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Applying the Faber polynomial expansions, we obtain the general coefficient bounds for the class of biunivalent functions with
bounded boundary rotations.

1. Introduction and Definitions

Let A be the class of functions 𝑓 which are analytic in the
open unit disk D = {𝑧 ∈ C : |𝑧| < 1} and normalized by the
conditions 𝑓(0) = 0 and 𝑓(0) = 1. The Koebe one-quarter
theorem [1] ensures that the image ofD under every univalent
function𝑓 ∈ A contains the disk with the center in the origin
and the radius of 1/4. Thus, every univalent function 𝑓 ∈ A
has an inverse𝑓−1 : 𝑓(D) → D, satisfying𝑓−1(𝑓(𝑧)) = 𝑧 (𝑧 ∈
D) and

𝑓 (𝑓−1 (𝑤)) = 𝑤 (|𝑤| < 𝑟
0
(𝑓) ; 𝑟

0
(𝑓) ≤

1

4
) . (1)

A function 𝑓 ∈ A is said to be biunivalent in D if both 𝑓
and 𝑓−1 are univalent inD, supposing thatD ⊆ 𝑓(D), and we
denote the class of biunivalent functions by 𝜎.

In [2], the author defined the following classesP
𝑚
(𝛽) as

follows.
LetP

𝑚
(𝛽) (𝑚 ≥ 2) denote the class of univalent analytic

functions ℎ that are represented by

∫
2𝜋

0



R𝑃 (𝑧) − 𝛼

1 − 𝛼


𝑑𝜃 ≤ 𝑚𝜋, (2)

where 𝑧 = 𝑟𝑒𝑖𝜃, 𝑘 ≥ 2, and 0 ≤ 𝛽 < 1, 𝑧 ∈ D.
Lewin [3] investigated the class 𝜎 of biunivalent functions

and obtained the bound for the second coefficient. Brannan
and Taha [4] considered certain subclasses of biunivalent
functions, similar to the familiar subclasses of univalent

functions consisting of strongly starlike, starlike, and convex
functions. They introduced the bistarlike functions and the
biconvex functions and obtained estimates on the initial
coefficients. Recently, Ali et al. [5], Srivastava et al. [6], Frasin
and Aouf [7], Goyal and Goswami [8], and many others
have introduced and investigated subclasses of biunivalent
functions and obtained bounds for the initial coefficients. In
the papers of Jahangiri et al. [9] and Hamidi et al. [10], the
authors use Faber polynomial to find upper bounds for 𝑎

𝑛
. In

this paper, we will try to find upper bound of |𝑎
𝑛
| for the class

BR𝑝
𝜎
(𝑚; 𝛽) which is defined below.

Definition 1. A function 𝑓 ∈ 𝜎 is said to be in the class
BR𝑝
𝜎
(𝑚; 𝛽) if the following conditions are satisfied:

(𝑓 (𝑧))
𝑝

∈ P
𝑚
(𝛽) , (𝑧 ∈ D) , (3)

(𝑔 (𝑤))
𝑝

∈ P
𝑚
(𝛽) , (𝑤 ∈ D) , (4)

where 𝑔 = 𝑓−1.

Remark 2. Taking 𝑚 = 2 in Definition 1, we have a class
B
𝜎
(𝛽) studied by Jahangiri et al. [9].

Using the Faber polynomial expansion [11] of functions
𝑓 ∈ 𝜎 the coefficients of its inverse map 𝑔 = 𝑓−1 may be
expressed as [12]

𝑔 (𝑤) = 𝑓
−1

(𝑤) = 𝑤 +
∞

∑
𝑛=2

1

𝑛
𝐾−𝑛
𝑛−1
(𝑎
2
, 𝑎
3
. . . , 𝑎
𝑛
) 𝑤𝑛, (5)
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where
𝐾−𝑛
𝑛−1

=
(−𝑛)!

(−2𝑛 + 1)! (𝑛 − 1)!
𝑎𝑛−1
2

+
(−𝑛)!

(2 (−𝑛 + 1))! (𝑛 − 3)!
𝑎𝑛−3
2
𝑎
3

+
(−𝑛)!

(−2𝑛 + 3)! (𝑛 − 4)!
𝑎𝑛−4
2
𝑎
4

+
(−𝑛)!

(2 (−𝑛 + 2))! (𝑛 − 5)!
𝑎𝑛−5
2
[𝑎
5
+ (−𝑛 + 2) 𝑎

2

3
]

+
(−𝑛)!

