖
𝑋
: 𝑟 ∈

[0, 1)} < ∞, where 𝑓
𝑟
: 𝜕D→ C is given by 𝑓

𝑟
(𝑒
𝑖𝜃

) = 𝑓(𝑟𝑒
𝑖𝜃

),
𝜃 ∈ T . The space 𝐻𝑋 becomes a Banach space if equipped
with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

fl sup {󵄩󵄩󵄩󵄩󵄩𝑓𝑟 (𝑒
𝑖⋅

)
󵄩󵄩󵄩󵄩󵄩𝑋
: 𝑟 ∈ [0, 1)} . (5)

Note that the spaces𝐻𝑋 are abstract variants of the classical
Hardy spaces 𝐻𝑝 on the disc, 𝑝 ∈ [1,∞] (see [3]), as well
as other important spaces of analytic functions like Hardy-
Orlicz, Hardy-Lorentz, and Hardy-Marcinkiewicz spaces;
see, for example, [8–10] for the recent studies on this topic.

The study of functions analytic on the disc is intimately
connected to the study of the boundary functions. Recall
that the radial limit 𝑓∗ of 𝑓 ∈ 𝐻(D) is given by 𝑓∗(𝑒𝑖𝜃) =
lim
𝑟→1
−𝑓
𝑟
(𝑒
𝑖𝜃

) provided that the limit exists for almost all 𝜃 ∈
T . By the lemma of Fatou it follows that if 𝑓 = ∑∞

𝑛=0
𝑓̂(𝑛)𝑢

𝑛
∈

𝐻𝑋, then𝑓∗ exists a.e. on T . Here and beneath, for a function
𝑓 ∈ 𝐻(D), we will write 𝑓̂(𝑛) for 𝑛th Taylor’s coefficient of 𝑓,
𝑛 ∈ N

0
. It is clear that the series ∑∞

𝑛=0
𝑓̂(𝑛)𝑢

𝑛
is convergent

uniformly on compact subsets of D to the function 𝑓. For an
r.i. space 𝑋 we use the symbol𝐻𝑋 to denote the subspace of
elements from𝑋 consisting of radial limits of𝐻𝑋 functions.
It was shown in [8, Proposition 2.2] that if𝑋 is a maximal r.i.
space on T then 𝐻𝑋 coincides with the space consisting of
functions 𝑓 ∈ 𝑋 such that the negative Fourier coefficients of
𝑓 vanish. The mapping 𝑓 󳨃→ 𝑓

∗ appeared to be an isometric
isomorphism from𝐻𝑋 into𝑋.

The key fact in [1] for the study of Hadamard product of
𝐻
𝑝 spaces was the so-called Riesz property. Let 𝑅 be a linear

projection given by

𝑅(

𝑛

∑

𝑘=−𝑛

𝑎
𝑘
𝑒
𝑘𝑖𝑡

) =

𝑛

∑

𝑘=0

𝑎
𝑘
𝑒
𝑘𝑖𝑡

, 𝑡 ∈ T , 𝑛 ∈ N
0
. (6)

It was Riesz who proved that 𝑅 extends to the bounded
projection on 𝐿𝑝(T) if only𝑝 ∈ (1,∞) (see, e.g., [7]). Let𝑋 be
an r.i. space on T . We say that 𝑋 has the Riesz property if, for
every𝑓 ∈ 𝑋with the Fourier coefficients {𝑓̂(𝑛)}, the function
∑
∞

𝑛=0
𝑓̂(𝑛)𝑢

𝑛
belongs to𝐻𝑋 and there exists a constant 𝐶 > 0

such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋
. (7)

It is easy to see that an r.i. space 𝑋 has the Riesz property
if its Boyd indices 𝑝

𝑋
, 𝑞
𝑋
satisfy 𝑝

𝑋
, 𝑞
𝑋
∈ (1,∞). In fact,

muchmore can be proved. In [11] it was shown that𝑋 has the
Riesz property if and only if 𝑝

𝑋
, 𝑞
𝑋
∈ (1,∞). In particular, it

follows that an r.i. space𝑋 has the Riesz property if and only
if𝑋󸀠 does.

3. Hadamard Multipliers

We study the Hadamard product of functions from Hardy
classes generated by r.i. spaces. Given functions 𝑓, 𝑔 ∈ 𝐻(D)
the Hadamard product of 𝑓 and 𝑔 is given by the formula

𝑓 ⊙ 𝑔 =

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) 𝑢
𝑛
. (8)

We note that by the Cauchy-Hadamard formula 𝑓, 𝑔 ∈ 𝐻(D)
implies that 𝑓 ⊙ 𝑔 ∈ 𝐻(D).

