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We consider the Reinhardt domain 𝐷𝑛 = {(𝜁, 𝑧) ∈ C × C𝑛 : |𝜁|2 < (1 − |𝑧1|2) ⋅ ⋅ ⋅ (1 − |𝑧𝑛|2)}. We express the explicit closed form of
the Bergman kernel for𝐷𝑛 using the exponential generating function for the Stirling number of the second kind. As an application,
we show that the Bergman kernel 𝐾𝑛 for 𝐷𝑛 has zeros if and only if 𝑛 ≥ 3. The study of the zeros of 𝐾𝑛 is reduced to some real
polynomial with coefficients which are related to Bernoulli numbers. This result is a complete characterization of the existence of
zeros of the Bergman kernel for 𝐷𝑛 for all positive integers 𝑛.

1. Introduction

Let 𝐷 be a bounded domain in C𝑛. The space 𝐿2𝑎(𝐷) is
denoted by the set of all holomorphic functions 𝑓 on 𝐷
satisfying

∫
𝐷

𝑓 (𝑧)2 𝑑𝑉 (𝑧) < ∞, (1)

where 𝑑𝑉 is the volume measure on 𝐷. For any 𝑧 ∈ 𝐷, Φ𝑧 :𝐿2𝑎(𝐷) → C defined by Φ𝑧(𝑓) = 𝑓(𝑧) is a bounded linear
functional on 𝐿2𝑎(𝐷). By Riesz representation theorem, there
exists the unique element 𝐾𝑧(⋅) ∈ 𝐿2𝑎(𝐷) such that Φ𝑧(𝑓) =⟨𝑓(⋅), 𝐾𝑧(⋅)⟩; namely,

𝑓 (𝑧) = ∫
𝐷
𝑓 (𝑤)𝐾𝑧 (𝑤)𝑑𝑉 (𝑤) , (2)

for all 𝑓 ∈ 𝐿2𝑎(𝐷). Define the Bergman kernel function𝐾𝐷(𝑧, 𝑤) fl 𝐾𝑧(𝑤) for 𝐷. It is defined for arbitrary bounded
domains, but it is difficult to obtain the explicit form of the
Bergman kernel for general bounded domains. Recently, the
Bergman kernels for various domains have been computed
explicitly in [1–6].

Over the last decade the Hartogs domain

Ω̂𝑚 fl {(𝜁, 𝑧) ∈ C
𝑚 × Ω : 𝜁2 < 𝑝 (𝑧)} (3)

was investigated, where 𝑝 is a suitably chosen continuous
function on a bounded domain Ω. The Bergman kernel for

Ω̂𝑚 was obtained explicitly in [7] when Ω is an irreducible
bounded symmetric domain. This result was generalized to
the cases when Ω is the product of bounded symmetric
domains in [8] and when Ω is a bounded homogeneous
domain in [9].

Also the problem of determining whether the Bergman
kernels are zero-free has been a well-known open problem in
several complex variables ever since Lu Qi-Keng raised the
question related to the existence of Bergman representative
coordinates. If the Bergman kernel 𝐾𝐷(𝑧, 𝑤) for a bounded
domain 𝐷 is zero-free for all (𝑧, 𝑤) ∈ 𝐷 × 𝐷, then 𝐷 is
called the Lu Qi-Keng domain. One can see many examples
of Lu Qi-Keng domains and non-Lu Qi-Keng domains in
[8–13].

IfΩ is symmetric [8] or homogeneous [9], then the main
part of the Bergman kernel for Ω̂𝑚 is the polynomial whose
coefficients are written as the forms containing the Stirling
number of the second kind.TheRouth-Hurwitz theorem (see
Lemma 11) gives the condition that a real polynomial has no
zeros in the closed right half-plane, and using this criterion
we have the algorithmic method of determining whether the
Hartogs domain Ω̂𝑚 is a Lu Qi-Keng domain or not. The
existence of zeros of all Hartogs domains Ω̂𝑚 is classified in
[8, 9] only when the dimension of the base domain Ω is low
(less than 4). However it looks hard to study Lu Qi-Keng
problem for all dimensions, since Routh-Hurwitz theorem
involves too many terms when the order of the polynomial
is large.
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In this paper we consider the Reinhardt domain 𝐷𝑛 ⊂
C𝑛+1 defined by

𝐷𝑛 fl {{{(𝜁, 𝑧) = (𝜁, 𝑧1, 𝑧2, . . . , 𝑧𝑛) ∈ C × C
𝑛 : 𝜁2

< 𝑛∏
𝑗=1

(1 − 𝑧𝑗2)}}} .
(4)

FromTheorem 2.5 in [8], the Bergman kernel for𝐷𝑛 can
be obtained explicitly as the following.

Theorem 1. The Bergman kernel 𝐾𝑛 for 𝐷𝑛 is written as

𝐾𝑛 ((𝜁, 𝑧) , (𝜂, 𝑤))
= 1𝜋𝑛

𝑛∏
𝑙=1

1(1 − 𝑧𝑙𝑤𝑙)3𝐹𝑛 (
⟨𝜁, 𝜂⟩∏𝑛𝑙=1 (1 − 𝑧𝑙𝑤𝑙)) , (5)

where

𝐹𝑛 (𝑡) = 𝑛∑
𝑗=1

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑗 + 1)!(1 − 𝑡)𝑗+2 , (6)

where 𝑆(𝑛, 𝑗) is the Stirling number of the second kind.

In Section 2, we prove Theorem 1 using the result in [8]
and express 𝑎(𝑛, ℓ) in terms of the coefficients of a certain
generating function (seeTheorem 8). We use the well-known
formal series

(𝑒𝑡 − 1)𝑗𝑗! = ∞∑
𝑛=0

𝑆 (𝑛, 𝑗) 𝑡𝑛𝑛! , (7)

for exponential generating function, where 𝑆(𝑛, 𝑗) is the
Stirling number of the second kind.