(−2𝑛 + 5)! (𝑛 − 6)!
𝑎𝑛−6
2
[𝑎
6
+ (−2𝑛 + 5) 𝑎

3
𝑎
4
]

+ ∑
𝑗≥7

𝑎
𝑛−𝑗

2
𝑉
𝑗
,

(6)

such that 𝑉
𝑗
with 7 ≤ 𝑗 ≤ 𝑛 is a homogeneous polynomial in

the variables 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑛
. In particular, the first three terms

of𝐾−𝑛
𝑛−1

are
1

2
𝐾−2
1
= −𝑎
2
,

1

3
𝐾−3
2
= 3𝑎2
2
− 𝑎
3
,

1

4
𝐾−4
3
= − (3𝑎3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
) .

(7)

In general, an expansion of 𝐾𝑝
𝑛
is as [13]

𝐾𝑝
𝑛
= 𝑝𝑎
𝑛
+

𝑝!

(𝑝 − 2)!2!
𝐷2
𝑛
+

𝑝!

(𝑝 − 3)!3!
𝐷3
𝑛
+ ⋅ ⋅ ⋅

+
𝑝!

(𝑝 − 𝑛)!𝑛!
𝐷𝑛
𝑛
,

(8)

where𝐷𝑝
𝑛
= 𝐷𝑝
𝑛
(𝑎
2
, 𝑎
3
, . . .) and by [13] or [14],

𝐷𝑙
𝑛
(𝑎
2
, 𝑎
3
, . . .) =

∞

∑
𝑙=1

𝑙! (𝑎
1
)
𝜇
1 ⋅ ⋅ ⋅ (𝑎

𝑛
)
𝜇
𝑛

𝜇
1
! ⋅ ⋅ ⋅ 𝜇
𝑛
!
, (9)

while 𝑎
1
= 1, and the sum is taken over all nonnegative

integers 𝜇
1
, . . . , 𝜇

𝑛
satisfying evidently𝐷𝑛

𝑛
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑎𝑛
1

[12].
The objective of the paper is to find estimates for the

coefficients 𝑎
𝑛
for functions in the subclass BR

𝜎
(𝑚; 𝛽).

These are obtained by employing the techniques used earlier
by Jahangiri et al. [9] (see also [10]).

2. Main Results

In order to prove our main result for the functions class 𝑓 ∈
BR𝑝
𝜎
(𝑚; 𝛽), we first use the following lemma.

Lemma 3. Let the function Φ given by Φ(𝑧) = ∑∞
𝑛=1
ℎ
𝑛
𝑧𝑛 be

convex in D. If Φ(𝑧) ∈ P
𝑚
(𝛽), then

ℎ𝑛
 ≤ 𝑚 (1 − 𝛽) (𝑛 ∈ N) . (10)

Proof. Proof of this lemma is straightforward, if we write

Φ (𝑧) = (1 − 𝛽) 𝑝 (𝑧) + 𝛽,

𝑝 (𝑧) = 1 +
∞

∑
𝑛=1

𝑝
𝑛
𝑧𝑛 ∈ P

𝑚

= 1 + (1 − 𝛽)
∞

∑
𝑛=1

𝑝
𝑛
𝑧𝑛.

(11)

This gives
ℎ𝑛
 = (1 − 𝛽) 𝑝𝑛. (12)

Using known result [15] for classP
𝑚
, we have our result.

Theorem 4. Let 𝑓(𝑧) = 𝑧 + ∑∞
𝑛=2
𝑎
𝑛
𝑧𝑛, 𝑧 ∈ D, be in the class

BR𝑝
𝜎
(𝑚; 𝛽) and 𝑎

𝑘
= 0 for 2 ≤ 𝑘 ≤ 𝑛 − 1; then

𝑎𝑛
 ≤
𝑚 (1 − 𝛽)

𝑛𝑝
; 𝑛 ≥ 3 (𝑛,𝑚, 𝑝 ∈ N, 0 ≤ 𝛽 < 1) . (13)

Proof. It is observed that if 𝜙(𝑧) = 1+∑∞
𝑛=1
𝜙
𝑛
𝑧𝑛 is an analytic

in D, then

(𝜙 (𝑧))
𝑝

= 1 +
∞

∑
𝑛=1

𝐾𝑝
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) 𝑧𝑛. (14)

If 𝑓 is of form (3), then

(𝑓 (𝑧))
𝑝

= 1 +
∞

∑
𝑛=1

𝐾𝑝
𝑛
(2𝑎
2
, 3𝑎
3
, . . . , (𝑛 + 1) 𝑎

𝑛+1
) 𝑧𝑛. (15)

Similarly, for 𝑔 = 𝑓−1 given by (5), we have

𝑔 (𝑤) = 1 +
∞

∑
𝑛=2

𝐾−𝑛
𝑛−1
(𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑛
) 𝑤𝑛−1

= 1 +
∞

∑
𝑛=1

𝑏
𝑛
𝑤𝑛.