Let 𝐻𝑋 and 𝐻𝑌 be abstract Hardy spaces generated by
r.i. spaces 𝑋 and 𝑌, respectively. It is easy to verify that the
functional given by

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑋⊙𝐻𝑌

= sup {󵄩󵄩󵄩󵄩𝑓 ⊙ 𝑔
󵄩󵄩󵄩󵄩𝐻𝑌

:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 1} (9)

is a norm on 𝐻𝑋 ⊙ 𝐻𝑌 and we have a continuous inclusion
𝐻𝑋 ⊙𝐻𝑌 󳨅→ 𝐻(D). Combining this with the Closed Graph
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Theorem easily implies that 𝐻𝑋 ⊙ 𝐻𝑌 is a Banach space
equipped with the norm given in (9).

Before we state and prove a technical lemma which will
be useful in the sequel we recall that the space 𝐿1 = 𝐿1(𝜕D) is
a Banach algebra under the convolution ∗ given by

(𝑓 ∗ 𝑔) (𝑒
𝑖𝜃

) =
1

2𝜋
∫

2𝜋

0

𝑓 (𝑒
𝑖𝑡

) 𝑔 (𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡,

𝑓, 𝑔 ∈ 𝐿
1

, 𝜃 ∈ T .

(10)

The function 𝑓 ∗ 𝑔 which is measurable by Fubini’s Theorem
belongs to 𝐿1(𝜕D) and satisfies

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝐿1
⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1
. (11)

Lemma 1. Let 𝑓, 𝑔 ∈ 𝐻(D) and let 𝑋 be an r.i. space on T .
Then the following hold:

(i) (𝑓 ⊙ 𝑔)
𝑟
= 𝑓
𝑟
∗ 𝑔
𝑟
for every 𝑟 ∈ [0, 1).

(ii) If 𝑓 ∈ 𝐻𝑋, then (𝑓⊙𝑔)
𝑟
= 𝑓
∗

∗𝑔
𝑟
for every 𝑟 ∈ [0, 1).

Proof. (i) Given any 𝑟 ∈ [0, 1) and 𝜃 ∈ T the series

∞

∑

𝑛=0

𝑔̂ (𝑘) 𝑟
𝑘

𝑒
𝑖𝑛(𝜃−𝑡)

, 𝑡 ∈ T (12)

converges uniformly on T . Thus the sequence

{

∞

∑

𝑛=0

𝑔̂ (𝑘) 𝑟
𝑘

𝑒
𝑖𝑛(𝜃−𝑡)

}

𝑛∈N0

(13)

is bounded on T . Since 𝑓
𝑟
is a bounded function on 𝜕D we

have

(𝑓
𝑟
∗ 𝑔
𝑟
) (𝑒
𝑖𝜃

)

=
1

2𝜋
∫

2𝜋

0

𝑓 (𝑟𝑒
𝑖𝑡

)(

∞

∑

𝑛=0

𝑔̂ (𝑛) 𝑟
𝑛

𝑒
𝑖𝑛(𝜃−𝑡)

)𝑑𝑡

=

∞

∑

𝑛=0

𝑔̂ (𝑛) 𝑟
𝑛

𝑒
𝑖𝑛𝜃

(∫

2𝜋

0

𝑓 (𝑟𝑒
𝑖𝑡

) 𝑒
−𝑖𝑛𝑡

𝑑𝑡)

=

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) (𝑟𝑒
𝑖𝜃

)
𝑛

= (𝑓 ⊙ 𝑔) (𝑟𝑒
𝑖𝜃

) .

(14)

(ii) Let 𝑓 ∈ 𝐻𝑋. From [9, Proposition 2.2] it follows (by
𝑋
󸀠󸀠

⊂ 𝐿
1

(T)) that 𝑓∗ ∈ 𝐿1(𝜕D) and Fourier coefficients of 𝑓∗
satisfy for 𝑛 < 0

̂
𝑓
∗

(𝑛) =
1

2𝜋
∫

2𝜋

0

𝑓
∗

(𝑒
𝑖𝑡

) 𝑒
−𝑖𝑛𝑡

𝑑𝑡 = 0 (15)

and for 𝑛 ∈ N
0

̂
𝑓
∗

(𝑛) = 𝑓̂ (𝑛) . (16)

Combining the above proof of (i) with the Lebesgue Domi-
nationTheorem yields the second formulae.

