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This paper is concerned with extending a Chebyshev system of 𝑛 continuous nonconstant functions into a set of 𝑛 + 1 functions
including a constant function. Necessary and sufficient conditions for the new set to be a Chebyshev system are discussed and some
results are obtained.

1. Introduction

Most of thematerial in this section and Section 2 can be found
in any standard book in approximation theory and related
topics; see, for example, [1–5]. The finite set of functions
{𝑔
1
, . . . , 𝑔

𝑛
} ⊂ C[𝑎, 𝑏] is called a Chebyshev system on [𝑎, 𝑏] if

it is linearly independent and D ( 𝑔1 ,...,𝑔𝑛𝑥
1
,...,𝑥
𝑛
) = Det[𝑔

𝑖
(𝑥
𝑗
)] ̸= 0,

𝑖, 𝑗 = 1, . . . , 𝑛, for all {𝑥
𝑗
}
𝑛

𝑗=1
such that 𝑎 ≤ 𝑥

1
< 𝑥
2
< ⋅ ⋅ ⋅ <

𝑥
𝑛
≤ 𝑏, and the 𝑛-dimensional subspace 𝐺 = ⟨𝑔

1
, . . . , 𝑔

𝑛
⟩ of

C[𝑎, 𝑏]will be called a Chebyshev subspace orHaar subspace.
Using the continuity of the determinant, it can be shown that
the sign of the determinant is constant (see [6]), so we will
assume that the determinant is always positive throughout
this paper (replace 𝑔

1
by −𝑔

1
if necessary). If each 𝑔

𝑖
is

continuously differentiable function on [𝑎, 𝑏], 𝑖 = 1, . . . , 𝑛

and 𝑎 ≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ 𝑏, then the determinant

D∗ ( 𝑔1,...,𝑔𝑛𝑥
1
,...,𝑥
𝑛
) is defined as follows:

D∗ (𝑔1, . . . , 𝑔𝑛
𝑥
1
, . . . , 𝑥

𝑛

) =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑔
1
(𝑡
1
) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑡
1
)

𝑔


1
(𝑡
1
) ⋅ ⋅ ⋅ 𝑔



𝑛
(𝑡
1
)

.

.

.

.

.

.

𝑔
(𝑟
1
−1)

1
(𝑡
1
) ⋅ ⋅ ⋅ 𝑔

(𝑟
1
−1)

𝑛
(𝑡
1
)

.

.

.

.

.

.

𝑔
1
(𝑡
𝑝
) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑡
𝑝
)

.

.

.

.

.

.

𝑔

(𝑟
𝑝
−1)

1
(𝑡
𝑝
) ⋅ ⋅ ⋅ 𝑔

(𝑟
𝑝
−1)

𝑛 (𝑡
𝑝
)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (1)

where 𝑥
𝑖
is repeated 𝑟

𝑖
times, 𝑖 = 1, . . . , 𝑝, 𝑎 ≤ 𝑡

1
< 𝑡
2
<

⋅ ⋅ ⋅ < 𝑡
𝑝
≤ 𝑏, and {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑝
} = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}.The set of

functions {𝑔
1
, . . . , 𝑔

𝑛
} is called an extendedChebyshev system

on [𝑎, 𝑏] if D∗ ( 𝑔1,...,𝑔𝑛𝑥
1
,...,𝑥
𝑛
) > 0, and the 𝑛-dimensional subspace

𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ of C[𝑎, 𝑏] will be called an extended

Chebyshev subspace.
In this paper we will consider the following problem.
If 𝐺 = ⟨𝑔

1
, . . . , 𝑔

𝑛
⟩ is a Chebyshev subspace of C[𝑎, 𝑏]

such that 1 ∉ 𝐺 then what property must 𝐺 have so that
the subspace 𝑈 = ⟨𝑢

0
, 𝑢
1
, . . . , 𝑢

𝑛
⟩ is (𝑛 + 1)-dimensional

Chebyshev subspace of C[𝑎, 𝑏], where 𝑢
0
= 1, 𝑢

𝑖
= 𝑔
𝑖
,

𝑖 = 1, . . . , 𝑛? We will present some results in Section 3 which
give a partial answer to this question.

