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We establish some coincidence point results for self-mappings satisfying rational type contractions in a generalized metric space.
Presented coincidence point theorems weaken and extend numerous existing theorems in the literature besides furnishing some
illustrative examples for our results. Finally, our results apply, in particular, to the study of solvability of functional equations arising
in dynamic programming.

1. Introduction

Banach contraction principle is one of the most important
aspects of fixed point theory as a source of the existence
and uniqueness of solutions of many problems in various
branches inside and outside mathematics (see, [1–3]). Some
generalizations of this theorem replace the contraction con-
dition by a weaker. For instance, in 1975, Dass and Gupta [4]
defined the following rational type contraction which is more
general than the contraction condition:

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) +
𝑏𝑑 (𝑦, 𝐴𝑦) (𝑑 (𝑥, 𝐴𝑥) + 1)

1 + 𝑑 (𝑥, 𝑦)

∀𝑥, 𝑦 ∈ 𝑋, 𝑎, 𝑏 ≥ 0, 𝑎 + 𝑏 < 1,

(1)

where 𝐴 : 𝑋 → 𝑋 is a mapping from a metric space 𝑋 into
itself.

Recently, in 2015, Almeida et al. [5] introduced an
extension of condition (1) of Dass and Gupta [4] as follows:

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) + 𝐶

⋅min {𝑑 (𝑥, 𝐴𝑥) , 𝑑 (𝑦, 𝐴𝑦) , 𝑑 (𝑥, 𝐴𝑦) , 𝑑 (𝑦, 𝐴𝑥)}

∀𝑥, 𝑦 ∈ 𝑋, 𝐶 ≥ 0,

(2)

where𝑀(𝑥, 𝑦) is defined by

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝐴𝑥) (𝑑 (𝑦, 𝐴𝑦) + 1)

1 + 𝑑 (𝑥, 𝑦)
,

𝑑 (𝑦, 𝐴𝑦) (𝑑 (𝑥, 𝐴𝑥) + 1)

1 + 𝑑 (𝑥, 𝑦)
}

(3)

and 𝜙 : [0,∞) → [0,∞) is a nondecreasing upper semi-
continuous function with 𝜙(𝑡) < 𝑡 for all 𝑡 > 0.

Another offshoot of generalizations of Banach’s theorem
is based on extending the axioms of metric spaces. It is worth
mentioning that the use of triangle inequality in a metric
space (𝑋, 𝑑) is of extreme importance, since it implies that 𝑑
is continuous; each open ball is an open set, a sequence may
converge to unique point, and every convergent sequence
is a Cauchy sequence and other things. In 2000, Branciari
[6] introduced a new concept of generalized metric space by
replacing the triangle inequality of a metric space by a so-
called rectangular inequality. Since then, various works have
dealt with fixed point results in such spaces (see, [7–16]). It
was not directly noted that such generalized metric spaces
(GMS, for short)may fail to satisfy the conditions which were
mentioned above in metric spaces.
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In this paper, we introduce coincidence point theorems
for two contraction self-mappings of rational type in general-
izedmetric spaces.Our results improve the results of Almeida
et al. [5]. These theoretical theorems are applied to the study
of the existence solutions to a system of functional equations
in dynamic programming.

2. Preliminaries

In this section, we present some preliminaries and notations
related to rational type contraction and GMS.

Definition 1 (Branciari [6]). Suppose that 𝑋 be a nonempty
set and 𝑑 : 𝑋 × 𝑋 → [0,∞) be a distance function such that
for all 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑤 ̸= 𝑥 ̸= 𝑦 ̸= 𝑧,

(i) 𝑑(𝑤, 𝑥) = 0 ⇔ 𝑤 = 𝑥,

(ii) 𝑑(𝑤, 𝑥) = 𝑑(𝑥, 𝑤),

(iii) 𝑑(𝑤, 𝑥) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑧, 𝑤) (quadrilateral
inequality).

Then we called (𝑋, 𝑑) GMS.

The following example shows that GMS are more general
than metric spaces.

Example 2. Suppose that𝑋 = {5/6, 2/3, 7/12, 8/15}.Define 𝑑
on𝑋 × 𝑋 as follows:

𝑑 (
5

6
,
2

3
) = 𝑑 (

7

12
,
8

15
) =

4

9
,

𝑑 (
5

6
,
8

12
) = 𝑑(

2

3
,
7

12
) =

1

3
,

𝑑 (
5

6
,
7

12
) = 𝑑(

2

3
,
8

12
) =

8

9
,

𝑑 (𝑥, 𝑥) = 0,

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) .

(4)

Then (𝑋, 𝑑) is a GMS but not metric space.

Definition 3 (see [6, 17]). Suppose that (𝑋, 𝑑) be a GMS and
let {𝑥
𝑛
} be a sequence in𝑋.Then

(i) {𝑥
𝑛
} converges to 𝑥 ∈ 𝑋 in GMS if lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥) =

0,

(ii) {𝑥
𝑛
} is a Cauchy in GMS if, ∀𝜖 > 0, ∃𝐾(𝜖) > 0 such

that 𝑑(𝑥
𝑟
, 𝑥
𝑠
) < 𝜖, ∀𝑟, 𝑠 > 𝐾(𝜖),

(iii) (𝑋, 𝑑) is called complete GMS if every Cauchy
sequence in𝑋 converges to a point in𝑋.

Remark 4 (Sarma et al. [18]). Definition 1 of GMS does not
ensure the following properties:

(a) 𝑑 is continuous on its domain.

(b) A GMS is Hausdorff.

(c) There is a unique limit of a convergence sequence.
(d) Any convergent sequence is a Cauchy sequence.

In 2009, Samet [19] and Sarma et al. [18] introduced the
following example which shows Remark 4.

Example 5 (see [18, 19]). Suppose that𝑋 = 𝐷∪𝐸, where𝐷 =

{0, 2} and 𝐸 = {1/𝑛 : 𝑛 = 1, 2, 3, . . .}. Define 𝑑 from 𝑋 × 𝑋

into [0, +∞) as follows:

𝑑 (𝑢, V) =
{

{

{

0, 𝑢 = V

1, 𝑢 ̸= V, {𝑢, V} ⊂ 𝐷 or {𝑢, V} ⊂ 𝐸,

(5)

and 𝑑(𝑢, V) = 𝑑(V, 𝑢) = 𝑢 if 𝑢 ∈ 𝐷 and V ∈ 𝐸.
Then (𝑋, 𝑑) is a complete GMS. Moreover, one can see

that

(1) 𝑑(1/𝑛, 0) = 0 and 𝑑(1/𝑛, 2) = 2 ⇒ {1/𝑛} is not
Cauchy sequence,

(2) there is no 𝑟 > 0 such that 𝐵
𝑟
(0) ∩ 𝐵

𝑟
(2) = 𝜙; hence,

GMS is not Hausdorff with the respective topology,
where 𝐵

𝑟
(𝑎) = {𝑦 ∈ 𝑋 : 𝑑(𝑎, 𝑦) < 𝑟, 𝑟 > 0},

(3) 𝑑(1/𝑛, 1/2) ̸= 𝑑(1/2, 0) ⇒ 𝑑 is not continuous.

