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We prove a new result of existence of equilibria for an u.s.c. set-valuedmapping𝐹 on a compact set 𝑆 ofR𝑛 which is epi-Lipschitz and
satisfies a weak tangential condition. Equivalently this provides existence of fixed points of the set-valued mapping 𝑥  𝐹(𝑥) − 𝑥.
The main point of our result lies in the fact that we do not impose the usual tangential condition in terms of the Clarke tangent
cone. Illustrative examples are stated showing the importance of our results and that the existence of such equilibria does not need
necessarily such usual tangential condition.

1. Introduction

Let 𝐹 be a set-valued mapping defined from 𝑆 ⊂ R𝑛 into R𝑚.
A familiar result on existence of equilibria on convex compact
sets is formulated as follows (see [1]).

Theorem 1. Let 𝐹 be an u.s.c. set-valued mapping defined on a
convex compact set 𝑆 ⊂ R𝑛 and suppose that 𝐹(𝑥) is nonempty
convex compact, ∀𝑥 ∈ 𝑆. If

𝐹 (𝑥) ∩ 𝑇 (𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆, (1)

then𝐹 has equilibria on 𝑆; that is, ∃𝑥∗ ∈ 𝑆 such that 0 ∈ 𝐹(𝑥∗).

Here 𝑇(𝑆; 𝑥) is the tangent cone in the sense of convex
analysis defined as 𝑇(𝑆; 𝑥) = cl(R

+
(𝑆−𝑥)), whereR

+
denotes

the set of all nonnegative real numbers and cl denotes the
closure in𝐸. Assume now that 𝑆 is not necessarily convex and
assume that in the tangential condition (1) the tangent cone
𝑇(𝑆; 𝑥) is replaced by the Clarke tangent cone 𝑇𝐶(𝑆; 𝑥); that
is,

𝐹 (𝑥) ∩ 𝑇
𝐶

(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (2)

In order to get the same conclusion of Theorem 1 in the
nonconvex case, we need onemore assumption on 𝑆, which is
the epi-Lipschitzness of 𝑆.The following theorem is an exten-
sion of Theorem 1 to the nonconvex case (see [1]).

Theorem 2. Let 𝑆 be homeomorphic to a convex compact set
inR𝑛 and let 𝐹 be an u.s.c. set-valued mapping with nonempty
closed convex values. Assume that 𝑆 is epi-Lipschitz and (2)
holds. Then 𝐹 has equilibria on 𝑆.

It is very important to point out that for epi-Lipschitz sets
the tangential condition (2) cannot be weakened to

𝐹 (𝑥) ∩ 𝐾 (𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆, (3)

where 𝐾(𝑆; 𝑥) is (generally greater) the contingent cone
defined below in Section 2 (see Example 3.1 in [1]).

Let 𝑆 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
, 𝑥
2
∈ [−1, 0]} and 𝐹(𝑥

1
, 𝑥
2
) =

(2𝑥
1
+ 𝑥
2
; 2𝑥
1
+ 3𝑥
2
− 1) + B. Clearly 𝑆 is an epi-Lipschitz

compact convex set inR2 and𝐹 is u.s.c. onR2 with𝑇𝐶(𝑆; 𝑢
𝑖
)∩

𝐹(𝑢
𝑖
) = 0 for 𝑢

1
= (−1, 0), 𝑢

2
= (0, −1), and 𝑢

3
= (−1, −1).

However, the point 𝑥∗ = (0, 0) ∈ 𝑆 satisfies (0, 0) ∈ 𝐹(𝑥
∗

).
This shows that the tangential condition (2) in Theorem 2 is
not necessary to get equilibria on 𝑆. Ourmain purpose in this
work is to replace 𝑇𝐶(𝑆; 𝑥) in (2) by a new tangent set which
is always larger than 𝑇

𝐶

(𝑆; 𝑥) and to prove the existence of
equilibria under the new tangential condition.

The main result of the paper is read as follows.