For the study of the existence of zeros of𝐾𝑛((𝜁, 𝑧), (𝜂, 𝑤)),
we need to define �̃�𝑛(𝑡) and 𝐺𝑛(𝜏) by

�̃�𝑛 (𝑡) = (1 − 𝑡)2 𝐹𝑛 (𝑡) ,
𝐺𝑛 (𝜏) = �̃�𝑛 (1 − 1𝜏 + 1/2)

= 𝑛∑
𝑗=1

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑗 + 1)! (𝜏 + 12)𝑗 .
(8)

The zero set of the Bergman kernel 𝐾𝑛((𝜁, 𝑧), (𝜂, 𝑤)) with(𝜁, 𝑧), (𝜂, 𝑤) ∈ 𝐷𝑛 reduces to the zero set of the polynomial𝐺𝑛(𝜏) with Re 𝜏 < 0. Now we write

𝐺𝑛 (𝜏) = 𝑛∑
𝑘=0

𝑎 (𝑛, 𝑛 − 𝑘) 𝜏𝑘
= 𝑎 (𝑛, 𝑛) + 𝑎 (𝑛, 𝑛 − 1) 𝜏 + ⋅ ⋅ ⋅ + 𝑎 (𝑛, 1) 𝜏𝑛−1

+ 𝑎 (𝑛, 0) 𝜏𝑛.
(9)

In Section 3, we introduce the Routh-Hurwitz theorem
that is efficient on checking whether the real polynomial𝐺𝑛(𝜏) has zeros in the right half plane. Using the generating
form of coefficients of 𝐺𝑛(𝜏) (see Proposition 12), we will
show that if 𝑛 ≥ 3, then𝐺𝑛(𝜏) does not satisfy Routh-Hurwitz
conditions, so we obtain the following main result of this
paper.

Theorem 2. TheBergman kernel for𝐷𝑛 is zero-free if and only
if 𝑛 ≤ 2.

For the proof of Theorem 2, we will show that if 𝑛 ≥3, then at least one of 𝑎(𝑛, 𝑛), 𝑎(𝑛, 𝑛 − 1), or 𝑎(𝑛, 𝑛 − 2)
is negative (see Theorem 13). In Section 4, we discuss the
properties of 𝑎(𝑛, ℓ) and prove Theorem 13 using properties
of the Bernoulli numbers and Genocchi numbers.

Remark 3. In Theorem 5.2(ii) and Theorem 5.3 of [8], one
can see that 𝐾2 has no zeros and 𝐾3 has zeros. The main
contribution, Theorem 2 in this paper, is the complete
classification of the answer to the Lu Qi-Keng problem for𝐷𝑛 for all dimensions 𝑛.
2. Explicit Form of the Bergman Kernel for 𝐷𝑛
In [8], we know the explicit form of the Bergman kernel for
Cartan-Hartogs domain Ω̂𝑚 in the case when

Ω = Ω1 × ⋅ ⋅ ⋅ × Ω𝑛,
𝑝 (𝑧1, . . . , 𝑧𝑛) = 𝑛∏

𝑙=1

𝑁Ω𝑙 (𝑧𝑙, 𝑧𝑙)𝜇𝑙 , 𝜇𝑙 > 0, (10)

where 𝑁Ω𝑙 is the generic norm with respect to the bounded
symmetric domainΩ𝑙. Using the numerical invariants 𝑎, 𝑏, 𝑟
with respect to the bounded symmetric domain, we define the
Hua polynomial

𝜒 (𝑠) = 𝑟∏
𝑗=1

(𝑠 + 1 + (𝑗 − 1) 𝑎2)
1+𝑏+(𝑟−𝑗)𝑎

, (11)

where (𝑠)𝑘 = 𝑠(𝑠+1)(𝑠+2) ⋅ ⋅ ⋅ (𝑠+𝑘−1) for 𝑘 ≥ 1 and (𝑠)0 = 1.
Then for any 𝜇 > 0, we define 𝑐(𝜇, 𝑗) by

𝜒 (𝑘𝜇)𝜒 (0) = 𝑑∑
𝑗=0

𝑐 (𝜇, 𝑗) (𝑘 + 1)𝑗 , (12)

where 𝑑 fl 𝑟+𝑟𝑏+𝑟(𝑟−1)𝑎/2.We also define 𝑑𝑗1 ,...,𝑗𝑛𝑗 satisfying

𝑛∏
𝑙=1

(𝑘 + 1)𝑗𝑙 = 𝑗1+⋅⋅⋅+𝑗𝑛∑
𝑗=max(𝑗1 ,...,𝑗𝑛)

𝑑𝑗1 ,...,𝑗𝑛𝑗 (𝑘 + 1)𝑗 . (13)

Theorem 4 (see [8]). Let Ω̂𝑚 fl {(𝜁, 𝑧) ∈ C𝑚 × Ω : ‖𝜁‖2 <𝑝(𝑧)}, whereΩ and 𝑝 are defined as in (10). Then the Bergman
kernel for Ω̂𝑚 is given by

�̂�𝑚 ((𝜁, 𝑧) , (𝜂, 𝑤))
= 1𝑚!

𝑛∏
𝑙=1

𝐾Ω𝑙 (𝑧𝑙, 𝑤𝑙)𝑁Ω𝑙 (𝑧𝑙, 𝑤𝑙)𝑚𝜇𝑙 𝐹𝑛(
⟨𝜁, 𝑧⟩∏𝑛𝑙=1𝑁Ω𝑙 (𝑧𝑙, 𝑤𝑙)𝜇𝑙 ) , (14)
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where

𝐹𝑛 (𝑡) = dimΩ1∑
𝑗1=0

⋅ ⋅ ⋅ dimΩ𝑛∑
𝑗𝑛=0

𝑛∏
𝑙=1

𝑐 (𝜇𝑙, 𝑗𝑙)
⋅ 𝑗1+⋅⋅⋅+𝑗𝑛∑
𝑗=max(𝑗1 ,...,𝑗𝑛)

𝑑𝑗1 ,...,𝑗𝑛𝑗

(𝑗 + 𝑚)!(1 − 𝑡)𝑗+𝑚+1 .
(15)

For any 𝑛 ≥ 𝑘, the number of the partitions of {1, 2, . . . , 𝑛}
into 𝑘 blocks is denoted by 𝑆(𝑛, 𝑘) and called the Stirling
number of the second kind.