Lemma 6 (see [16]). Any Cauchy sequence in GMS converges
to a unique point.

Definition 7 (see [17]). Let 𝐴, 𝐵 : 𝑋 → 𝑋 and 𝛽 : 𝑋 × 𝑋 →

[0,∞). The mapping 𝐴 is 𝐵 − 𝛽-admissible if, for all 𝑥, 𝑦 ∈ 𝑋

such that 𝛽(𝐵𝑥, 𝐵𝑦) ≥ 1, we have 𝛽(𝐴𝑥, 𝐴𝑦) ≥ 1. If 𝐵 is the
identity mapping, then 𝐴 is called 𝛽-admissible.

Definition 8 (see [17]). Let (𝑋,𝐷) be a GMS and 𝛽 : 𝑋×𝑋 →

[0,∞). 𝑋 is 𝛽-regular if, for each sequence {𝑥
𝑛
} in 𝑋 such

that 𝛽(𝑥
𝑛
, 𝑥
𝑛+1

) > 1 for all 𝑛 ∈ 𝑁 and 𝑥
𝑛
→ 𝑥, there exists a

subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that 𝛽(𝑥

𝑛𝑘
, 𝑥) > 1 ∀𝑘 ∈ 𝑁.

Definition 9 (see [17]). Suppose that 𝐴, 𝐵 : 𝑋 → 𝑋 be two
mappings from a nonempty set 𝑋 into itself. The mappings
𝐴, 𝐵 are said to be weakly compatible if 𝐴𝑡 = 𝐵𝑡, 𝑡 ∈ 𝑋

implies 𝐴𝐵𝑡 = 𝐵𝐴𝑡. A point 𝑧 ∈ 𝑋 is called point of
coincidence of 𝐴 and 𝐵 if there exists a point 𝑡 ∈ 𝑋 such that
𝑧 = 𝐴𝑡 = 𝐵𝑡.

3. Main Results

In this section we introduce some coincidence point results
for two rational contraction self-mappings on GMS.

Theorem 10. Let (𝑋, 𝑑) be a GMS and let 𝐴 and 𝐵 be self-
mappings on 𝑋 such that 𝐴𝑋 ⊂ 𝐵𝑋. Suppose that (𝐵𝑋, 𝑑) is a
complete GMS and the following condition holds:

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) + 𝐶min {𝑑 (𝐵𝑥, 𝐴𝑥) ,

𝑑 (𝐵𝑦, 𝐴𝑦) , 𝑑 (𝐵𝑥, 𝐴𝑦) , 𝑑 (𝐵𝑦, 𝐴𝑥)}

∀𝑥, 𝑦 ∈ 𝑋, 𝐶 ≥ 0,

(6)
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where𝑀(𝑥, 𝑦) is defined by

𝑀(𝑥, 𝑦) = max{𝑑 (𝐵𝑥, 𝐵𝑦) ,

𝑑 (𝐵𝑥, 𝐴𝑥) (𝑑 (𝐵𝑦, 𝐴𝑦) + 1)

1 + 𝑑 (𝐵𝑥, 𝐵𝑦)
,

𝑑 (𝐵𝑦, 𝐴𝑦) (𝑑 (𝐵𝑥, 𝐴𝑥) + 1)

1 + 𝑑 (𝐵𝑥, 𝐵𝑦)
}

(7)

and 𝜙 : [0, +∞) → [0, +∞) is a continuous nondecreasing
function and 𝜙(𝑡) = 0 ⇔ 𝑡 = 0.

Then 𝐴 and 𝐵 have a unique point of coincidence in 𝑋.

Moreover, if𝐴 and 𝐵 are weakly compatible, then𝐴 and𝐵 have
a unique common fixed point.

Proof. Define the sequence {𝑥
𝑛
} and {𝑧

𝑛
} in𝑋 defined by

𝑧
𝑛
= 𝐵𝑥
𝑛+1

= 𝐴𝑥
𝑛
. (8)

If 𝑧
𝑛
= 𝑧
𝑛+1

, then 𝑧
𝑛+1

is a point of coincidence of 𝐴 and 𝐵.

Consequently, we can suppose that 𝑧
𝑛

̸= 𝑧
𝑛+1

for all 𝑛 ∈ 𝑁.

Now, by (6), we have

𝑑 (𝐴𝑥
𝑛
, 𝐴𝑥
𝑛+1

) ≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+1

)) + 𝐶

⋅min {𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) , 𝑑 (𝐵𝑥

𝑛+1
, 𝐴𝑥
𝑛+1

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛+1

) , 𝑑 (𝐵𝑥
𝑛+1

, 𝐴𝑥
𝑛
)} = 𝜙 (𝑀 (𝑥

𝑛
, 𝑥
𝑛+1

)) ,

(9)

where

𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = max{𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) (𝑑 (𝐵𝑥

𝑛+1
, 𝐴𝑥
𝑛+1

) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

)
,

𝑑 (𝐵𝑥
𝑛+1

, 𝐴𝑥
𝑛+1

) (𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

)
}

= max{𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) ,

𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)} .

(10)

We consider the following cases:

(i) If𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛−1

, 𝑧
𝑛
), from (9), we have

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) ≤ 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)) < 𝑑 (𝑧

𝑛−1
, 𝑧
𝑛
) . (11)

(ii) If 𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛−1

, 𝑧
𝑛
)(1 + 𝑑(𝑧

𝑛
, 𝑧
𝑛+1

))/(1 +

𝑑(𝑧
𝑛−1

, 𝑧
𝑛
)), from (9), we obtain

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) ≤ 𝜙(
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

)

<
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

.

(12)

Hence,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) < 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) ; (13)

that is, (11) holds.