In what follows 𝐴(D) denotes the disc algebra, that is,
the space of functions 𝑓 ∈ 𝐻(D) such that 𝑓 extends
continuously to the closure D of D.

Corollary 2. Let 𝑋, 𝑌, and 𝑍 be r.i. spaces on T . Then the
inclusion

𝐻𝑍 ⊂ 𝐻𝑋 ⊙𝐻𝑌 (17)

holds if and only if the restriction of the convolution operator to
𝐴(D) × 𝐴(D) is bounded from 𝑋 × 𝑍 to 𝑌; that is, there exists
𝐶 > 0 such that ‖𝑓 ∗ 𝑔‖

𝑌
⩽ 𝐶‖𝑓‖

𝑋
‖𝑔‖
𝑍
for all 𝑓, 𝑔 ∈ 𝐴(D).

Proof.

Sufficiency. By the Closed Graph Theorem we conclude that
there exists 𝐶 > 0 such that ‖𝑔‖

𝐻𝑋⊙𝐻𝑌
⩽ 𝐶‖𝑔‖

𝐻𝑍
for every

𝑔 ∈ 𝐻𝑍. This implies that
󵄩󵄩󵄩󵄩𝑓 ⊙ 𝑔

󵄩󵄩󵄩󵄩𝐻𝑌
⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑍

, 𝑓 ∈ 𝐻𝑋, 𝑔 ∈ 𝐻𝑍 (18)

and so, applying Lemma 1, we obtain the required statement
on boundedness of the restriction of the convolution operator
from𝑋 × 𝑍 to 𝑌.

Necessity. Fix 𝑔 ∈ 𝐻𝑍. Combining Lemma 1 with the
boundedness of the convolution operator yields that there
exists 𝐶 > 0 such that for all 𝑓 ∈ 𝐻𝑋 and all 𝑟 ∈ [0, 1) we
have

󵄩󵄩󵄩󵄩(𝑓 ⊙ 𝑔)𝑟

󵄩󵄩󵄩󵄩𝑌
=
󵄩󵄩󵄩󵄩𝑓𝑟 ∗ 𝑔𝑟

󵄩󵄩󵄩󵄩𝑌
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓𝑟
󵄩󵄩󵄩󵄩𝑋

󵄩󵄩󵄩󵄩𝑔𝑟
󵄩󵄩󵄩󵄩𝑍

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑍

.

(19)

Hence
󵄩󵄩󵄩󵄩𝑓 ⊙ 𝑔

󵄩󵄩󵄩󵄩𝐻𝑌
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑍 (20)

and so the continuous inclusion 𝐻𝑍 󳨅→ 𝐻𝑋 ⊙ 𝐻𝑌 follows.

Here comes the main theorem of this section.

Theorem 3. Let 𝑋, 𝑌, and 𝑍 be maximal r.i. spaces on T .
Assume that𝑋 or 𝑌 is separable. Then the inclusion

𝐻𝑍 ⊂ 𝐻𝑋 ⊙𝐻𝑌 (21)

holds if and only if the convolution operator is bounded from
𝐻𝑋 ×𝐻𝑌 to 𝑍.

Proof. For any 𝑓 ∈ 𝐻𝑋 and 𝑔 ∈ 𝐻𝑋 ⊙𝐻𝑌 we have
󵄩󵄩󵄩󵄩(𝑓 ⊙ 𝑔)𝑟

󵄩󵄩󵄩󵄩𝑌
⩽
󵄩󵄩󵄩󵄩𝑓 ⊙ 𝑔

󵄩󵄩󵄩󵄩𝐻𝑌
⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑋⊙𝐻𝑌

,

𝑟 ∈ [0, 1) .