Lemma 5 (see [14]). For any positive integer 𝑝, it holds that
𝑥𝑝 = 𝑝∑
𝑗=1

𝑆 (𝑝, 𝑗) (𝑥 − 𝑗 + 1)𝑗 . (16)

Proof of Theorem 1. For any 1 ≤ ℓ ≤ 𝑛, let Ω𝑙 = {𝑧 ∈ C : |𝑧| <1} be the unit disk and𝑚 = 𝜇1 = ⋅ ⋅ ⋅ = 𝜇𝑛 = 1. Then Ω̂𝑚 = 𝐷𝑛
and

𝑟 = 1,
𝑎 = 2,
𝑏 = 0,
𝑔 = 2,

𝑁Ω𝑙 (𝑧, 𝑤) = 1 − 𝑧𝑤,
𝐾Ω𝑙 (𝑧, 𝑤) = (1 − 𝑧𝑤)−2 .

(17)

Since the Hua polynomial is 𝜒(𝑠) = 𝑠 + 1, by (12) we have
𝑘 + 1 = 𝑐 (1, 0) + 𝑐 (1, 1) (𝑘 + 1) , (18)

so that 𝑐(𝜇, 0) = 0 and 𝑐(𝜇, 1) = 1.
Thus the function 𝐹𝑛(𝑡) in Theorem 4 is reduced to

𝐹𝑛 (𝑡) = 𝑛∑
𝑗=1

𝑑1,...,1𝑗 (𝑗 + 1)!(1 − 𝑡)𝑗+2 . (19)

Nowwe claim that𝑑1,...,1𝑗 is equal to (−1)𝑛−𝑗𝑆(𝑛, 𝑗). If 𝑗1 = ⋅ ⋅ ⋅ =𝑗𝑛 = 1, then, by (13), we have
(𝑘 + 1)𝑛 = 𝑛∑

𝑗=1

𝑑1,...,1𝑗 (𝑘 + 1)𝑗 . (20)

By Lemma 5, we have

(−𝑥)𝑛 = 𝑛∑
𝑗=1

𝑆 (𝑛, 𝑗) (−𝑥 − 𝑗 + 1)𝑗
= 𝑛∑
𝑗=1

𝑆 (𝑛, 𝑗) (−1)𝑗 (𝑥𝑗) ,
(21)

since (−𝑥−𝑗+1)𝑗 = (−𝑥−𝑗+1)(−𝑥−𝑗+2) ⋅ ⋅ ⋅ (−𝑥) = (−1)𝑗(𝑥)𝑗.
Thus we obtain

𝑥𝑛 = 𝑛∑
𝑗=1

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑥)𝑗 . (22)

If we compare (20) and (22), then 𝑑1,...,1𝑗 = (−1)𝑛−𝑗𝑆(𝑛, 𝑗) for
all 1 ≤ 𝑗 ≤ 𝑛. Then from (19), it completes the proof of
Theorem 1.

Then the polynomial 𝐺𝑛(𝜏) can be written as

𝐺𝑛 (𝜏)
= 𝑛∑
𝑗=1

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑗 + 1)! 𝑗∑
𝑘=0

(𝑗𝑘)(12)𝑗−𝑘 𝜏𝑘

= 𝑛∑
𝑘=0

{{{
𝑛∑
𝑗=𝑘

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑗 + 1)! (𝑗𝑘)(12)𝑗−𝑘}}}𝜏𝑘

= 𝑛∑
𝑘=0

𝑎 (𝑛, 𝑛 − 𝑘) 𝜏𝑘,

(23)

where𝑎 (𝑛, ℓ)
fl
𝑛∑
𝑗=𝑛−ℓ

(−1)𝑛−𝑗 𝑆 (𝑛, 𝑗) (𝑗 + 1)! ( 𝑗𝑛 − ℓ)(12)𝑗−𝑛+ℓ . (24)

Note that

( 𝑗𝑛 − ℓ) = 𝑗 (𝑗 − 1) ⋅ ⋅ ⋅ (𝑗 − 𝑛 + ℓ + 1)(𝑛 − ℓ)!
= 𝑗!(𝑛 − ℓ)! (𝑗 − 𝑛 + ℓ)!
= (𝑛 − ℓ + 1) (𝑛 − ℓ + 2) ⋅ ⋅ ⋅ 𝑗(𝑗 − 𝑛 + ℓ)!
= (−1)𝑗−𝑛+ℓ (ℓ − 𝑛 − 1) (ℓ − 𝑛 − 2) ⋅ ⋅ ⋅ (−𝑗)(𝑗 − 𝑛 + ℓ)!
= (−1)𝑗−𝑛+ℓ (ℓ − 𝑛 − 1ℓ − 𝑛 + 𝑗) .

(25)

Thus we have𝑎 (𝑛, ℓ)
= (−1)ℓ 𝑛∑

𝑗=𝑛−ℓ

𝑆 (𝑛, 𝑗) (𝑗 + 1)! (ℓ − 𝑛 − 1ℓ − 𝑛 + 𝑗)(12)𝑗−𝑛+ℓ . (26)

Note that 𝑆(𝑛, 𝑗) = 0 for 𝑗 > 𝑛 and ( ℓ−𝑛−1ℓ−𝑛+𝑗 ) = 0 for 𝑗 < 𝑛 − ℓ;
we have𝑎 (𝑛, ℓ)

= (−1)ℓ ∞∑
𝑗=0

𝑆 (𝑛, 𝑗) 𝑗! (𝑗 + 1) (ℓ − 𝑛 − 1ℓ − 𝑛 + 𝑗)(12)𝑗−𝑛+ℓ . (27)
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Lemma 6. For any nonnegative integer 𝑡, one has
∞∑
𝑗=0