(iii) If𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛
, 𝑧
𝑛+1

), from (9), we get

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) < 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) , (14)

which is impossible.
In any case, we proved that (11) holds. Since {𝑑(𝑧

𝑛
, 𝑧
𝑛+1

)}

is decreasing sequence, it converges to a nonnegative number,
𝑠 ≥ 0. If 𝑠 > 0, then, letting 𝑛 → +∞ in (9), we deduce

𝑠 ≤ 𝜙 (max {𝑠, 𝑠 (1 + 𝑠)

1 + 𝑠
, 𝑠}) = 𝜙 (𝑠) < 𝑠, (15)

which implies that 𝑠 = 0; that is,

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) = 0. (16)

Suppose that 𝑧
𝑛

̸= 𝑧
𝑚
for all 𝑚 ̸= 𝑛 and show that {𝑧

𝑛
}

is GMS Cauchy sequence. First, we prove that the sequence
{𝑑(𝑧
𝑛
, 𝑧
𝑛+2

)} is bounded. Since lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑧
𝑛+1

) = 0, there
exists 𝑀 > 0 such that 𝑑(𝑧

𝑛
, 𝑧
𝑛+1

) ≤ 𝑀 for all 𝑛 ∈ 𝑁. If
𝑑(𝑧
𝑛
, 𝑧
𝑛+2

) > 𝑀, for all 𝑛 ∈ 𝑁, from (6), we have

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) = 𝑑 (𝐴𝑥
𝑛
, 𝐴𝑥
𝑛+2

) ≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+2

)) + 𝐶

⋅min {𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) , 𝑑 (𝐵𝑥

𝑛+2
, 𝐴𝑥
𝑛+2

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛+2

) , 𝑑 (𝐵𝑥
𝑛+2

, 𝐴𝑥
𝑛
)} = 𝜙 (𝑀 (𝑥

𝑛
, 𝑥
𝑛+2

))

+ 𝐶min {𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛+1
, 𝑧
𝑛+2

) , 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+2

) ,

𝑑 (𝑧
𝑛+1

, 𝑧
𝑛
)} = 𝜙 (𝑀 (𝑥

𝑛
, 𝑥
𝑛+1

)) as 𝑛 󳨀→ ∞,

(17)

where

𝑀(𝑥
𝑛
, 𝑥
𝑛+2

) = max{𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) (𝑑 (𝐵𝑥

𝑛+2
, 𝐴𝑥
𝑛+2

) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

)
,

𝑑 (𝐵𝑥
𝑛+2

, 𝐴𝑥
𝑛+2

) (𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

)
}

= max{𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

) ,

𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛+1
, 𝑧
𝑛+2

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)
,

𝑑 (𝑧
𝑛+1

, 𝑧
𝑛+2

) (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) + 1)

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)
} = 𝑑 (𝑧

𝑛−1
, 𝑧
𝑛+1

) .

(18)

Hence,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) ≤ 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)) < 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

) . (19)
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Thus the sequence {𝑑(𝑧
𝑛
, 𝑧
𝑛+2

)} is decreasing and hence is
bounded. Now, if

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) = 0 (20)

dose not hold, then there exists a subsequence {𝑧
𝑛𝑘
} of {𝑧

𝑛
}

such that lim
𝑛→∞

𝑑(𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

) = 𝑠. From

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

) ≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑛𝑘
, 𝑧
𝑛𝑘+2

)

+ 𝑑 (𝑧
𝑛𝑘+1

, 𝑧
𝑛𝑘+2

) ,

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

) ≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑛𝑘−1
, 𝑧
𝑛𝑘+1

)

+ 𝑑 (𝑧
𝑛𝑘+1

, 𝑧
𝑛𝑘+2

) ,

(21)

we obtain that

lim
𝑘→+∞

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

) = 𝑠. (22)

Now, by (6), with 𝑥 = 𝑥
𝑛𝑘
and 𝑦 = 𝑥

𝑛𝑘+2
, we have

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

) ≤ 𝜙 (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

)) , (23)

which tends to 𝑠 ≤ 𝜙(𝑠) as 𝑘 → ∞; hence, 𝑠 = 0.

Now, if possible, let {𝑧
𝑛
} be not a Cauchy sequence. Then

there exists 𝜖 > 0 such that, for 𝑘 > 0, there exist 𝑛
𝑘
> 𝑚
𝑘
≥ 𝑘

for which we can find subsequences {𝑧
𝑛𝑘
} and {𝑧

𝑚𝑘
} of {𝑧

𝑛
}

such that 𝑛(𝑘) is the smallest index for which

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) ≥ 𝜖,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘

) < 𝜖.

(24)

Now, using (24) and the rectangular inequality, we get

𝜖 ≤ 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

)

≤ 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘−2

) + 𝑑 (𝑧
𝑛𝑘−2

, 𝑧
𝑛𝑘−1

) + 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘

)

< 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘−2

) + 𝑑 (𝑧
𝑛𝑘−2

, 𝑧
𝑛𝑘−1

) + 𝜖.

(25)

Letting 𝑘 → +∞ in the above inequality, using (16) and (20),
we obtain

lim
𝑘→+∞

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) = 𝜖
+

. (26)

From

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) − 𝑑 (𝑧
𝑚𝑘

, 𝑧
𝑚𝑘−1

) − 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
)

≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘−1

)

≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑚𝑘
, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑚𝑘−1
, 𝑧
𝑚𝑘

) ,

(27)

letting 𝑘 → +∞, we obtain

lim
𝑘→∞

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘−1

) = 𝜖. (28)

From (6), with 𝑥 = 𝑥
𝑛𝑘
and 𝑦 = 𝑥

𝑚𝑘
, we get

𝑑 (𝐴𝑥
𝑚𝑘

, 𝐴𝑥
𝑛𝑘
) ≤ 𝜙 (𝑀(𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
)) + 𝐶

⋅min {𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) , 𝑑 (𝐵𝑥

𝑚𝑘
, 𝐴𝑥
𝑚𝑘

) ,

𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑚𝑘

) , 𝑑 (𝐵𝑥
𝑚𝑘

, 𝐴𝑥
𝑛𝑘
)} = 𝜙 (𝑀(𝑥

𝑚𝑘
,

𝑥
𝑛𝑘
)) + 𝐶min {𝑑 (𝑧

𝑛𝑘−1
, 𝑧
𝑛𝑘
) , 𝑑 (𝑧

𝑚𝑘−1
, 𝑧
𝑚𝑘

) ,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘

) , 𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘
)} ,

(29)

where

𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) = max{𝑑 (𝐵𝑥

𝑚𝑘
, 𝐵𝑥
𝑛𝑘
) ,

𝑑 (𝐵𝑥
𝑚𝑘

, 𝐴𝑥
𝑚𝑘

) (𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑥
𝑚𝑘

, 𝐵𝑥
𝑛𝑘
)

,

𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) (𝑑 (𝐵𝑥

𝑚𝑘
, 𝐴𝑥
𝑚𝑘

) + 1)

1 + 𝑑 (𝐵𝑥
𝑚𝑘

, 𝐵𝑥
𝑛𝑘
)

}

= max{𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

) ,

𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑚𝑘

) (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 1)

1 + 𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

)
,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) (𝑑 (𝑧

𝑚𝑘−1
, 𝑧
𝑚𝑘

) + 1)

1 + 𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

)
} .