(22)

Assume that 𝐻𝑍 ⊂ 𝐻𝑋 ⊙ 𝐻𝑌. Then the Closed Graph
Theorem implies that there exists 𝐶 such that ‖𝑔‖

𝐻𝑋⊙𝐻𝑌
⩽

𝐶‖𝑔‖
𝐻𝑍

for every𝑔 ∈ 𝐻𝑍. Combining the abovewe conclude
that for all 𝑓 ∈ 𝐻𝑋 and 𝑔 ∈ 𝐻𝑍

󵄩󵄩󵄩󵄩(𝑓 ⊙ 𝑔)𝑟

󵄩󵄩󵄩󵄩𝑌
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑍

, 𝑟 ∈ [0, 1) . (23)
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Since ‖𝑓‖
𝐻𝑋

= ‖𝑓‖
𝐻𝑋

and ‖𝑔‖
𝐻𝑍

= ‖𝑔‖̃
𝐻𝑍

by Lemma 1(ii)
we obtain

󵄩󵄩󵄩󵄩𝑓
∗

∗ 𝑔
𝑟

󵄩󵄩󵄩󵄩𝑌
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑍

, 𝑟 ∈ [0, 1) . (24)

We will use the Mean Convergence Theorem from [9,
Theorem 3.2] from which it follows (note that 𝑍 is maximal,
by assumption) that for every 𝑔 ∈ 𝐻𝑍

lim
𝑟→1
−

󵄩󵄩󵄩󵄩𝑔𝑟 − 𝑔
∗󵄩󵄩󵄩󵄩𝑍

= 0. (25)

Take any sequence (𝑟
𝑛
) ⊂ [0, 1) such that 𝑟

𝑛
→ 1. Then (25)

implies that there exist 𝐺 ∈ 𝑍 and a subsequence (𝑟
𝑘𝑛
) of (𝑟

𝑛
)

such that

𝑔
𝑟𝑘𝑛

󳨀→ 𝑔
∗ a.e. on T , (26)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔
𝑟𝑘𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
⩽ 𝐺 a.e. on T . (27)

Now observe that for almost all 𝜃, 𝑡 ∈ T

𝑓
∗

(𝑒
𝑖𝑡

) 𝑔
𝑟𝑘𝑛

(𝑒
𝑖(𝜃−𝑡)

) 󳨀→ 𝑓
∗

(𝑒
𝑖𝑡

) 𝑔
∗

(𝑒
𝑖(𝜃−𝑡)

) . (28)

Since 𝑓∗ ∈ 𝐿1(𝜕D) and 𝐺 ∈ 𝐿1(𝜕D) it follows that

1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝑓
∗

(𝑒
𝑖𝑡

)𝐺 (𝑒
𝑖(𝜃−𝑡)

)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < ∞ a.e. on T (29)

and so inequality (27) in combination with the Lebesgue
DominationTheorem yields

𝑓
∗

∗ 𝑔
𝑟𝑘𝑛

󳨀→ 𝑓
∗

∗ 𝑔
∗ a.e. on T . (30)

The Fatou property of 𝑌 and inequality (24) imply

󵄩󵄩󵄩󵄩𝑓
∗

∗ 𝑔
∗󵄩󵄩󵄩󵄩𝑌

⩽ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
∗

∗ 𝑔
𝑟𝑘𝑛

󵄩󵄩󵄩󵄩󵄩󵄩𝑌
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩𝑋

󵄩󵄩󵄩󵄩𝑔
∗󵄩󵄩󵄩󵄩𝑍

= 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑌

(31)

and this gives the assertion. The reverse implication follows
from Corollary 2.

The following result gives a description of the Hadamard
multipliers fromHardy spaces𝐻𝑋 into𝐻∞ under somemild
assumption on an r.i. space𝑋.

Theorem 4. Let𝑋 be a maximal r.i. space on T with the Boyd
indices satisfying 𝑝

𝑋
, 𝑞
𝑋
∈ (1,∞). Then

𝐻𝑋 ⊙𝐻
∞

= 𝐻𝑋
󸀠

. (32)

Proof. Since the convolution operator is bounded from𝑋×𝑋󸀠
into 𝐿∞ with

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝐿∞

⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑋󸀠
, (𝑓, 𝑔) ∈ 𝑋 × 𝑋

󸀠 (33)

it follows from Corollary 2 that

𝐻𝑋
󸀠

󳨅→ 𝐻𝑋 ⊙𝐻
∞

. (34)

To prove the reverse continuous inclusion we observe that
our hypothesis on the Boyd indices implies that there exists a
Riesz projectionR : 𝑋 → 𝐻X (see [11]). Thus there exists a
constant 𝐶 = 𝐶

𝑋
⩾ 0 such that

‖R𝐹‖
𝐻𝑋
⩽ 𝐶 ‖𝐹‖

𝑋
, 𝐹 ∈ 𝑋. (35)

Let𝑔 ∈ 𝐻𝑋⊙𝐻∞.We claim that𝑔 ∈ 𝐻𝑋󸀠. To see this note
that𝑋󸀠 is a maximal r.i. space and in consequence translation
invariant. Since 𝐿∞(T) ⊂ 𝑋󸀠 it follows that for every 𝑟 ∈ [0, 1)
and 𝜃 ∈ T
󵄩󵄩󵄩󵄩𝑔𝑟
󵄩󵄩󵄩󵄩𝑋󸀠

= sup{ 1
2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝐹 (𝑒
𝑖𝑡

) 𝑔
𝑟
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

: ‖𝐹‖
𝑋
⩽ 1} .