(16)

Consequently, for (𝑔(𝑤))𝑝, we have

(𝑔 (𝑤))
𝑝

= 1 +
∞

∑
𝑛=1

𝐾𝑝
𝑛
(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) 𝑤𝑛. (17)

Now from Definition 1, there exist two functions 𝑝(𝑧) and
𝑞(𝑤) that belong toP(𝑚; 𝛽) such that

(𝑓 (𝑧))
𝑝

= 𝑝 (𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧2 + ⋅ ⋅ ⋅ , (18)

(𝑔 (𝑤))
𝑝

= 𝑞 (𝑤) = 1 + 𝑑
1
𝑤 + 𝑑

2
𝑤2 + ⋅ ⋅ ⋅ . (19)

Now comparing the coefficients of (15) and (18), the following
is given:

𝐾
𝑝

𝑛−1
(2𝑎
2
, 3𝑎
3
, . . . , 𝑛𝑎

𝑛
) = 𝑐
𝑛−1
. (20)
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Similarly, from (17) and (19),

𝐾
𝑝

𝑛−1
(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛−1
) = 𝑑
𝑛−1
. (21)

If 𝑎
𝑘
= 0 for 2 ≤ 𝑘 ≤ 𝑛−1, then we can combine (20) and (21)

and using relation (8), it yields

𝑛𝑝𝑎
𝑛
= 𝑐
𝑛−1
,

𝑝𝑏
𝑛−1
= −𝑛𝑝𝑎

𝑛
= 𝑑
𝑛−1
.

(22)

Now taking absolute value in both sides of above equations
and using Lemma 3, we get

𝑎𝑛
 ≤

𝑐𝑛−1


𝑛𝑝
=

𝑑𝑛−1


𝑛𝑝
=
𝑚 (1 − 𝛼)

𝑛𝑝
,

(𝑛,𝑚, 𝑝 ∈ N, 𝑛 ≥ 3) .

(23)

If we relax the condition 𝑎
𝑘
= 0 in Theorem 4, we have

the following theorem.

Theorem 5. Let 𝑓(𝑧) = 𝑧 + ∑∞
𝑛=2
𝑎
𝑛
𝑧𝑛, 𝑧 ∈ D, be in the class

BR𝑝
𝜎
(𝑚; 𝛽); then

(i) 𝑎2
 ≤
𝑚 (1 − 𝛽)

𝑝
;

(ii) 𝑎3 − 𝑎
2

2

 ≤
2𝑚 (1 − 𝛽)

3𝑝
;

(𝑛, 𝑝 ∈ N, 0 ≤ 𝛽 < 1) .

(24)

Proof. Since 𝑓 ∈BR𝑝
𝜎
(𝑚; 𝛽), from (3) and (4) we have

(𝑓 (𝑧))
𝑝

= 𝑝 (𝑧) ,

(𝑔 (𝑤))
𝑝

= 𝑞 (𝑤) ,

(25)

where 𝑝(𝑧) ∈ P
𝑚
(𝛽) and 𝑞(𝑤) ∈ P

𝑚
(𝛽). It is easy to see that

the functions 𝑝 and 𝑞 have the following Taylor expansions:

𝑝 (𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧2 + 𝑐

3
𝑧3 + ⋅ ⋅ ⋅ , 𝑧 ∈ D,

𝑞 (𝑤) = 1 + 𝑑
1
𝑤 + 𝑑

2
𝑤2 + 𝑑

3
𝑤3 + ⋅ ⋅ ⋅ , 𝑤 ∈ D.

(26)

Now, equating the coefficients in (25), we get

2𝑝𝑎
2
= 𝑐
1
,

−2𝑝𝑎
2
= 𝑑
1
;

(27)

taking absolute value in both equations and using Lemma 3,
|𝑎
2
| ≤ 𝑚(1 − 𝛽)/𝑛𝑝 is given.
Further, from (25) and (8), it follows that

2𝑝 (𝑝 − 1) 𝑎2
2
+ 3𝑝𝑎

3
= 𝑐
1
, (28)

𝑝 (𝑝 − 1)

2
𝑏2
1
+ 𝑝𝑏
2
= 2𝑝 (𝑝 + 2) 𝑎2

2
− 3𝑝𝑎

3
= 𝑑
2
. (29)

Subtracting (29) from (28), we get

6𝑝 (𝑎
3
− 𝑎2
2
) = 𝑐
2
− 𝑑
2
. (30)

Now taking absolute value in both sides, we will get desired
result.

Remark 6. If we put 𝑚 = 2 in Theorems 4 and 5, we get the
result obtained by Jahangiri et al. [9].
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