Theorem3. Let 𝑆 be homeomorphic to a convex compact set in
R𝑛 which is epi-Lipschitz and let 𝐹 be an u.s.c. set-valued map-
ping with nonempty closed convex values. Let Ω be a convex
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compact set in R𝑛 with 0 ∈ Ω. Assume that there exists some
𝛽 ≥ 0 such that for any 𝑥 ∈ 𝑆

𝐹 (𝑥) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) ̸= 0. (4)

If 𝑆 is tangentially regular, then there exists 𝑥∗ ∈ 𝑆 such that

0 ∈ 𝐹 (𝑥
∗

) . (5)

We point out that the price that we pay for replacing (2)
by (4) is the tangential regularity of the set 𝑆 (i.e., 𝐾(𝑆; 𝑥) =
𝑇
𝐶

(𝑆; 𝑥)) and it is an open question to extend the result of
Theorem 3 to the general case without the tangential regular-
ity assumption.The first corollary ofTheorem 3 is the follow-
ing result.

Corollary 4. Let 𝑆 be homeomorphic to a convex compact set
in R𝑛 which is epi-Lipschitz and tangentially regular and let
𝐹 be an u.s.c. set-valued mapping on 𝑆 with nonempty closed
convex values. Assume that (2) holds. Then 𝐹 has equilibria on
𝑆.

Proof. Take Ω = {0} in Theorem 3. All the assumptions are
fulfilled and hence 𝐹 has equilibria on 𝑆.

The paper is organised as follows. The next section is
devoted to some preliminary concepts and results needed in
the development of our approach. In Section 3 we prove our
main result stated inTheorem 3 and we present an illustrative
example showing the importance of our main result in
Theorem 3. An application to fixed point results is presented
at the end of paper.

2. Preliminaries

Throughout this section, we assume that 𝐸 is a Hausdorff
topological vector space.Wewill denote by𝐸∗ the topological
dual of𝐸 and by ⟨⋅, ⋅⟩ the pairing between the spaces𝐸 and𝐸∗.

Let 𝑆 be a nonempty closed subset of𝐸 and let 𝑥 be a point
in 𝑆. Let us recall [2, 3] the following classical tangent cones
𝐾(𝑆; 𝑥) of Bouligand and 𝑇𝐶(𝑆; 𝑥) of Clarke.

(i) The Bouligand tangent cone (also called contingent
cone) 𝐾(𝑆; 𝑥) to 𝑆 at 𝑥 is the set of all ℎ ∈ 𝐸 such
that, for every neighborhood𝐻 of ℎ in𝐸 and for every
𝜖 > 0, there exists 𝑡 ∈ (0, 𝜖) such that

(𝑥 + 𝑡𝐻) ∩ 𝑆 ̸= 0. (6)

(ii) The Clarke tangent cone 𝑇𝐶(𝑆; 𝑥) to 𝑆 at 𝑥 is the set of
all ℎ ∈ 𝐸 such that for every neighborhood𝐻 of ℎ in
𝐸 there exist a neighborhood 𝑋 of 𝑥 in 𝐸 and a real
number 𝜖 > 0 such that

(𝑥 + 𝑡𝐻) ∩ 𝑆 ̸= 0 ∀𝑥 ∈ 𝑋 ∩ 𝑆, 𝑡 ∈ (0, 𝜖) . (7)

(iii) The Rockefeller hypertangent cone𝐻(𝑆; 𝑥) to 𝑆 at 𝑥 is
the set of all ℎ ∈ 𝐸 for which there exist a neighbor-
hood 𝐻 of ℎ in 𝐸, a neighborhood 𝑋 of 𝑥 in 𝐸, and
a real number 𝛿 > 0 such that

𝑋 ∩ 𝑆 + 𝑡𝐻 ⊂ 𝑆 ∀𝑡 ∈ (0, 𝛿) . (8)

Clearly 𝐻(𝑆; 𝑥) ⊂ 𝑇
𝐶

(𝑆; 𝑥) ⊂ 𝐾(𝑆; 𝑥). Recall that (see [3, 4])
𝑇
𝐶

(𝑆; 𝑥) is a closed convex cone and 𝐾(𝑆; 𝑥) is a closed cone
(that may be nonconvex) while 𝐻(𝑆; 𝑥) is an open convex
cone.