2. Preliminary

Let 𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ be a Chebyshev subspace of C[𝑎, 𝑏] and

let {𝑥
𝑗
}
𝑛+1

𝑗=1
be a set of points such that 𝑎 ≤ 𝑥

1
< 𝑥
2
< ⋅ ⋅ ⋅ <

𝑥
𝑛+1

≤ 𝑏, and then for any 𝑔 ∈ 𝐺 we have

0 = D(
𝑔, 𝑔
1
, . . . , 𝑔

𝑛

𝑥
1
, . . . , 𝑥

𝑛+1

) =

𝑛+1

∑

𝑖=1

(−1)
𝑖+1
Δ
𝑖
𝑔 (𝑥
𝑖
) , (2)

where

Δ
1
= D(

𝑔
1
, . . . , 𝑔

𝑛

𝑥
2
, . . . , 𝑥

𝑛+1

) ,
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Δ
𝑛+1

= D(
𝑔
1
, . . . , 𝑔

𝑛

𝑥
1
, . . . , 𝑥

𝑛

) ,

Δ
𝑖
= D(

𝑔
1
, . . . , 𝑔

𝑛

𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑥
𝑖+1
, . . . , 𝑥

𝑛+1

) ,

𝑖 = 2, . . . , 𝑛.

(3)

Taking 𝜃
𝑖
= Δ
𝑖
/∑
𝑛+1

𝑗=1
Δ
𝑗
then 𝜃

𝑖
> 0 for all 𝑖 = 1, . . . , 𝑛+1

with ∑𝑛+1
𝑖=1
𝜃
𝑖
= 1 and ∑𝑛+1

𝑖=1
(−1)
𝑖
𝜃
𝑖
𝑔(𝑥
𝑖
) = 0 for every 𝑔 ∈ 𝐺.

This discussion proves the existence part of the following
lemma.

Lemma 1. Let 𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ be a Chebyshev subspace of

C[𝑎, 𝑏] and let {𝑥
𝑗
}
𝑛+1

𝑗=1
be a set of points such that 𝑎 ≤ 𝑥

1
< 𝑥
2
<

⋅ ⋅ ⋅ < 𝑥
𝑛+1

≤ 𝑏, and then there exists a unique set of positive
numbers {𝜃

𝑗
}
𝑛+1

𝑗=1
with∑𝑛+1

𝑖=1
𝜃
𝑖
= 1 such that∑𝑛+1

𝑖=1
(−1)
𝑖
𝜃
𝑖
𝑔(𝑥
𝑖
) =

0 for every 𝑔 ∈ 𝐺.

Proof. We only need to prove the uniqueness part of this
lemma. Suppose that there are two sets of positive real
numbers {𝜃

𝑗
}
𝑛+1

𝑗=1
and {𝜆

𝑗
}
𝑛+1

𝑗=1
with ∑𝑛+1

𝑖=1
𝜃
𝑖
= ∑
𝑛+1

𝑖=1
𝜆
𝑖
= 1 such

that
𝑛+1

∑

𝑖=1

(−1)
𝑖
𝜃
𝑖
𝑔 (𝑥
𝑖
) =

𝑛+1

∑

𝑖=1

(−1)
𝑖
𝜆
𝑖
𝑔 (𝑥
𝑖
) = 0

for every 𝑔 ∈ 𝐺.

(4)

Since𝐺 is a Chebyshev subspace, then for each 𝑘 ∈ {2, . . . , 𝑛+
1} there exists a unique function ℎ(𝑘) ∈ 𝐺 such that ℎ(𝑘)(𝑥

1
) =

1 and ℎ(𝑘)(𝑥
𝑙
) = 0, 𝑙 ∈ {2, . . . , 𝑛 + 1} \ {𝑘} (see [6]), and from

(4) we have

−𝜃
1
+ (−1)

𝑘
𝜃
2
ℎ
(𝑘)
(𝑥
𝑘
) = 0,

−𝜆
1
+ (−1)

𝑘
𝜆
2
ℎ
(𝑘)
(𝑥
𝑘
) = 0,

(5)

where 𝑘 = 2, . . . , 𝑛 + 1.
Clearly ℎ(𝑘)(𝑥

𝑘
) ̸= 0, and therefore (5) yield

𝜃
𝑘

𝜃
1

=

𝜆
𝑘

𝜆
1

, 𝑘 = 2, . . . , 𝑛 + 1. (6)

Hence (1/𝜃
1
) ∑
𝑛+1

𝑘=2
𝜃
𝑘
= (1/𝜆

1
) ∑
𝑛+1

𝑘=2
𝜆
𝑘
⇒ (1 − 𝜃

1
)/𝜃
1
= (1 −

𝜆
1
)/𝜆
1
⇒ 𝜃
1
= 𝜆
1
, and, by (6), 𝜃

𝑖
= 𝜆
𝑖
, 𝑖 = 2, . . . , 𝑛 + 1, and

the proof is complete.