(36)

Combining inequality (35) with R𝑋 = 𝐻𝑋 and ‖𝑓‖
𝐻𝑋

=

‖𝑓
∗

‖
𝑋
for all 𝑓 ∈ 𝐻𝑋, we conclude that for every 𝜃 ∈ T

󵄩󵄩󵄩󵄩𝑔𝑟
󵄩󵄩󵄩󵄩𝑋󸀠

⩽ 𝐶

⋅ sup{ 1
2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

(R𝐹) (𝑒
𝑖𝑡

) 𝑔
𝑟
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

: ‖R𝐹‖
𝑋

⩽ 1} = 𝐶

⋅ sup{ 1
2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝑓
∗

(𝑒
𝑖𝑡

) 𝑔
𝑟
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 1} = 𝐶 sup {󵄨󵄨󵄨󵄨󵄨(𝑓
∗

∗ 𝑔
𝑟
) (𝑒
𝑖𝜃

)
󵄨󵄨󵄨󵄨󵄨
:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 1} .

(37)

This implies by Lemma 1(ii) that
󵄩󵄩󵄩󵄩𝑔𝑟
󵄩󵄩󵄩󵄩𝑋󸀠

⩽ 𝐶 sup {󵄨󵄨󵄨󵄨󵄨(𝑓
∗

𝑔
𝑟
) (𝑒
𝑖𝜃

)
󵄨󵄨󵄨󵄨󵄨
:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 1, 𝑟 ∈ [0, 1)}

⩽ 𝐶 sup {󵄩󵄩󵄩󵄩𝑓 ⊙ 𝑔
󵄩󵄩󵄩󵄩𝐻∞

:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

⩽ 1} .

(38)

This proves the claim that 𝑔 ∈ 𝐻𝑋󸀠 and so

𝐻𝑋 ⊙𝐻
∞

󳨅→ 𝐻𝑋
󸀠 (39)

with continuous inclusion.

4. Applications

In the following we apply the former theorem to the study of
the Abel duals of Hardy spaces. Recall that the Abel dual of a
space𝑋 ⊂ 𝑋(D) consists of all 𝑔 ∈ 𝐻(D) such that the limit

lim
𝑟→1
−

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) 𝑟
𝑛 (40)

exists for all 𝑓 ∈ 𝑋 (see [12, p. 1223]). We prove the version of
the identification of the Abel dual of abstract Hardy spaces in
the following.
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Theorem 5. Let 𝑋 be an order continuous and maximal r.i.
space on T and assume that 𝑋 has the Riesz property. The
following statements are equivalent.

(i) If the function 𝑔 ∈ 𝐻(D) can be represented in the form

𝑔 =

∞

∑

𝑛=0

𝑔̂ (𝑛) 𝑢
𝑛

(41)

then 𝑓 ⊙ 𝑔 ∈ 𝐻∞ for every 𝑓 ∈ 𝐻𝑋.
(ii) For any sequence of complex numbers {𝜆

𝑛
}
𝑛∈N0

and any
𝑓 ∈ 𝐻𝑋, the following limit exists a.e. on T :

lim
𝑟→1
−

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝜆
𝑛
𝑟
𝑛

𝑒
𝑖𝑛𝜃

. (42)

Proof. (i)⇒(ii). FromTheorem 4 it follows that 𝑔 ∈ 𝐻𝑋󸀠 and
since𝑋󸀠 has the Riesz property, 𝑔 is a projection of some 𝐺 ∈
𝑋
󸀠. Observe that for 0 ⩽ 𝑟 < 𝜌 < 1 and 0 ⩽ 𝑠 < 𝜌 < 1 the

following equality holds:

∫

2𝜋

0

𝑓 (𝑡) [𝑔
𝑡
(𝑒
𝑖(𝜃−𝑡)

) − 𝑔
𝑠
(𝑒
𝑖(𝜃−𝑡)

)] 𝑑𝑡

= ∫

2𝜋

0

[𝑓
𝑟/𝜌
(𝑒
𝑖𝑡

) − 𝑓
𝑠/𝜌
(𝑒
𝑖𝑡

)] 𝑔
𝜌
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡.