(𝑗 + 1)(−𝑡 − 1−𝑡 + 𝑗)𝑥𝑗 = 𝑑𝑑𝑥 ( 𝑥𝑡+1(1 + 𝑥)𝑡+1) . (28)

Proof. Note that for any nonnegative integer 𝑡,
∞∑
𝑗=0

(𝑗 + 1)(−𝑡 − 1−𝑡 + 𝑗)𝑥−𝑡+𝑗

= ∞∑
𝑗=0

(𝑗 + 𝑡 + 1)(−𝑡 − 1𝑗 )𝑥𝑗.
(29)

Note that

𝑑𝑑𝑥 (∞∑
𝑗=0

(−𝑡 − 1𝑗 )𝑥𝑗+𝑡+1)
= ∞∑
𝑗=0

(−𝑡 − 1𝑗 ) (𝑗 + 𝑡 + 1) 𝑥𝑗+𝑡

= ∞∑
𝑗=0

(𝑗 + 𝑡 + 1)(−𝑡 − 1𝑗 )𝑥𝑗+𝑡.
(30)

Thus
∞∑
𝑗=0

(𝑗 + 𝑡 + 1)(−𝑡 − 1𝑗 )𝑥𝑗 = 1𝑥𝑡 𝑑𝑑𝑥 ( 𝑥𝑡+1(1 + 𝑥)𝑡+1) , (31)

which completes the proof.

By Lemma 6, we have

∞∑
𝑗=0

(𝑗 + 1) (ℓ − 𝑛 − 1ℓ − 𝑛 + 𝑗)(12)ℓ−𝑛+𝑗 𝑢𝑗

= (12)ℓ−𝑛 ∞∑
𝑗=0

(𝑗 + 1) (ℓ − 𝑛 − 1ℓ − 𝑛 + 𝑗)(𝑢2)𝑗

= (12)ℓ−𝑛 𝑑𝑑𝑥 ( 𝑥𝑛−ℓ+1(1 + 𝑥)𝑛−ℓ+1)
𝑥=𝑢/2 .

(32)

Definition 7. Define

𝐻𝑛,ℓ (𝑢) fl (12)ℓ−𝑛 𝑑𝑑𝑥 ( 𝑥𝑛−ℓ+1(1 + 𝑥)𝑛−ℓ+1)
𝑥=𝑢/2 . (33)

Let [𝑡𝑛] be the operator which gives the 𝑛th coefficient
in the series expansion of a generating function. It is well-
known that the exponential generating function of 𝑆(𝑛, 𝑗) is
the formal power series

(𝑒𝑡 − 1)𝑗𝑗! = ∞∑
𝑛=0

𝑆 (𝑛, 𝑗) 𝑡𝑛𝑛! . (34)

Using the above generating function, we prove the follow-
ing.

Theorem8. Let𝐺𝑛(𝜏) be the polynomial defined as in (8) with

𝐺𝑛 (𝜏) = 𝑛∑
𝑘=0

𝑎𝑛 (𝑛 − 𝑘) 𝜏𝑘. (35)

Then the coefficient 𝑎(𝑛, ℓ) is written as

𝑎 (𝑛, ℓ) = (−1)ℓ [ 𝑡𝑛𝑛!]𝐻𝑛,ℓ (𝑒𝑡 − 1) , (36)

where 0 ≤ ℓ ≤ 𝑛.
Proof. By (27) and (32), the coefficient 𝑎(𝑛, ℓ) of𝐺𝑛(𝜏) can be
expressed as

𝑎 (𝑛, ℓ) = (−1)ℓ ∞∑
𝑗=0

𝑆 (𝑛, 𝑗) 𝑗! [𝑢𝑗]𝐻𝑛,ℓ (𝑢) . (37)

Note that, by (34), we have

(−1)ℓ ∞∑
𝑗=0

(𝑒𝑡 − 1)𝑗 [𝑢𝑗]𝐻𝑛,ℓ (𝑢)
= (−1)ℓ ∞∑

𝑗=0

∞∑
𝑛=0

𝑆 (𝑛, 𝑗) 𝑗! [𝑢𝑗]𝐻𝑛,ℓ (𝑢) 𝑡𝑛𝑛!
= ∞∑
𝑛=0

((−1)ℓ ∞∑
𝑗=0

𝑆 (𝑛, 𝑗) 𝑗! [𝑢𝑗]𝐻𝑛,ℓ (𝑢)) 𝑡𝑛𝑛!
= ∞∑
𝑛=0

𝑎 (𝑛, ℓ) 𝑡𝑛𝑛! ,

(38)

which follows that

𝑎 (𝑛, ℓ) = (−1)ℓ [ 𝑡𝑛𝑛!]
∞∑
𝑗=0

(𝑒𝑡 − 1)𝑗 [𝑢𝑗]𝐻𝑛,ℓ (𝑢)
= (−1)ℓ [ 𝑡𝑛𝑛!]𝐻𝑛,ℓ (𝑒𝑡 − 1) .

(39)

It completes the proof.

3. Lu Qi-Keng Domains

In this section we investigate the explicit form of 𝑎(𝑛, ℓ)
and prove that the Bergman kernel for 𝐷𝑛 has zeros for any
positive integer 𝑛.

Note that if (𝜁, 𝑧), (𝜂, 𝑤) ∈ 𝐷𝑛, then
⟨𝜁, 𝜂⟩∏𝑛𝑙=1 (1 − 𝑧𝑙𝑤𝑙)

 ≤
𝜁 𝜂∏𝑛𝑙=1√(1 − 𝑧𝑙2) (1 − 𝑤𝑙2)

= √ 𝜁2∏𝑛𝑙=1 (1 − 𝑧𝑙2)
𝜂2∏𝑛𝑙=1 (1 − 𝑤𝑙2) < 1.