For a closed convex set 𝑆 and 𝑥 ∈ 𝑆, both Clarke tangent
cone and Bouligand tangent cone coincide and they are equal
to the convex tangent cone 𝑇(𝑆; 𝑥). The class of nonempty
closed sets satisfying the equality 𝑇𝐶(𝑆; 𝑥) = 𝐾(𝑆; 𝑥) is called
the class of tangentially regular sets.

In [5], we introduced the concept of Ω-epi-Lipschitz sets
as follows.

Definition 5. Let 𝑆 be a closed subset of𝐸 and 𝑥 ∈ 𝑆, and letΩ
be a bounded set in 𝐸. One will say that 𝑆 isΩ-epi-Lipschitz at
𝑥 in a direction ℎ if and only if theminimal time function𝑇

𝑆,Ω

associated with 𝑆 and Ω is directionally Lipschitz at 𝑥 in the
direction ℎ in the sense of Rockefeller [6], that is, if and only if
there exists 𝛽 fl 𝛽(𝑥, ℎ) ≥ 0 such that 𝑇♯

𝑆,Ω
(𝑥, ℎ) ≤ 𝛽, where

𝑓
♯

(𝑥; ℎ) fl lim sup
(𝑥,𝛼)↓𝑓𝑥

(𝑡,ℎ

)→(0
+
,ℎ)

𝑡
−1

[𝑓 (𝑥 + 𝑡ℎ


) − 𝛼] < +∞

(9)

and (𝑥, 𝛼)↓
𝑓
𝑥means (𝑥, 𝛼) ∈ epi𝑓 fl {(𝑧, 𝛽) ∈ 𝐸 ×R; 𝑓(𝑧) ≤

𝛽} and (𝑥, 𝛼) → (𝑥, 𝑓(𝑥)). Recall that the minimal time
function 𝑇

𝑆,Ω
is defined as follows:

𝑇
𝑆,Ω

(𝑥) fl inf {𝑡 > 0 : 𝑆 ∩ (𝑥 + 𝑡Ω) ̸= 0} . (10)

A geometric characterization of Ω-epi-Lipschitz sets has
been established in [5] saying that a set 𝑆 is Ω-epi-Lipschitz
at 𝑥 in a direction ℎ if and only if there exist 𝛽 fl 𝛽(𝑥, ℎ) ≥ 0,
𝛿 > 0,𝐻 ∈ N(ℎ), and𝑋 ∈ N(𝑥) such that

𝑋 ∩ 𝑆 + 𝑡𝐻 ⊂ 𝑆 − 𝑡𝛽Ω ∀𝑡 ∈ (0, 𝛿) . (11)

In our analysis in this work we need the constant 𝛽 to be
uniform with respect to the directions; that is, 𝛽 fl 𝛽(𝑥) is
only dependent on 𝑥 and in this case we say that 𝑆 is (𝛽

𝑥
, Ω)-

epi-Lipschitz at 𝑥 in the direction ℎ ∈ 𝐸. Since 𝛽 does not
depend on the directions, we define 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥) the set of all

directions ℎ ∈ 𝐸 satisfying 𝑇♯
𝑆,Ω
(𝑥, ℎ) ≤ 𝛽

𝑥
; that is,

𝐻
𝛽𝑥,Ω

(𝑆; 𝑥) fl {ℎ ∈ 𝐸 : 𝑇
♯

𝑆,Ω
(𝑥, ℎ) ≤ 𝛽

𝑥
} . (12)

Following the same lines of the proof of Proposition 3.4
in [5] we can prove the following result.