(43)

Hölder inequality yields
󵄨󵄨󵄨󵄨󵄨
𝑓 ⊙ 𝑔 (𝑟𝑒

𝑖𝜃

) − 𝑓 ⊙ 𝑔 (𝑠𝑒
𝑖𝜃

)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝜋
∫

2𝜋

0

[𝑓
𝑟/𝜌
(𝑡) − 𝑓

𝑠/𝜌
(𝑡)] 𝑔
𝑠
(𝜃 − 𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑟/𝜌
− 𝑓
𝑠/𝜌

󵄩󵄩󵄩󵄩󵄩𝑋

󵄩󵄩󵄩󵄩𝑔𝑠
󵄩󵄩󵄩󵄩𝑋󸀠
.

(44)

Since 𝑋 is maximal, then from the Mean Convergence
Theorem (see [9, Theorem 3.2]) it follows that

lim
𝑟→1
−

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝜆
𝑛
𝑟
𝑛

𝑒
𝑖𝑛𝜃

= lim
𝑟→1
−

𝑓 ⊙ 𝑔 (𝑟𝑒
𝑖𝜃

) a.e. on T . (45)

(ii)⇒(i). Take 0 < 𝛿 < 1 and consider a function 𝑓
𝛿

fl
∑
∞

𝑛=0
𝛿
𝑛

𝑢
𝑛
. Since 𝐿∞(T) ⊂ 𝑋, 𝑓

𝛿
∈ 𝐻𝑋. From (ii) it follows

that

lim
𝑟→1
−

∞

∑

𝑛=0

𝛿
𝑛

𝜆
𝑛
𝑟
𝑛

𝑒
𝑖𝑛𝜃 (46)

exists for almost all 𝜃 ∈ T and hence
∞

∑

𝑛=0

𝜆
𝑛
𝑟
𝑛

𝑒
𝑖𝑛𝜃 (47)

converges for 𝑟 ∈ [0, 1). Thus

𝑔 fl
∞

∑

𝑛=0

𝜆
𝑛
𝑢
𝑛
∈ 𝐻 (D) . (48)

Take arbitrary 𝑓 ∈ 𝐻𝑋 and notice that by (ii)

lim
𝑟→1
−

1

2𝜋
∫

2𝜋

0

𝑓
∗

(𝑒
𝑖𝑡

) 𝑔
𝑟
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡

= lim
𝑟→1
−

(𝑓 ⊙ 𝑔) (𝑟𝑒
𝑖𝜃

)

(49)

exists a.e. on T . By the principle of uniform boundedness
applied to the family (𝑓 ∗ 𝑔

𝑟
)
𝑟∈[0,1)

of operators 𝑓 󳨃→ 𝑓 ∗ 𝑔
𝑟

on𝐻𝑋, it follows that there exists a constant 𝐶 > 0 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝜋
∫

2𝜋

0

𝑓 (𝑒
𝑖𝑡

) 𝑔
𝑟
(𝑒
𝑖(𝜃−𝑡)

) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑋

, 𝑓 ∈ 𝐻𝑋 (50)

and hence 𝑓 ⊙ 𝑔 ∈ 𝐻∞.

Further the description of the dual space of 𝐻𝑋 will be
needed. Recall that if𝑋 ismaximal r.i. spaces, then𝐻𝑋 = 𝐻𝑋
with equality of norms and thus 𝐻𝑋 is a closed subspace
of 𝑋. As in the proof for the case 𝑋 = 𝐿

𝑝, 𝑝 ∈ [1,∞),
to represent the dual of (𝐻𝑋)∗, it is sufficient to identify
the annihilator of 𝐻𝑋 in 𝑋∗. The proof of the forthcoming
lemma is standard and follows the steps of the proof of [3,
Theorem 7.1]; nonetheless we include it here for the sake
of completeness. The symbol 𝐻𝑋

0
stands for the set of all

𝑓 ∈ 𝐻𝑋 such that 𝑓(0) = 0.