(30)

Now, using the continuity of 𝜙 as 𝑘 → +∞, we obtain

𝜖 ≤ 𝜙 (𝜖) + 0 < 𝜖, (31)

which implies that 𝜖 = 0, a contradiction with 𝜖 > 0. Hence,
{𝑧
𝑛
} is a GMS Cauchy sequence. Since (𝐵𝑋, 𝑑) is complete

GMS, there exists 𝑧 ∈ 𝐵𝑋 such that lim
𝑛→∞

𝑧
𝑛
= 𝑧. Let 𝑢 ∈ 𝑋

be such that 𝐵𝑢 = 𝑧, applying (6) with 𝑥 = 𝑥
𝑛𝑘
:

𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
) ≤ 𝜙 (𝑀(𝑢, 𝑥

𝑛𝑘
)) + 𝐿

⋅min {𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) , 𝑑 (𝐵𝑢, 𝐴𝑢) , 𝑑 (𝐵𝑥

𝑛𝑘
, 𝐴𝑢) ,

𝑑 (𝐵𝑢, 𝐴𝑥
𝑛𝑘
)} = 𝜙 (𝑀(𝑢, 𝑥

𝑛𝑘
)) + 𝐿

⋅min {𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) , 𝑑 (𝐵𝑢, 𝐴𝑢) , 𝑑 (𝑧

𝑛𝑘−1
, 𝐴𝑢) ,

𝑑 (𝑧, 𝑧
𝑛𝑘
)} = 𝜙 (𝑀(𝑢, 𝑥

𝑛𝑘
)) + 0,

(32)



Journal of Function Spaces 5

where

𝑀(𝑢, 𝑥
𝑛𝑘
) = max{𝑑 (𝐵𝑢, 𝐵𝑥

𝑛𝑘
) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵𝑥
𝑛𝑘
)

,

𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵𝑥
𝑛𝑘
)

}

= max{𝑑 (𝑧, 𝑧
𝑛𝑘−1

) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

)
,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

)
} = 𝑑 (𝐵𝑢, 𝐴𝑢)

as 𝑘 󳨀→ ∞.

(33)

We get from (32) that

𝑑 (𝐵𝑢, 𝐴𝑢) ≤ lim inf
𝑘→∞

[𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

) + 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
)

+ 𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
)] ≤ lim inf

𝑘→∞

𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
)

= 𝜙 (𝑑 (𝐵𝑢, 𝐴𝑢)) < 𝑑 (𝐵𝑢, 𝐴𝑢) ,

(34)

which implies that 𝑑(𝐵𝑢, 𝐴𝑢) = 0; that is, 𝑧 = 𝐵𝑢 = 𝐴𝑢 and
so 𝑧 is a point of coincidence for 𝐴 and 𝐵.

Now, we prove that 𝑧 is the unique point of coincidence
of 𝐴 and 𝐵. Let 𝑥 and 𝑦 be arbitrary points of coincidence of
𝐴 and 𝐵 such that 𝑥 = 𝐴𝑢 = 𝐵𝑢 and 𝑦 = 𝐴V = 𝐵V. Using
condition (6), it follows that

𝑑 (𝑥, 𝑦) = 𝑑 (𝐴𝑢, 𝐴V) ≤ 𝜙(max{𝑑 (𝐵𝑢, 𝐵V) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝐵V, 𝐴V) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
,

𝑑 (𝐵V, 𝐴V) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
}) + 𝐶min {𝑑 (𝐵V, 𝐴V) ,

𝑑 (𝐵𝑢, 𝐴𝑢) , 𝑑 (𝐵V, 𝐴𝑢) , 𝑑 (𝐵𝑢, 𝐴V)} = 𝜙 (𝑑 (𝐵𝑢, 𝐵V))

< 𝑑 (𝐵𝑢, 𝐵V) = 𝑑 (𝑥, 𝑦) ,

(35)

which implies that 𝑑(𝑥, 𝑦) = 0. Thus, 𝑥 = 𝑦 and 𝐴, 𝐵 have a
unique point of coincidence.

Next, we prove that 𝑧 = 𝐴𝑧 = 𝐵𝑧. If 𝑧 is a point of
coincidence of 𝐴 and 𝐵 as 𝐴 and 𝐵 are weakly compatible,
we obtain that 𝐴𝑧 = 𝐴𝐴𝑢 = 𝐴𝐵𝑢 = 𝐵𝐴𝑢 = 𝐵𝑧 and so
𝑧 = 𝐴𝑧 = 𝐵𝑧. Consequently, 𝑧 is unique common fixed point
of 𝐴 and 𝐵.

Example 11. Suppose (𝑋, 𝑑) as in Example 2; let𝐴, 𝐵 : X → 𝑋

and 𝜙(𝑡) : [0,∞) → [0,∞), defined by𝐴𝑥 = (1/2)𝑥, 𝐵𝑥 = 𝑥,
and 𝜙(𝑡) = (𝑡/2), ∀𝑡 ∈ [0,∞).

Then 𝐴, 𝐵 and 𝜙 satisfy all the conditions of Theorem 10.
Hence, 0 is unique coincidence and common fixed point of𝐴
and 𝐵.

Corollary 12. Replace condition (6) in Theorem 10 with the
following condition:

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝑎
1
𝑑 (𝐵𝑥, 𝐵𝑦)

+ 𝑎
2

𝑑 (𝐵𝑥, 𝐴𝑥) (𝑑 (𝐵𝑦, 𝐴𝑦) + 1)

1 + 𝑑 (𝐵𝑥, 𝐵𝑦)

+ 𝑎
3

𝑑 (𝐵𝑦, 𝐴𝑦) (𝑑 (𝐵𝑥, 𝐴𝑥) + 1)

1 + 𝑑 (𝐵𝑥, 𝐵𝑦)
+ 𝐿

⋅min {𝑑 (𝐵𝑥, 𝐴𝑥) , 𝑑 (𝐵𝑦, 𝐴𝑦) , 𝑑 (𝐵𝑥, 𝐴𝑦) ,

𝑑 (𝐵𝑦, 𝐴𝑥)} ,

(36)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝐿 ≥ 0 and 𝑎

1
+ 𝑎
2
+ 𝑎
3
< 1.