3. The Main Result

We start this section by the following theorem.

Theorem 2. Let 𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩, where {𝑔

𝑖
}
𝑛

𝑖=1
⊂ C[𝑎, 𝑏]

is a Chebyshev system on [𝑎, 𝑏]. Then {𝑔
0
= 1, 𝑔

1
, . . . , 𝑔

𝑛
}

is a Chebyshev system on [𝑎, 𝑏] if and only if, for each set of
points {𝑡

𝑖
}
𝑛

𝑖=0
such that 𝑎 ≤ 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
≤ 𝑏

and the corresponding set of positive real numbers {𝜃
𝑗
}
𝑛

𝑗=0
with

∑
𝑛

𝑖=0
𝜃
𝑖
= 1 satisfying ∑𝑛

𝑖=0
(−1)
𝑖
𝜃
𝑖
𝑔(𝑡
𝑖
) = 0 for every 𝑔 ∈ 𝐺, we

have

∑

𝑖∈𝐼

𝜃
𝑖
̸= ∑

𝑗∈𝐽

𝜃
𝑗
, (7)

where 𝐼 = {𝑖 ∈ 𝐴 : 𝑖 is odd}, 𝐴 = {0, 1, . . . , 𝑛}, and 𝐽 = 𝐴 \ 𝐼.

Proof. Let {𝑡
𝑖
}
𝑛

𝑖=0
be a set of points such that 𝑎 ≤ 𝑡

0
< 𝑡
1
<

⋅ ⋅ ⋅ < 𝑡
𝑛
≤ 𝑏 and the corresponding set of positive real

numbers {𝜃
𝑗
}
𝑛

𝑗=0
with∑𝑛

𝑖=0
𝜃
𝑖
= 1 satisfying∑𝑛

𝑖=0
(−1)
𝑖
𝜃
𝑖
𝑔(𝑡
𝑖
) =

0 for every 𝑔 ∈ 𝐺, where 𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ is a Chebyshev

subspace of C[𝑎, 𝑏]. From Lemma 1 𝜃
𝑖
= Δ
𝑖
/𝑑, where 𝑑 =

∑
𝑛

𝑗=0
Δ
𝑗
and Δ

𝑖
= D ( 𝑔

1
,...,𝑔
𝑛

𝑡
0
,...,𝑡
𝑖−1
,𝑡
𝑖+1
,...,𝑡
𝑛
), 𝑖 = 0, . . . , 𝑛.Hence

D(
𝑔
0
, 𝑔
1
, . . . , 𝑔

𝑛

𝑡
0
, . . . , 𝑡

𝑛

) = Det
[

[

[

[

[

[

[

1 𝑔
1
(𝑡
0
) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑡
0
)

1 𝑔
1
(𝑡
1
) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑡
1
)

.

.

.

.

.

. ⋅ ⋅ ⋅

.

.

.

1 𝑔
1
(𝑡
𝑛
) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑡
𝑛
)

]

]

]

]

]

]

]

,

=

𝑛

∑

𝑖=0

(−1)
𝑖
Δ
𝑖
=

𝑛

∑

𝑖=0

(−1)
𝑖
𝑑𝜃
𝑖

= 𝑑
[

[

∑

𝑖∈𝐼

𝜃
𝑖
−∑

𝑗∈𝐽

𝜃
𝑗
]

]

̸= 0

(8)

if and only if ∑
𝑖∈𝐼
𝜃
𝑖
̸= ∑
𝑗∈𝐽
𝜃, where 𝐼 and 𝐽 are as defined

above, and the theorem is proved.

Assumption 3. Let 𝑔
𝑖
∈ C1[𝑎, 𝑏] for all 𝑖 = 1, . . . , 𝑛 and let

𝐺 = ⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ be a Chebyshev subspace of C[𝑎, 𝑏].We say

that𝐺 satisfies Assumption 3 if, for each nontrivial element 𝑔
of𝐺, 𝑔 can have at most 𝑛−1 distinct zeros on (𝑎, 𝑏). That is,
if 𝑔(𝑥

𝑖
) = 0, 𝑎 < 𝑥

1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑘
< 𝑏, and 𝑘 ≥ 𝑛, then 𝑔 is

identically zero.