Lemma 6. Let 𝑋 be an order continuous and maximal r.i.
space on T . Then the dual 𝑋∗ is isometrically isomorphic to
𝑋
󸀠

/
̃
𝐻𝑋
󸀠

0
. If in addition 𝑋 has the Riesz property, then, for all

𝜑 ∈ (𝐻𝑋)
∗, there exists a unique function 𝑔 ∈ ̃𝐻𝑋󸀠 such that

𝜑 (𝑓) =
1

2𝜋
∫

2𝜋

0

𝑓
∗

(𝑒
𝑖𝜃

) 𝑔∗ (𝑒𝑖𝜃) 𝑑𝜃, 𝑓 ∈ 𝐻𝑋. (51)

Proof. Assume that𝑋 is an order continuous andmaximal r.i.
space on T . Every linear and bounded functional 𝜑 on𝑋 can
be represented in the form

𝜑 (𝑓) =
1

2𝜋
∫

2𝜋

0

𝑓 (𝑒
𝑖𝜃

) 𝑔 (𝑒
𝑖𝜃

) 𝑑𝜃, (52)

for some 𝑔 ∈ 𝑋󸀠 such that ‖𝜑‖
𝑋
∗ = ‖𝑔‖

𝑋
󸀠 . We will describe

the annihilator of𝐻𝑋 in𝑋󸀠. Take 𝑔 ∈ 𝑋󸀠 such that

∫

2𝜋

0

𝑔 (𝑒
𝑖𝜃

) 𝑓
∗

(𝑒
𝑖𝜃

) 𝑑𝜃 = 0 ∀𝑓 ∈ 𝐻𝑋. (53)

Since polynomials are dense in 𝐻𝑋, it follows that 𝑔̂(𝑛) =
∫
T
𝑔(𝑒
𝑖𝜃

)𝑒
𝑖𝑛𝜃

𝑑𝜃 = 0 for all 𝑛 ∈ N
0
and then 𝑔 ∈ 𝐻𝑋󸀠 and

𝑔(0) = 0. Now, by the assumption𝑋󸀠 is maximal and thus we
have 𝑔 ∈ 𝐻𝑋󸀠

0
.

Conversely, assume that 𝑔 ∈ ̃
𝐻𝑋
󸀠

0
. Then by the Cauchy

formulae it follows that ∫
T
𝑓
∗

(𝑒
𝑖𝜃

)𝑔(𝑒
𝑖𝜃

)𝑑𝜃 = 0 for every 𝑓 ∈
𝐻𝑋. Hence𝐻𝑋

0
is the annihilator of𝐻𝑋 and it follows that

(𝐻𝑋)
∗

≅ 𝑋
󸀠

/
̃
𝐻𝑋
󸀠

0
isometrically.

Take 𝜑 ∈ (𝐻𝑋)∗ and observe that by the Hahn-Banach
theorem 𝜑 extends to a functional on 𝑋 and hence 𝜑 can be
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represented in form (52) by a function 𝑔 ∈ 𝑋󸀠.This extension
is not unique; however, it becomes so if we distinguish in each
coset a function 𝑔 for which 𝑔̂(𝑛) = 0, 𝑛 ∈ N. In other words

𝜑 (𝑓) = ∫

2𝜋

0

𝑓
∗

(𝑒
𝑖𝜃

) 𝑔 (𝑒𝑖𝜃) 𝑑𝜃, 𝑓 ∈ 𝐻𝑋. (54)

Note that 𝑋󸀠 has the Riesz property since 𝑋 does and in
consequence the analytic projection of 𝑔 ∈ 𝑋

󸀠 belongs to
𝐻𝑋
󸀠.

In the final theorem of the paper we give a new character-
ization of belonging to the class𝐻𝑋 in terms of convolution
with 𝐿1 function.

Theorem 7. Let 𝑋 be an order continuous and maximal r.i.
space on T and assume that𝑋 possesses the Riesz property. For

𝑓 =

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑢
𝑛
∈ 𝐻 (D) (55)

the following are equivalent:

(i) Function 𝑓 belongs to𝐻𝑋.

(ii) For any 𝑔 ∈ 𝐿1(T) with the Fourier series

∞

∑

𝑛=−∞

𝑔̂ (𝑛) 𝑒
𝑖𝑛𝜃

, 𝜃 ∈ T (56)

the series
∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) 𝑢
𝑛

(57)

represents a function from space𝐻𝑋.