Then 𝐴 and 𝐵 have a unique point of coincidence in 𝑋.

Moreover, if𝐴 and𝐵 are weakly compatible, then𝐴 and𝐵 have
a unique common fixed point.

Corollary 13. Put𝐵 = 𝐼 (the identitymapping) inTheorem 10.
Then one can get a unique fixed point of 𝐴.

Remark 14 (see [5, Theorem 7]). It is spatial case of Theo-
rem 10. Next, we introduce some coincidence point theorems
for two (𝛼, 𝜓, 𝜙)-contractions self-mappings of rational type
in complete GMS.

Theorem 15. Let (𝑋, 𝑑) be a GMS and let 𝐴, 𝐵 : 𝑋 → 𝑋 be
two self-mappings satisfying the following conditions:

𝜙 (𝛽 (𝐵𝑥, 𝐵𝑦) 𝑑 (𝐴𝑥, 𝐴𝑦))

≤ 𝜙 (𝑀 (𝑥, 𝑦)) − 𝜓 (𝑀 (𝑥, 𝑦)) ∀𝑥, 𝑦 ∈ 𝑋,

(37)

where 𝑀(𝑥, 𝑦) is as in Theorem 10; 𝐴𝑋 ⊂ 𝐵𝑋, and (𝐵𝑋, 𝑑) is
a complete GMS.

Consider also that the next conditions hold:

(i) ∃𝑥
0
∈ 𝑋 such that 𝛽(𝐴𝑥

0
, 𝐵𝑥
0
) ≥ 1.

(ii) 𝐴 is 𝐵 − 𝛽-admissible.

(iii) 𝑋 is 𝛽-regular and 𝛽(𝑥
𝑚
, 𝑥
𝑛
) ≥ 1, for each 𝑥

𝑛
∈ 𝑋, and

∀𝑚, 𝑛 ∈ 𝑁, 𝑚 ̸= 𝑛.

(iv) Either 𝛽(𝐵𝑥, 𝐵𝑦) ≥ 1 or 𝛽(𝐵𝑦, 𝐵𝑥) ≥ 1 whenever 𝐵𝑥 =

𝐴𝑥 and 𝐵𝑦 = 𝐴𝑦.

(v) 𝜓 : [0, +∞) → [0, +∞) is a lower semicontinuous
function and 𝜓(𝑡) = 0 ⇔ 𝑡 = 0.

Then 𝐴 and 𝐵 have a unique point of coincidence in 𝑋.

Moreover, if𝐴 and𝐵 are weakly compatible, then𝐴 and𝐵 have
a unique common fixed point.
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Proof. Suppose that 𝑥
0

∈ 𝑋, 𝛽(𝐵𝑥
0
, 𝐴𝑥
0
) ≥ 1. Define {𝑧

𝑛
}

and {𝑥
𝑛
} as two sequences in 𝑋 such that 𝑧

𝑛
= 𝐵𝑥

𝑛+1
=

𝐴𝑥
𝑛
, 𝑛 = 0, 1, 2, 3, . . .. If 𝑧

𝑛
= 𝑧
𝑛+1

, then 𝐵𝑥
𝑛+1

= 𝐴𝑥
𝑛+1

,
which implies that 𝑥

𝑛+1
is a coincidence point of 𝐴 and 𝐵.

Consequently, we can suppose that 𝑧
𝑛

̸= 𝑧
𝑛+1

for all 𝑛 ∈

𝑁. From (i), we get that 𝛽(𝐵𝑥
0
, 𝐴𝑥
0
) = 𝛽(𝐵𝑥

0
, 𝐵𝑥
1
) ≥ 1.

Also, by (ii), we have that 𝛽(𝐴𝑥
0
, 𝐴𝑥
1
) = 𝛽(𝐵𝑥

1
, 𝐵𝑥
2
) ≥

1, 𝛽(𝐴𝑥
1
, 𝐴𝑥
2
) = 𝛽(𝐵𝑥

2
, 𝐵𝑥
3
) ≥ 1. Continuous with this

process, we obtain that𝛽(𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

) ≥ 1.Now, by using (37),
we get

𝜙 (𝑑 (A𝑥
𝑛
, 𝐴𝑥
𝑛+1

))

≤ 𝜙 (𝛽 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

) 𝑑 (𝐴𝑥
𝑛
, 𝐴𝑥
𝑛+1

))

≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1

)) ,

(38)

where

𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = max{𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) (𝑑 (𝐵𝑥

𝑛+1
, 𝐴𝑥
𝑛+1

) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

)
,

𝑑 (𝐵𝑥
𝑛+1

, 𝐴𝑥
𝑛+1

) (𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+1

)
}

= max{𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) ,

𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)} .

(39)

We consider the following cases:

(i) If𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛−1

, 𝑧
𝑛
), from (38), we have

𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)) − 𝜓 (𝑑 (𝑧

𝑛−1
, 𝑧
𝑛
))

< 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)) .

(40)

Since 𝜙 is nondecreasing, we have

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) < 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)) . (41)

(ii) If 𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛−1

, 𝑧
𝑛
)(1 + 𝑑(𝑧

𝑛
, 𝑧
𝑛+1

))/(1 +

𝑑(𝑧
𝑛−1

, 𝑧
𝑛
)), from (38), we obtain

𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

))

≤ 𝜙(
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

)

− 𝜓(
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

)

< 𝜙(
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

) .

(42)

The nondecreasing property of 𝜙 implies that

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) <
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

󳨐⇒ 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

< 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

) 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
)

󳨐⇒ 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) < 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) .

(43)

Hence, (41) is obtained.

(iii) If𝑀(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑧
𝑛
, 𝑧
𝑛+1

)), by (38), we obtain

𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)) − 𝜓 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

))

< 𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)) ;

(44)

this is a contradiction.
In any case, we proved that (41) holds. Since {𝑑(𝑧

𝑛
, 𝑧
𝑛+1

)}

is decreasing, it converges to a nonnegative number, 𝑠 ≥ 0. If
𝑠 > 0, then, letting 𝑛 → +∞ in (37), we deduce

𝑠 ≤ 𝜙 (𝑠) < 𝑠, (45)

which implies that 𝑠 = 0; that is,

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) = 0. (46)

Suppose that 𝑧
𝑛

̸= 𝑧
𝑚
for all 𝑚 ̸= 𝑛 and prove that {𝑧

𝑛
}

is GMS Cauchy sequence. First, we show that the sequence
{𝑑(𝑧
𝑛
, 𝑧
𝑛+2

)} is bounded. Since lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑧
𝑛+1