(40)

Thus byTheorem 1 and (8), we obtain the following.
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Lemma 9. The zero set

{((𝜁, 𝑧) , (𝜂, 𝑤)) ∈ 𝐷𝑛 × 𝐷𝑛 : 𝐾𝑛 ((𝜁, 𝑧) , (𝜂, 𝑤)) = 0} (41)

is equal to the zero set

{((𝜁, 𝑧) , (𝜂, 𝑤)) ∈ 𝐷𝑛 × 𝐷𝑛 : �̃�𝑛 (𝑡) = 0, |𝑡| < 1} , (42)

where 𝑡 fl ⟨𝜁, 𝜂⟩/∏𝑛𝑙=1(1 − 𝑧𝑙𝑤𝑙).
Since the holomorphic function 𝑡 → 1/(1− 𝑡) − 1/2maps

the unit disk onto the right half plane, we obtain the following
consequence of Theorem 1 and Lemma 9.

Lemma 10. For any positive integers 𝑛, the domain 𝐷𝑛 is a Lu
Qi-Keng domain if and only if all zeros of the polynomial𝐺𝑛(𝜏)
lie in the closed left half plane {𝑧 ∈ C : Re 𝑧 ≤ 0}.

TheRouth-Hurwitz criterion is themost efficient method
for determining whether the polynomial 𝐺𝑛(𝜏) has zeros in
the open left half plane. Let

𝑓 (𝜏) = 𝑎0𝜏𝑛 + 𝑎1𝜏−1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝜏 + 𝑎𝑛, (43)

with real coefficients and 𝑎0 > 0, and defineΔ𝑛𝑗 for 𝑗 = 1, . . . , 𝑛
by

Δ𝑛𝑗 fl


𝑎1 𝑎3 𝑎5 ⋅ ⋅ ⋅ 𝑎2𝑗−1𝑎0 𝑎2 𝑎4 ⋅ ⋅ ⋅ 𝑎2𝑗−20 𝑎1 𝑎3 ⋅ ⋅ ⋅ 𝑎2𝑗−3... ... ... d
...0 0 0 ⋅ ⋅ ⋅ 𝑎𝑗


, (44)

where 𝑎𝑗 = 0 if 𝑗 < 0 or 𝑗 > 𝑛.
Lemma 11 (Routh-Hurwitz/Liénard-Chipart [15]). All zeros
of given polynomial 𝑓(𝜏) lie in the open left half plane {𝜏 ∈ C :
Re 𝜏 < 0} if and only if

Δ𝑛1 > 0, . . . , Δ𝑛𝑛 > 0. (45)

This condition is also equivalent to any one of the following four
forms:

(i) 𝑎𝑛 > 0, 𝑎𝑛−2 > 0, 𝑎𝑛−4 > 0, . . .; Δ𝑛1 > 0, Δ𝑛3 > 0, . . .,
(ii) 𝑎𝑛 > 0, 𝑎𝑛−2 > 0, 𝑎𝑛−4 > 0, . . .; Δ𝑛2 > 0, Δ𝑛4 > 0, . . .,
(iii) 𝑎𝑛 > 0; 𝑎𝑛−1 > 0, 𝑎𝑛−3 > 0, . . .; Δ𝑛1 > 0, Δ𝑛3 > 0, . . .,
(iv) 𝑎𝑛 > 0; 𝑎𝑛−1 > 0, 𝑎𝑛−3 > 0, . . .; Δ𝑛2 > 0, Δ𝑛4 > 0, . . . .

Proposition 12. Let [𝑡𝑛] be the operator which gives the 𝑛th
coefficient in the series expansion of a generating function

𝑎 (𝑛, ℓ) = (−1)ℓ (𝑛 − ℓ + 1) 2𝑛−ℓ+2 [ 𝑡𝑛𝑛!] (𝑒𝑡 − 1)𝑛−ℓ(𝑒𝑡 + 1)𝑛−ℓ+2 . (46)

Proof. Note that

𝐻𝑛,ℓ (𝑢) = (12)ℓ−𝑛 𝑑𝑑𝑥 ( 𝑥𝑛−ℓ+1(1 + 𝑥)𝑛−ℓ+1)
𝑥=𝑢/2

= (12)ℓ−𝑛 (𝑛 − ℓ + 1) 𝑥𝑛−ℓ(1 + 𝑥)𝑛−ℓ+2
𝑥=𝑢/2

= (𝑛 − ℓ + 1) 2𝑛−ℓ+2 𝑢𝑛−ℓ(𝑢 + 2)𝑛−ℓ+2 .
(47)

ByTheorem 8,

𝑎 (𝑛, ℓ) = (−1)ℓ (𝑛 − ℓ + 1) 2𝑛−ℓ+2 [ 𝑡𝑛𝑛!] (𝑒𝑡 − 1)𝑛−ℓ(𝑒𝑡 + 1)𝑛−ℓ+2 . (48)

By Proposition 12, we have

𝑎 (𝑛, 𝑛) = 4 (−1)𝑛 [ 𝑡𝑛𝑛!] 1(𝑒𝑡 + 1)2 ,
𝑎 (𝑛, 𝑛 − 1) = 16 (−1)𝑛−1 [ 𝑡𝑛𝑛!] 𝑒𝑡 − 1(𝑒𝑡 + 1)3 ,
𝑎 (𝑛, 𝑛 − 2) = 48 (−1)𝑛−2 [ 𝑡𝑛𝑛!] (𝑒𝑡 − 1)2(𝑒𝑡 + 1)4 .

(49)

Theorem 13. For each 𝑛 ≥ 3, at least one of 𝑎(𝑛, 𝑛), 𝑎(𝑛, 𝑛−1),
or 𝑎(𝑛, 𝑛 − 2) is negative. More precisely, one has

(i) 𝑎(𝑛, 𝑛) < 0 if 𝑛 = 3, 4, 7, 8, 11, 12, 15, 16, . . .,
(ii) 𝑎(𝑛, 𝑛 − 1) < 0 if 𝑛 = 5, 9, 13, . . .,
(iii) 𝑎(𝑛, 𝑛 − 2) < 0 if 𝑛 = 6, 10, 14, . . ..