Proof. (i)⇒(ii). Let us recall that if 𝑓 ∈ 𝐻𝑝, 𝑝 ∈ [1,∞), and
𝑔 ∈ 𝐿

1, then 𝑓∗ ∗ 𝑔 ∈ 𝐿𝑝 and by [13, Theorem 1.15] there
exists a constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑓
∗

∗ 𝑔
󵄩󵄩󵄩󵄩𝐿𝑝
⩽ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑝

. (58)

It is easy to see that ̂𝑓∗ ∗ 𝑔(𝑛) = 𝑓̂(𝑛)𝑔̂(𝑛) for 𝑛 ∈ N
0
. Since

𝑋 has the Riesz property then there exist 𝑝
𝑋
and 𝑞

𝑋
such

that 𝑝
𝑋
, 𝑞
𝑋
∈ (1,∞). Thus two real numbers 𝑝, 𝑞 satisfying

1 < 𝑝 < 𝑝
𝑋
⩽ 𝑞
𝑋
< 𝑞 < ∞ can be found. From Boyd’s

theorem (see [14]) it follows that 𝑋 is an interpolation space
between 𝐿𝑝 and 𝐿𝑞, 𝑝, 𝑞 ∈ (1,∞). Inequality (58) implies
that the operator 𝑇 : 𝐻𝑝 → 𝐿

𝑝 given by 𝑇𝑓 = 𝑓
∗

∗ 𝑔 is
bounded for any 𝑝 ∈ [1,∞). By the interpolation property
it follows that 𝑇 : 𝐻𝑋 → 𝑋 is well defined and bounded.
Thus for any 𝑓 ∈ 𝐻𝑋 and 𝑔 ∈ 𝐿1 the convolution 𝑓∗ ∗ 𝑔
produces a function belonging to𝑋. Since𝑋 is maximal and
thus𝑋󸀠󸀠 = 𝑋 it follows that

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) 𝑢
𝑛
∈ 𝐻𝑋. (59)

(ii)⇒(i). Observe that since
∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (𝑛) 𝑢
𝑛
∈ 𝐻𝑋 (60)

for all 𝑔 ∈ 𝐿1 with Fourier coefficients {𝑔̂(𝑛)}∞
𝑛=−∞

, then in
particular the series

∞

∑

𝑛=0

𝑓̂ (𝑛) 𝑔̂ (−𝑛) 𝑒
−𝑖𝑛𝜃 (61)

is a Fourier series of some 𝐹 ∈ 𝑋. Let us define an operator
𝑆 : 𝐿
1

/𝐻
1

0
→ 𝑋/𝑋

0
with the formula

𝑆 (𝑔 + 𝐻
1

0
) = 𝐹 + 𝐻𝑋

0
, 𝑔 ∈ 𝐿

1

. (62)

From the Closed Graph Theorem it follows that 𝑆 is a
bounded operator since 𝑓

𝑛
→ 𝑓 in 𝐿1/𝐻1

0
(resp., 𝑋/𝑋

0
)

implies

lim
𝑛→∞

𝑓
𝑛
(𝑘) = 𝑓̂ (𝑘) , 𝑘 ∈ N

0
. (63)

Notice that the adjoint 𝑆∗ maps (𝑋/𝐻𝑋
0
)
∗ into (𝐿1/𝐻1

0
)
∗

and, by Lemma 6, 𝑆∗ : ̃𝐻𝑋󸀠 → 𝐻
∞. From the definition

of 𝑆 it follows that

∫

2𝜋

0

ℎ
∗

(𝑒
𝑖𝜃

) 𝐹 (𝑒
𝑖𝜃

) 𝑑𝜃 = ∫

2𝜋

0

𝑆
∗

ℎ (𝑒
𝑖𝜃

) 𝑔 (𝑒
𝑖𝜃

) 𝑑𝜃,

ℎ ∈ 𝐻𝑋
󸀠

.

(64)

Now take 𝑔(𝑒𝑖𝜃) = 𝑒𝑖𝑘𝜃, 𝜃 ∈ T , 𝑘 ∈ N
0
. The corresponding 𝐹 is

given by𝐹(𝑒𝑖𝜃) = 𝑓̂(𝑘)𝑒−𝑖𝑘𝜃 and by formula (64) it follows that
̂
𝑆
∗

ℎ(𝑘) = 𝑓̂(𝑘)ℎ̂(𝑘). Thus 𝑆∗ is a Hadamard product of 𝑓 ∈
𝐻𝑋 and ℎ ∈ 𝐻𝑋󸀠 and fromTheorem 4 we get 𝑓 ∈ 𝐻𝑋.
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