Theorem 4. Suppose 𝑔
𝑖
∈ C1[𝑎, 𝑏] for all 𝑖 = 1, . . . , 𝑛 and 𝐺 =

⟨𝑔
1
, . . . , 𝑔

𝑛
⟩ is a Chebyshev subspace of C[𝑎, 𝑏]. If 𝐺 satisfies

Assumption 3, then {𝑔
0
= 1, 𝑔

1
, . . . , 𝑔

𝑛
} is a Chebyshev system

on [𝑎, 𝑏].

Proof. If there is a function ℎ = 𝛼
0
+ 𝛼
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
𝑔
𝑛
such

that ℎ(𝑡
𝑖
) = 0 at some set of points 𝑎 ≤ 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
≤ 𝑏;

then by Rolle’s theorem there exits a set of points {𝑥
𝑗
}
𝑘

𝑗=1
, 𝑥
𝑗
∈

(𝑡
𝑗−1
, 𝑡
𝑗
), such that (ℎ)(𝑥

𝑗
) = 0 = (𝑔)


(𝑥
𝑗
), 𝑗 = 1, . . . , 𝑘, where

𝑔 = 𝛼
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
𝑔
𝑛
∈ 𝐺. So if 𝑘 ≥ 𝑛 then 𝑔 = 0, and hence

ℎ = 𝛼
0
⇒ ℎ = 𝛼

0
= 0 and this shows that {𝑔

0
= 1, 𝑔

1
, . . . , 𝑔

𝑛
}

is a Chebyshev system on [𝑎, 𝑏].

When 𝑛 = 1, 𝑢 ∈ C[𝑎, 𝑏], and 𝐺 = ⟨𝑢⟩ is a Chebyshev
subspace of C[𝑎, 𝑏] if 𝑢(𝑥) ̸= 0 for all 𝑥 ∈ [𝑎, 𝑏]. For this
special case we have the following results which can be found
in [3].

Proposition 5. Let 𝑢 ∈ C[𝑎, 𝑏], and then 𝐻 = ⟨1, 𝑢⟩ is
a Chebyshev subspace of C[𝑎, 𝑏] if and only if 𝑢 is strictly
monotonic function on [𝑎, 𝑏].
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Remark 6. If 𝑢 is an even function on [−𝑎, 𝑎], 𝑎 > 0, then
{1, 𝑢} is not a Chebyshev system on [−𝑎, 𝑎], that is, since
D ( 1,𝑢
−𝑡,𝑡
) = 0, ∀𝑡 ∈ (0, 𝑎].

Remark 7. Assumption 3 is not a necessary condition for
Theorem 4 as the following example illustrates.

Example 8. Take 𝑢 = 𝑒
𝑥
3

and then {1, 𝑢} is a Chebyshev
system on [−𝑎, 𝑎], 𝑎 > 0 although 𝑢(0) = 0.

Finally, we will give an example of a set of continuously
differentiable functions {𝑔

𝑖
}
𝑛

𝑖=1
which is an extended Cheby-

shev system on [𝑎, 𝑏] and {𝑔
0
= 1, 𝑔

1
, . . . , 𝑔

𝑛
} is a Chebyshev

system on [𝑎, 𝑏] but not an extended Chebyshev system.

Example 9. Let 𝑔
1
= 𝑥 and 𝑔

2
= − cos𝑥, then D∗ ( 𝑔1 ,𝑔2

𝑡,𝑡
) =

𝑡 sin 𝑡 + cos 𝑡 > 0, ∀𝑡 ∈ [0, 𝜋/2], and hence 𝐺 = ⟨𝑔
1
, 𝑔
2
⟩ is

an extended Chebyshev system on [0, 𝜋/2]. And if 𝑔 ∈ 𝐺

then 𝑔 can have at most one zero on [0, 𝜋/2]; this means
that𝐺 satisfies Assumption 3 and byTheorem4 {1, 𝑔

1
, 𝑔
2
} is a

Chebyshev system on [0, 𝜋/2]. Taking V(𝑥) = −𝜋/2+𝑥+cos 𝑥,
then V(𝜋/2) = V(𝜋/2) = V(𝜋/2) = 0; that is, {1, 𝑔

1
, 𝑔
2
} is not

an extended Chebyshev system on [0, 𝜋/2].
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