) = 0, there
exists 𝐿 > 0 such that 𝑑(𝑧

𝑛
, 𝑧
𝑛+1

) ≤ 𝐿 for all 𝑛 ∈ 𝑁. If
𝑑(𝑧
𝑛
, 𝑧
𝑛+2

) > 𝐿, for all 𝑛 ∈ 𝑁, from (37), we have

𝜙 (𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

))

≤ 𝜙 (𝛽 (𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

)) 𝑑 (𝐴𝑥
𝑛
, 𝐴𝑥
𝑛+2

))

= 𝑑 (𝐴𝑥
𝑛
, 𝐴𝑥
𝑛+2

)

≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+2

)) − 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+2

))

< 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+1

)) = 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

))

as 𝑛 󳨀→ ∞,

(47)

where

𝑀(𝑥
𝑛
, 𝑥
𝑛+2

) = max{𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

) ,

𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) (𝑑 (𝐵𝑥

𝑛+2
, 𝐴𝑥
𝑛+2

) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

)
,

𝑑 (𝐵𝑥
𝑛+2

, 𝐴𝑥
𝑛+2

) (𝑑 (𝐵𝑥
𝑛
, 𝐴𝑥
𝑛
) + 1)

1 + 𝑑 (𝐵𝑥
𝑛
, 𝐵𝑥
𝑛+2

)
}

= max{𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

) ,
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𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) (1 + 𝑑 (𝑧

𝑛+1
, 𝑧
𝑛+2

))

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)
,

𝑑 (𝑧
𝑛+1

, 𝑧
𝑛+2

) (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) + 1)

1 + 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)
} = 𝑑 (𝑧

𝑛−1
, 𝑧
𝑛+1

)

as 𝑛 󳨀→ ∞.

(48)

Hence,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) ≤ 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

)) < 𝑑 (𝑧
𝑛−1

, 𝑧
𝑛+1

) . (49)

Thus the sequence {𝑑(𝑧
𝑛
, 𝑧
𝑛+2

)} is decreasing and hence is
bounded. If, for some 𝑛 ∈ 𝑁, we have 𝑑(𝑧

𝑛−1
, 𝑧
𝑛+1

) ≤ 𝐿 and
𝑑(𝑧
𝑛
, 𝑧
𝑛+2

) > 𝐿, then, from (49), we get

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) < 𝐿, (50)

which is a contradiction.Then {𝑑(𝑧
𝑛
, 𝑧
𝑛+2

)} is bounded. Now,
if

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑧
𝑛+2

) = 0 (51)

dose not hold, then there exists a subsequence {𝑧
𝑛𝑘
} of {𝑧

𝑛
}

such that lim
𝑛→∞

𝑑(𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

) = 𝑠. From

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

) ≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑛𝑘
, 𝑧
𝑛𝑘+2

)

+ 𝑑 (𝑧
𝑛𝑘+1

, 𝑧
𝑛𝑘+2

) ,

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

) ≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑛𝑘−1
, 𝑧
𝑛𝑘+1

)

+ 𝑑 (𝑧
𝑛𝑘+1

, 𝑧
𝑛𝑘+2

) ,

(52)

we obtain that

lim
𝑘→+∞

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

) = 𝑠. (53)

Now, by (37), one can obtain that

𝜙 (𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘+2

)) ≤ 𝜙 (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

))

− 𝜓 (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘+1

))

󳨐⇒ 𝜙 (𝑠) < 𝜙 (𝑠)

as 𝑛 󳨀→ ∞,

(54)

which implies that 𝑠 = 0.

Now, if possible, let {𝑧
𝑛
} be not a Cauchy sequence. Then

there exists 𝜖 > 0 for which we can find subsequences {𝑧
𝑛𝑘
}

and {𝑧
𝑚𝑘

} of {𝑧
𝑛
} with 𝑛

𝑘
> 𝑚
𝑘
≥ 𝑘 such that

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) ≥ 𝜖. (55)

Further, corresponding to𝑚
𝑘
, we can choose 𝑛

𝑘
in such a way

that it is the smallest integer for which

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘

) < 𝜖. (56)

Now, using (55) and (56) and the rectangular inequality, we
get

𝜖 ≤ 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

)

≤ 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘−2

) + 𝑑 (𝑧
𝑛𝑘−2

, 𝑧
𝑛𝑘−1

) + 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘

)

< 𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑛𝑘−2

) + 𝑑 (𝑧
𝑛𝑘−2

, 𝑧
𝑛𝑘−1

) + 𝜖.

(57)

Letting 𝑘 → +∞ in the above inequality, using (46) and (51),
we obtain

lim
𝑘→∞

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) = 𝜖
+

. (58)

From

𝑑 (𝑧
𝑛𝑘
, 𝑧
𝑚𝑘

) − 𝑑 (𝑧
𝑚𝑘

, 𝑧
𝑚𝑘−1

) − 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
)

≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘−1

)

≤ 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑚𝑘
, 𝑧
𝑛𝑘
) + 𝑑 (𝑧

𝑚𝑘−1
, 𝑧
𝑚𝑘

) ,

(59)

letting 𝑘 → +∞, we obtain

lim
𝑘→∞

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑚𝑘−1

) = 𝜖. (60)

From (37), with 𝑥 = 𝑥
𝑛𝑘
and 𝑦 = 𝑥

𝑚𝑘
, we get

𝜙 (𝑑 (𝐴𝑥
𝑚𝑘

, 𝐴𝑥
𝑛𝑘
))

≤ 𝜙 (𝛽 (𝑑 (𝐵𝑥
𝑚𝑘

, 𝐵𝑥
𝑛𝑘
)) 𝑑 (𝐴𝑥

𝑚𝑘
, 𝐴𝑥
𝑛𝑘
))

≤ 𝜙 (𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)) − 𝜓 (𝑀(𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
)) ,

(61)

where

𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) = max{𝑑 (𝐵𝑥

𝑚𝑘
, 𝐵𝑥
𝑛𝑘
) ,

𝑑 (𝐵𝑥
𝑚𝑘

, 𝐴𝑥
𝑚𝑘

) (𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑥
𝑚𝑘

, 𝐵𝑥
𝑛𝑘
)

,

𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) (𝑑 (𝐵𝑥

𝑚𝑘
, 𝐴𝑥
𝑚𝑘

) + 1)

1 + 𝑑 (𝐵𝑥
𝑚𝑘

, 𝐵𝑥
𝑛𝑘
)

}

= max{𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

) ,

𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑚𝑘

) (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 1)

1 + 𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

)
,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) (𝑑 (𝑧

𝑚𝑘−1
, 𝑧
𝑚𝑘

) + 1)

1 + 𝑑 (𝑧
𝑚𝑘−1

, 𝑧
𝑛𝑘−1

)
} .