Proof. We will prove it in Section 4.

Remark 14. (i) Note that

𝐺2 (𝜏) = 12 + 6𝜏 + 4𝜏2 (50)

has two negative real zeros.Thus,𝐷2 is a LuQi-Keng domain.
(ii) In fact, we see that

𝐺3 (𝜏) = −12 + 2𝜏 + 18𝜏2 + 24𝜏3 (51)

has one positive real zero −1/8 + √33/24 > 0. Thus, we
conclude that the Bergman kernel for 𝐷3 has zeros, so 𝐷3 is
not a Lu Qi-Keng domain.

(iii) By using a computer program (Maple or Mathemat-
ica), we computed the explicit values of 𝑎(𝑛, 𝑛), 𝑎(𝑛, 𝑛 − 1),
and 𝑎(𝑛, 𝑛 − 2) for 2 ≤ 𝑛 ≤ 14. One can check Theorem 13
holds for 3 ≤ 𝑛 ≤ 14 in Tables 1 and 2.

Now we can prove the main theorem of this paper using
Theorem 13.
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Table 1: 2 ≤ 𝑛 ≤ 8.
𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 𝐺7 𝐺8𝑎(𝑛, 𝑛) 1/2 −1/2 −1 1 17/4 −17/4 −31𝑎(𝑛, 𝑛 − 1) 6 2 −8 −13 34 107 −248𝑎(𝑛, 𝑛 − 2) 4 18 6 −90 −129 693 1896

Table 2: 9 ≤ 𝑛 ≤ 14.
𝐺9 𝐺10 𝐺11 𝐺12 𝐺13 𝐺14
131 691/2 −691/2 −5461 5461 929569/8−1258 2764 20462 −43688 −885881/2 929569−7920 −34014 126918 776661 −2723175 −44729673/2
Theorem 2 (again). The Bergman kernel for

𝐷𝑛 = {{{(𝜁, 𝑧1, 𝑧2, . . . , 𝑧𝑛) ∈ C
𝑛+1 : 𝜁2

< 𝑛∏
𝑗=1

(1 − 𝑧𝑗2)}}}
(52)

is zero-free if and only if 𝑛 ≤ 2.
Proof. (i) If 𝑛 = 4𝑘 − 1 or 𝑛 = 4𝑘 for 𝑘 ∈ N, then 𝑎(𝑛, 𝑛) < 0
byTheorem 13. So, the polynomial 𝐺𝑛(𝜏) does not satisfy any
condition in Lemma 11. It follows that𝐷𝑛 is not a Lu Qi-Keng
domain.

(ii) If 𝑛 = 4𝑘 + 1 for 𝑘 ∈ N, then 𝑎(𝑛, 𝑛 − 1) < 0
by Theorem 13. So, the polynomial 𝐺𝑛(𝜏) does not satisfy
conditions (iii) and (iv) in Lemma 11. It follows that𝐷𝑛 is not
a Lu Qi-Keng domain.

(iii) If 𝑛 = 4𝑘 + 1 for 𝑘 ∈ N, then 𝑎(𝑛, 𝑛 − 2) < 0
by Theorem 13. So, the polynomial 𝐺𝑛(𝜏) does not satisfy
conditions (i) and (ii) in Lemma 11. It follows that𝐷𝑛 is not a
Lu Qi-Keng domain.

By (i), (ii), and (iii), 𝐺𝑛(𝜏) does not satisfy any condition
of Routh-Hurwitz theorem, so the Bergman kernel for𝐷𝑛 has
zeros for all 𝑛 ≥ 3.
4. Proof of Theorem 13

In this section, we investigate the properties of 𝑎(𝑛, 𝑛), 𝑎(𝑛, 𝑛−1), and 𝑎(𝑛, 𝑛−2) and proveTheorem 13. For convenience, we
denote the functions 𝐴, 𝐵, 𝐶, 𝐷 by

𝐴 (𝑡) fl 1𝑒𝑡 + 1 = ∞∑
𝑘=0

𝑎𝑘𝑡𝑘,
𝐵 (𝑡) fl 1(𝑒𝑡 + 1)2 = ∞∑

𝑘=0

𝑏𝑘𝑡𝑘,
𝐶 (𝑡) fl 1(𝑒𝑡 + 1)3 = ∞∑

𝑘=0

𝑐𝑘𝑡𝑘,
𝐷 (𝑡) fl 1(𝑒𝑡 + 1)4 = ∞∑

𝑘=0

𝑑𝑘𝑡𝑘.

(53)

It is interesting that the numbers 𝑎𝑘’s are related to
the following Bernoulli numbers. Bernoulli [16] introduced
Bernoulli numbers 𝐵2𝑛 for 𝑛 ≥ 1 satisfying the identity

𝑡𝑒𝑡 − 1 = 1 − 𝑡2 + ∞∑
𝑛=1

(−1)𝑛+1 𝐵2𝑛 𝑡2𝑛(2𝑛)! , (54)

where 𝐵2 = 1/6, 𝐵4 = 1/30, and 𝐵6 = 1/42, . . . . The Genocchi
numbers 𝐺2𝑛 for 𝑛 ≥ 1 are defined [17] by

𝐺2𝑛 fl 2 (22𝑛 − 1) 𝐵2𝑛. (55)

Lemma 15 (see [18]). Let 𝑛 be any positive integer. Then

(i) 𝐵2𝑛’s are positive for all positive integers 𝑛;
(ii) 2𝑡/(𝑒𝑡 + 1) = 𝑡 + ∑∞𝑛=1(−1)𝑛𝐺2𝑛(𝑡2𝑛/(2𝑛)!).

Lemma 16. For any 𝑘 ∈ N, one has

𝑎2𝑘 = 0,
𝑎4𝑘−1 > 0,
𝑎4𝑘−3 < 0.