Proposition 6. Let 𝑆 be a closed subset of 𝐸 and 𝑥 ∈ 𝑆, ℎ ∈ 𝐸,
and let Ω be a bounded set in 𝐸.

(i) If there exist 𝛽
𝑥
≥ 0, 𝛿 > 0,𝐻 ∈ N(ℎ), and 𝑋 ∈ N(𝑥)

such that

𝑋 ∩ 𝑆 + 𝑡𝐻 ⊂ 𝑆 − 𝑡𝛽
𝑥
Ω ∀𝑡 ∈ (0, 𝛿) , (13)

then 𝑆 is (𝛽
𝑥
, Ω)-epi-Lipschitz at 𝑥 in the direction ℎ.



Journal of Function Spaces 3

(ii) Conversely, if there exists 𝛽
𝑥
≥ 0 for which 𝑆 is (𝛽

𝑥
, Ω)-

epi-Lipschitz at 𝑥 in the direction ℎ, then there exist 𝛿 >
0,𝐻 ∈ N(ℎ), and 𝑋 ∈ N(𝑥) such that

𝑋 ∩ 𝑆 + 𝑡𝐻 ⊂ 𝑆 − 𝑡 (𝛽
𝑥
+ 1)Ω ∀𝑡 ∈ (0, 𝛿) . (14)

Remark 7. Clearly, if 𝑆 is (𝛽
𝑥
, Ω)-epi-Lipschitz at 𝑥 ∈ 𝑆, then

𝑆 is (𝛽, Ω)-epi-Lipschitz at 𝑥 for any 𝛽 ≥ 𝛽
𝑥
. Consequently,

any epi-Lipschitz set in the sense of Rockefeller [4] is (𝛽, Ω)-
epi-Lipschitz for any 𝛽 ≥ 0 and for anyΩ with 0 ∈ Ω and the
constant𝛽 is uniform for any𝑥 ∈ 𝑆.Wenote that the notion of
(𝛽, Ω)-epi-Lipschitz sets recovers some well known concepts
in variational analysis.

(i) Obviously a closed set in 𝐸 is epi-Lipschitz in the
sense of Rockefeller [4] if and only if it is (𝛽, {0})-
epi-Lipschitz in the sense of Definition 5 and if and
only if it is (0, {Ω})-epi-Lipschitz and if and only if it
is (𝛽, {Ω})-epi-Lipschitz for any 𝛽 > 0.

(ii) In normed spaces, any compactly epi-Lipschitz set 𝑆
at 𝑥 ∈ 𝑆 with respect to a convex compact set 𝐾 in
the sense of Borwein and Strójwas [7] is (1, Ω)-epi-
Lipschitz in the direction 𝑘withΩ fl 𝐾−𝑘, for any 𝑘 ∈
𝐾. We recall that 𝑆 is compactly epi-Lipschitz at 𝑥 ∈ 𝑆
with respect to a convex compact set 𝐾 in the sense
of [7] provided that there exists 𝑟 > 0 such that

(𝑥 + 𝑟B) ∩ 𝑆 + 𝑡𝑟B ⊂ 𝑆 − 𝑡𝐾 ∀𝑡 ∈ (0, 𝑟) . (15)

(iii) Assume that 𝐸 is a normed space and 𝐾 and 𝑆 are
closed sets in 𝐸. If 𝑆 is𝐾-directionally Lipschitz in the
sense of [8], then 𝑆 is (1, Ω)-epi-Lipschitz with Ω =

𝐾 − 𝑘, for any 𝑘 ∈ 𝐾.