(62)

Now, using the continuity of 𝜙 as 𝑘 → +∞, we obtain

𝜖 ≤ 𝜙 (𝜖) < 𝜖. (63)
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A contradiction is obtained with 𝜖 > 0, and then 𝜖 = 0,
and hence {𝑧

𝑛
} is a GMS Cauchy sequence. Since (𝐵𝑋, 𝑑) is

complete GMS, there exists 𝑧 ∈ 𝐵𝑋 such that lim
𝑛→∞

𝑧
𝑛
= 𝑧.

Let 𝑤 ∈ 𝑋 be such that 𝐵𝑢 = 𝑧, applying (37) with 𝑥 = 𝑥
𝑛𝑘
:

𝜙 (𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
)) ≤ 𝜙 (𝑀(𝑢, 𝑥

𝑛𝑘
))

− 𝜙 (𝑀(𝑢, 𝑥
𝑛𝑘
)) ,

(64)

where

𝑀(𝑢, 𝑥
𝑛𝑘
) = max{𝑑 (𝐵𝑢, 𝐵𝑥

𝑛𝑘
) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵𝑥
𝑛𝑘
)

,

𝑑 (𝐵𝑥
𝑛𝑘
, 𝐴𝑥
𝑛𝑘
) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵𝑥
𝑛𝑘
)

}

= max{𝑑 (𝑧, 𝑧
𝑛𝑘−1

) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) + 1)

1 + 𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

)
,

𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

)
} = 𝑑 (𝐵𝑢, 𝐴𝑢)

as 𝑘 󳨀→ ∞.

(65)

We get from (64) that

𝑑 (𝐵𝑢, 𝐴𝑢) ≤ lim inf
𝑘→∞

[𝑑 (𝐵𝑢, 𝑧
𝑛𝑘−1

) + 𝑑 (𝑧
𝑛𝑘−1

, 𝑧
𝑛𝑘
)

+ 𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
)] ≤ lim inf

𝑘→∞

𝑑 (𝐴𝑢, 𝐴𝑥
𝑛𝑘
)

= 𝜙 (𝑑 (𝐵𝑢, 𝐴𝑢)) < 𝑑 (𝐵𝑢, 𝐴𝑢) ,

(66)

which implies that 𝑑(𝐵𝑢, 𝐴𝑢) = 0; that is, 𝑧 = 𝐵𝑢 = 𝐴𝑢 and
so 𝑧 is a coincidence point for 𝐴 and 𝐵.

Now, we prove that 𝑧 is the unique coincidence point of𝐴
and 𝐵. Let 𝑥 and 𝑦 be arbitrary coincidence points of 𝐴 and
𝐵 such that 𝑥 = 𝐴𝑢 = 𝐵𝑢 and 𝑦 = 𝐴V = 𝐵V. Using condition
(37), it follows that

𝜙 (𝑑 (𝑥, 𝑦)) = 𝜙 (𝑑 (𝐴𝑢, 𝐴V)) ≤ 𝜙(max{𝑑 (𝐵𝑢, 𝐵V) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝐵V, 𝐴V) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
,

𝑑 (𝐵V, 𝐴V) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
})

− 𝜓(max{𝑑 (𝐵𝑢, 𝐵V) ,

𝑑 (𝐵𝑢, 𝐴𝑢) (𝑑 (𝐵V, 𝐴V) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
,

𝑑 (𝐵V, 𝐴V) (𝑑 (𝐵𝑢, 𝐴𝑢) + 1)

1 + 𝑑 (𝐵𝑢, 𝐵V)
}) = 𝜙 (𝑑 (𝐵𝑢, 𝐵V))

− 𝜓 (𝑑 (𝐵𝑢, 𝐵V)) < 𝜙 (𝑑 (𝐵𝑢, 𝐵V)) = 𝜙 (𝑑 (𝑥, 𝑦)) ,

(67)

which implies that 𝑑(𝑥, 𝑦) = 0. Thus, 𝑥 = 𝑦 and 𝐴, 𝐵 have a
unique coincidence point.

As in the conclusion in the last paragraph of the proof of
Theorem 10 and the weakly compatible property of 𝐴 and 𝐵,
we obtain that𝐴 and𝐵 have unique common fixed point.

Corollary 16. Put 𝐵 = 𝐼 in Theorem 15. Then one can get a
unique fixed point of 𝐴.

Remark 17 (see [5, Theorem 16]). It is spatial case of Theo-
rem 15.

4. An Application in Dynamical Programming

The aim of this section is to use Theorem 10 to study the
existence and uniqueness of solutions of the following system
of functional equations:

𝑤 (𝑥) = sup
𝑏∈𝐸

{ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑧 (𝐺 (𝑎, 𝑏)))} ,

𝑧 (𝑥) = sup
𝑏∈𝐸

{ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑤 (𝐺 (𝑎, 𝑏)))} ,

(68)

which are used in dynamic programming (see [20–22]),
where𝐸 is a state space, 𝑆 is a decision space, and𝑥 ∈ 𝑆,𝑦 ∈ 𝐸,
ℎ : 𝑆 × 𝐸 → R, 𝐺 : 𝑆 × 𝐸 → 𝑆, and 𝐹 : 𝑆 × 𝐸 × R → R are
considered operators.

We denote by 𝐵(𝑆) the set of all bounded functionals on
𝑆. Also, we define ‖ ⋅ ‖

∞
by

‖V‖
∞

= sup
𝑥∈𝑆

|V (𝑥)| , ∀V ∈ 𝐵 (𝑆) . (69)

Remark 18. We note that the space (𝐵(𝑆), ‖ ⋅ ‖
∞
) is Banach,

where the distance function in 𝐵(𝑆) is defined as follows:

𝑑
∞

(𝑇
1
, 𝑇
2
) = sup
𝑥∈𝑆

󵄨󵄨󵄨󵄨𝑇1 (𝑥) − 𝑇
2
(𝑥)

󵄨󵄨󵄨󵄨 ∀𝑇
1
, 𝑇
2
∈ 𝐵 (𝑆) . (70)

Lemma 19 (see [5]). Let 𝐹
1
, 𝐹
2

: 𝑆 → R be bounded
functionals; then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
𝑥∈𝑆

𝐹
1
(𝑥) − sup

𝑥∈𝑆

𝐹
2
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑥∈𝑆

󵄨󵄨󵄨󵄨𝐹1 (𝑥) − 𝐹
1
(𝑥)

󵄨󵄨󵄨󵄨 . (71)

Proposition 20. Suppose that ℎ, 𝐹(⋅, ⋅, 0), 𝐹(⋅, ⋅, 1) : 𝑆×𝐸 → R
are three bounded functionals and
󵄨󵄨󵄨󵄨𝐹 (𝑎, 𝑏, 𝑡

1
) − 𝐹 (𝑎, 𝑏, 𝑡

2
)
󵄨󵄨󵄨󵄨 ≤ 𝐶

󵄨󵄨󵄨󵄨𝑡1 − 𝑡
2

󵄨󵄨󵄨󵄨 ,

𝐶 ≥ 0,

∀𝑎 ∈ 𝑆, 𝑏 ∈ 𝐸, 𝑡
1
, 𝑡
2
∈ R.