(56)

Moreover 𝑎0 = 1/2.
Proof. By Lemma 15(ii), we have

1𝑒𝑡 + 1 = 12 + ∞∑
𝑛=1

(−1)𝑛 𝐺2𝑛2 ⋅ (2𝑛)! 𝑡2𝑛−1. (57)

It follows that

𝑎0 = 12 ,
𝑎2𝑘 = 0 (𝑘 ≥ 1) ,

𝑎2𝑛−1 = (−1)𝑛 𝐺2𝑛2 ⋅ (2𝑛)! .
(58)

Note that𝐺2𝑘 > 0 for all 𝑘 ≥ 1 by Lemma 15(i).Thus 𝑎4𝑘−1 > 0
and 𝑎4𝑘−3 < 0 for all 𝑘 ≥ 1.
Lemma 17. For any 𝑘 ∈ N, one has

(i) 𝑏2𝑘+1 = 𝑎2𝑘+1,
(ii) 𝑏𝑘 = (𝑘 + 1)𝑎𝑘+1 + 𝑎𝑘,
(iii) 2𝑐2𝑘 = 3𝑏2𝑘,
(iv) 2𝑐𝑘 = (𝑘 + 1)𝑏𝑘+1 + 2𝑏𝑘,
(v) 2𝑑2𝑘+1 = 4𝑎2𝑘+1 − 6𝑏2𝑘+1 + 4𝑐2𝑘+1,
(vi) 3𝑑𝑘 = (𝑘 + 1)𝑐𝑘+1 + 3𝑐𝑘.

Proof. From the identity

𝐵 (−𝑡) = 𝑒2𝑡(𝑒𝑡 + 1)2 = (𝑒𝑡 + 1)2 − 2 (𝑒𝑡 + 1) + 1(𝑒𝑡 + 1)2 , (59)
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we obtain

𝐵 (𝑡) − 𝐵 (−𝑡) = 2𝐴 (𝑡) − 1. (60)

It follows that

2∞∑
𝑘=0

𝑏2𝑘+1𝑡2𝑘+1 = 2∞∑
𝑘=0

𝑎𝑘𝑡𝑘 + 1. (61)

Thus we obtain (i). From the identity

𝐴 (𝑡) = −𝑒𝑡(𝑒𝑡 + 1)2 = − (𝑒𝑡 + 1) + 1(𝑒𝑡 + 1)2 , (62)

we obtain

𝐴 (𝑡) + 𝐴 (𝑡) = 𝐵 (𝑡) . (63)

It follows that
∞∑
𝑘=0

𝑎𝑘𝑡𝑘 + ∞∑
𝑘=1

𝑘𝑎𝑘𝑡𝑘−1 = ∞∑
𝑘=0

𝑏𝑘𝑡𝑘. (64)

Thus we obtain (ii). From the identity

𝐶 (𝑡) + 𝐶 (−𝑡) = 1 − 3𝐴 (𝑡) + 3𝐵 (𝑡) , (65)

we have 2𝑐2𝑘 = −3𝑎2𝑘 + 3𝑏2𝑘. Since 𝑎2𝑘 = 0 for 𝑘 ≥ 1 in
Lemma 16, we obtain (iii). From the identity

𝐵 (𝑡) + 2𝐵 (𝑡) = 2𝐶 (𝑡) , (66)

we obtain (iv). Similarly as the previous proofs, we can easily
see that (v) comes from the identity

𝐷 (𝑡) − 𝐷 (−𝑡) = −1 + 4𝐴 (𝑡) − 6𝐵 (𝑡) + 4𝐶 (𝑡) , (67)

and (vi) comes from the identity

𝐶 (𝑡) + 3𝐶 (𝑡) = 3𝐷 (𝑡) . (68)

Proposition 18. For any 𝑘 ∈ N, it holds that

(i) 𝑎2𝑘 = 0, 𝑎4𝑘−1 > 0, 𝑎4𝑘+1 < 0,
(ii) 𝑏4𝑘 < 0, 𝑏4𝑘+1 < 0, 𝑏4𝑘+2 > 0, 𝑏4𝑘+3 > 0,
(iii) 𝑐4𝑘+1 > 0, 𝑐4𝑘+2 > 0,
(iv) 𝑑4𝑘+2 < 0 for 𝑘 ≥ 2.

Proof. (ii) Note that

𝑏4𝑘 = (4𝑘 + 1) 𝑎4𝑘+1 < 0,
𝑏4𝑘+1 = 𝑎4𝑘+1 < 0,
𝑏4𝑘+2 = (4𝑘 + 3) 𝑎4𝑘+3 > 0,
𝑏4𝑘+3 = 𝑎4𝑘+3 > 0.

(69)

(iii) Note that 𝑐4𝑘+2 = (3/2)𝑏4𝑘+2 > 0. Since 𝐶(𝑡) = 𝐴(𝑡) ⋅𝐵(𝑡), we have
𝑐4𝑘+1 = 4𝑘+1∑

𝑙=0

𝑎𝑙𝑏4𝑘+1−𝑙
= 𝑎0𝑏4𝑘+1 + 𝑎1𝑏4𝑘 + 𝑎4𝑘+1𝑏0 + 2𝑘−1∑

𝑙=1

𝑎2𝑙+1𝑏4𝑘−2𝑙
> 𝑎0𝑏4𝑘+1 + 𝑎1𝑏4𝑘 + 𝑎4𝑘+1𝑏0
= 12𝑏4𝑘+1 − 14𝑏4𝑘 + 14𝑎4𝑘+1
= 12𝑎4𝑘+1 − 14 (4𝑘 + 1) 𝑎4𝑘+1 + 14𝑎4𝑘+1
= 14 (2 − 4𝑘) 𝑎4𝑘+1 > 0.

(70)

Here by Proposition 18(i) and (ii),

2𝑘−1∑
𝑙=1

𝑎2𝑙+1𝑏4𝑘−2𝑙 = 𝑘−1∑
𝑙=1

𝑎4𝑙+1𝑏4𝑘−4𝑙 + 𝑘∑
𝑙=1

𝑎2𝑙−1𝑏4𝑘−4𝑙+2 > 0. (71)

(iv) Similarly as the proof of (iii), we obtain 𝑑4𝑘+2 < 0 for𝑘 ≥ 2.
Now we proveTheorem 13 using the above proposition.

Theorem 13 (again). For any positive integers 𝑘, one has
(i) 𝑎(𝑛, 𝑛) < 0 if 𝑛 = 4𝑘 − 1 or 𝑛 = 4𝑘,
(ii) 𝑎(𝑛, 𝑛 − 1) < 0 if 𝑛 = 4𝑘 + 1,
(iii) 𝑎(𝑛, 𝑛 − 2) < 0 if 𝑛 = 4𝑘 + 2.

Proof. (i) Note that

𝑎 (𝑛, 𝑛) = 4 (−1)𝑛 [ 𝑡𝑛𝑛!] 1(𝑒𝑡 + 1)2 = 4 (−1)𝑛 𝑏𝑛. (72)

By Proposition 18(ii), it follows that

𝑎 (4𝑘 − 1, 4𝑘 − 1) = −4𝑏4𝑘−1 < 0,
𝑎 (4𝑘, 4𝑘) = 4𝑏4𝑘 < 0. (73)

(ii) Note that

𝑎 (𝑛, 𝑛 − 1) = 16 (−1)𝑛−1 [ 𝑡𝑛𝑛!] 𝑒𝑡 − 1(𝑒𝑡 + 1)3
= 16 (−1)𝑛−1 (𝑏𝑛 − 2𝑐𝑛) ,

(74)

since

𝑒𝑡 − 1(𝑒𝑡 + 1)3 = (𝑒𝑡 + 1) − 2(𝑒𝑡 + 1)3 = 1(𝑒𝑡 + 1)2 − 2(𝑒𝑡 + 1)3 . (75)

By Proposition 18(ii) and (iii), it follows that

𝑎 (4𝑘 + 1, 4𝑘) = 16 (𝑏4𝑘+1 − 2𝑐4𝑘+1) < 0. (76)
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(iii) Note that

𝑎 (𝑛, 𝑛 − 2) = 48 (−1)𝑛−2 [ 𝑡𝑛𝑛!] (𝑒𝑡 − 1)2(𝑒𝑡 + 1)4
= 48 (−1)𝑛−2 (𝑏𝑛 − 4𝑐𝑛 + 4𝑑𝑛) ,

(77)

since

(𝑒𝑡 − 1)2(𝑒𝑡 + 1)4 = (𝑒𝑡 + 1 − 2)2(𝑒𝑡 + 1)4
= 1(𝑒𝑡 + 1)2 − 4(𝑒𝑡 + 1)3 + 4(𝑒𝑡 + 1)4 .

(78)

By Lemma 17(iii), we have

𝑎 (4𝑘 + 2, 4𝑘) = 48 (𝑏4𝑘+2 − 4𝑐4𝑘+2 + 4𝑑4𝑘+2)
= 48 (−5𝑏4𝑘+2 + 4𝑑4𝑘+2) < 0

for 𝑘 ≥ 2.
(79)

Moreover 𝑎(6, 4) = 48(−5𝑏6 + 4𝑑6) = 48 ⋅ (−43/11520) <0.
Appendix

We add the explicit forms of Taylor expansions for some
functions which have been discussed in Section 4.

1𝑒𝑥 + 1 = 12 − 𝑥4 + 𝑥348 − 𝑥5480 + 17𝑥780640
− 31𝑥91451520 + 691𝑥11319334400 − ⋅ ⋅ ⋅ ,

1(𝑒𝑥 + 1)2 = 14 − 𝑥4 + 𝑥216 + 𝑥348 − 𝑥496 − 𝑥5480 + 17𝑥611520
+ 17𝑥780640 − 31𝑥8161280 − 31𝑥91451520
+ 691𝑥1029030400 + 691𝑥11319334400
− 5461𝑥121916006400 − ⋅ ⋅ ⋅ ,

1(𝑒𝑥 + 1)3 = 18 − 3𝑥16 + 3𝑥232 − 𝑥464 + 3𝑥51280 + 17𝑥67680
− 𝑥71792 − 31𝑥8107520 + 𝑥910240
+ 691𝑥1019353600 − 53𝑥113548160
− 5461𝑥121277337600 + 8507𝑥134025548800
+ 929569𝑥141859803545600 − ⋅ ⋅ ⋅ ,

1(𝑒𝑥 + 1)4 = 116 − 𝑥8 + 3𝑥232 − 𝑥348 − 3𝑥4256 + 13𝑥51920
+ 7𝑥67680 − 107𝑥780640 + 𝑥8215040
+ 629𝑥92903040 − 41𝑥102150400
− 10231𝑥11319334400 + 7127𝑥121459814400
+ 885881𝑥13199264665600 − 1710341𝑥141859803545600
− 24688759𝑥1541845579776000 + ⋅ ⋅ ⋅ ,

𝑒𝑥 − 1(𝑒𝑥 + 1)3 = 𝑥8 − 𝑥28 + 𝑥348 + 𝑥448 − 13𝑥51920 − 17𝑥65760
+ 107𝑥780640 + 31𝑥880640 − 629𝑥92903040
− 691𝑥1014515200 + 10231𝑥11319334400
+ 5461𝑥12958003200 − 885881𝑥13199264665600− ⋅ ⋅ ⋅ ,

(𝑒𝑥 − 1)2(𝑒𝑥 + 1)4 = 𝑥216 − 𝑥316 + 𝑥4192 + 𝑥564 − 43𝑥611520 − 11𝑥73840
+ 79𝑥880640 + 11𝑥924192 − 5669𝑥1029030400
− 641𝑥119676800 + 258887𝑥127664025600
+ 133𝑥1314598144 − 14909891𝑥142789705318400− ⋅ ⋅ ⋅ .

(A.1)
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