(72)
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Also, let 𝑂 : 𝐵(𝑆) → 𝐵(𝑆) be an operator defined as follows:

(𝑂𝑤) (𝑏) = sup
𝑏∈𝐸

{ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑧 (𝐺 (𝑎, 𝑏)))} ,

∀𝑎 ∈ 𝑆,

𝑧 (𝑎) = sup
𝑏∈𝐸

{ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑤 (𝐺 (𝑎, 𝑏)))} ,

∀𝑎 ∈ 𝑆.

(73)

For all 𝑤 ∈ 𝐵(𝑆) and 𝑥 ∈ 𝑆, 𝑂 is well defined.

Proof. It is enough to prove that 𝑂 : 𝐵(𝑆) → 𝐵(𝑆) is bounded
for all 𝑤 ∈ 𝐵(𝑆). From the boundedness of 𝑤, ℎ, and 𝐹, we
have

|(𝑂𝑤) (𝑥)| ≤ sup
𝑏∈𝐸

|ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑧 (𝐺 (𝑎, 𝑏)))|

≤ sup
𝑏∈𝐸

|ℎ (𝑎, 𝑏)|

+ sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 𝑧 (𝐺 (𝑎, 𝑏))) − 𝐹 (𝑎, 𝑏, 0)|

+ sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 0) − 𝐹 (𝑎, 𝑏, 1)| + sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 1)|

≤ sup
𝑏∈𝐸

|ℎ (𝑎, 𝑏)| + sup
𝑏∈𝐸

|𝑧 (𝐺 (𝑎, 𝑏))| + 1

+ sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 1)|

≤ sup
𝑏∈𝐸

|ℎ (𝑎, 𝑏)|

+ sup
𝑏∈𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
𝑏∈𝐸

{ℎ (𝑎, 𝑏) + 𝐹 (𝑎, 𝑏, 𝑤 (𝐺 (𝑎, 𝑏)))}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 1

+ sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 1)|

≤ 2 sup
𝑏∈𝐸

|ℎ (𝑎, 𝑏)| + sup
𝑏∈𝐸

|𝑤 (𝐺 (𝑎, 𝑏))| + 2

+ 2 sup
𝑏∈𝐸

|𝐹 (𝑎, 𝑏, 1)| ≤ 𝐶
󸀠

, 𝐶
󸀠

> 0,

(74)

which give the boundedness of 𝑂(𝑤) on 𝑤. Hence, 𝑅 is well
defined.

Theorem 21. Consider the assumptions of Proposition 20 and
the following property:

𝑑 (𝐹 (𝑎, 𝑏, 𝑧 (𝑤
1
(𝐺 (𝑎, 𝑏)))) , 𝐹 (𝑎, 𝑏, 𝑧 (𝑤

2
(𝐺 (𝑎, 𝑏)))))

≤ 𝜙 (𝑀 (𝑤
1
, 𝑤
2
)) + 𝐶𝑚 (𝑤

1
, 𝑤
2
) ,

(75)

where

𝑀(𝑤
1
, 𝑤
2
) = max{𝑑

∞
(𝑧𝑤
1
, 𝑧𝑤
2
) ,

𝑑
∞

(𝑧𝑤
1
, 𝑂𝑤
1
) (𝑑
∞

(𝑧𝑤
2
, 𝑂𝑤
2
) + 1)

1 + 𝑑
∞

(𝑧𝑤
1
, 𝑧𝑤
2
)

,

𝑑
∞

(𝑧𝑤
2
, 𝑂𝑤
2
) (𝑑
∞

(𝑧𝑤
1
, 𝑂𝑥) + 1)

1 + 𝑑
∞

(𝑧𝑤
1
, 𝑧𝑤
2
)

} ,

𝑚 (𝑤
1
, 𝑤
2
) = min {𝑑

∞
(𝑧𝑤
1
, 𝑂𝑤
1
) , 𝑑
∞

(𝑧𝑤
2
, 𝑂𝑤
2
) ,

𝑑
∞

(𝑧𝑤
1
, 𝑂𝑤
2
) , 𝑑
∞

(𝑧𝑤
2
, 𝑂𝑤
1
)} .

(76)

For all𝑤
1
, 𝑤
2
∈ 𝐵(𝑆) and all 𝑎 ∈ 𝑆, all 𝑏 ∈ 𝐸.Also, the function

𝜙 is as in Theorem 10.
Then (68) has a unique common solution 𝑤

0
∈ 𝐵(𝑆).

Proof. First, we prove that themappings in system (68) satisfy
condition (6). Indeed, by using Lemma 19, we have that
∀𝑤
1
, 𝑤
2
∈ 𝐵(𝑆), ∀𝑥 ∈ 𝑆, and we consider

𝑑
∞

(𝑂𝑤
1
, 𝑂𝑤
2
)

≤ sup
𝑏∈𝐸

󵄨󵄨󵄨󵄨𝐹 (𝑎, 𝑏, 𝑧 (𝑤
1
)) − 𝐹 (𝑎, 𝑏, 𝑧 (𝑤

2
))
󵄨󵄨󵄨󵄨

≤ 𝜙 (𝑀 (𝑤
1
, 𝑤
2
)) + 𝐶𝑚 (𝑤

1
, 𝑤
2
) .

(77)

Then all the conditions of Theorem 10 are satisfied; hence,
system (68) has a unique solution.
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Vesnik, vol. 61, no. 3, pp. 203–208, 2009.

[13] P. Kumam and N. V. Dung, “Some remarks on generalized
metric spaces of Branciari,” Sarajevo Journal of Mathematics,
vol. 10, no. 23, pp. 209–219, 2014.

[14] Z. Kadelburg and S. Radenovic, “On generalized metric spaces:
a survey,” TWMS Journal of Pure and Applied Mathematics, vol.
5, no. 1, pp. 3–13, 2014.

[15] Z. Kadelburg and S. Radenović, “Fixed point results in general-
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