Our main tools in the present work are two tangent sets
associated with (𝛽, Ω)-epi-Lipschitz sets.The first tangent set
is 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥) defined above and will be called the (𝛽, Ω)-
hypertangent set and it characterizes the class of (𝛽, Ω)-epi-
Lipschitz sets by its nonemptiness.The second tangent set will
be called the (𝛽, Ω)-Clarke tangent set and is defined as the set
of all ℎ ∈ 𝐸 satisfying that for any neighborhood𝐻 of ℎ there
exist 𝛿 > 0 and𝑋 ∈ N(𝑥) such that

[𝑥 + 𝑡 (𝐻 + 𝛽Ω)] ∩ 𝑆 ̸= 0 ∀𝑡 ∈ (0, 𝛿) , 𝑥 ∈ 𝑆 ∩ 𝑋. (16)

Observe that for Ω = {0} both sets 𝐻
𝛽,Ω
(𝑆; 𝑥) and 𝑇𝐶

𝛽,Ω
(𝑆; 𝑥)

coincide, respectively, with the hypertangent cone 𝐻(𝑆; 𝑥)
and the Clarke tangent cone 𝑇𝐶(𝑆; 𝑥).

Obviously, we always have the following inclusions:
𝐻(𝑆; 𝑥) ⊂ 𝐻

𝛽,Ω
(𝑆; 𝑥) and 𝑇

𝐶

(𝑆; 𝑥) ⊂ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥). Conse-

quently, any epi-Lipschitz set is (𝛽, Ω)-epi-Lipschitz. In our
analysis we need to provemany properties for the tangent sets
𝐻
𝛽,Ω
(𝑆; 𝑥) and𝑇𝐶

𝛽,Ω
(𝑆; 𝑥).We notice that𝐻

𝛽,Ω
(𝑆; 𝑥) is an open

set in 𝐸 and 𝑇𝐶
𝛽,Ω
(𝑆; 𝑥) is a closed set in 𝐸 and both are not

necessarily convex.

Proposition 8. Let 𝐸 be a Hausdorff topological vector space,
let 𝑆 be a nonempty closed subset of 𝐸, and let Ω be a convex
bounded set in 𝐸 with 0 ∈ Ω. Let 𝑥 ∈ 𝑆.

(1) 𝑆 is (𝛽
𝑥
, Ω)-epi-Lipschitz at 𝑥 if and only if 𝐻

𝛽𝑥,Ω
(𝑆;

𝑥) ̸= 0.
(2) 𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥) + 𝐻(𝑆; 𝑥) ⊂ 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥).
(3) 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥) + 𝐻(𝑆; 𝑥) ⊂ 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥).
(4) If 𝑆 is epi-Lipschitz at 𝑥 ∈ 𝑆, then 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥) =

int(𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥)) ̸= 0.
(5) If 𝑆 is epi-Lipschitz at 𝑥 ∈ 𝑆, then cl(𝐻

𝛽𝑥,Ω
(𝑆; 𝑥)) =

𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥).

Proof. (1) It follows directly from the definition of𝐻
𝛽𝑥,Ω

(𝑆; 𝑥).
(2) Let ℎ

1
∈ 𝐻(𝑆; 𝑥) and ℎ

2
∈ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥). By definition of

𝐻(𝑆; 𝑥) there exist 𝑉 ∈ N(0), 𝑋
1
∈ N(𝑥), and 𝛿

1
> 0 such

that

𝑋
1
∩ 𝑆 + 𝑡 (ℎ

1
+ 𝑉) ⊂ 𝑆, ∀𝑡 ∈ (0, 𝛿

1
) . (17)

Choose a symmetric neighborhood𝑊 of 0 in𝐸 such that𝑊+

𝑊 ⊂ 𝑉. By definition of𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥) there exist𝑋
2
∈ N(𝑥) and

𝛿
2
> 0 such that

[𝑋
2
∩ 𝑆 + 𝑡 (ℎ

2
+𝑊) + 𝑡𝛽

𝑥
Ω] ∩ 𝑆 ̸= 0, ∀𝑡 ∈ (0, 𝛿

2
) . (18)

Choose now𝑋


∈ N(𝑥) and 𝛿 > 0 such that

𝑋


+ (0, 𝛿


) (ℎ
2
+𝑊 + 𝛽

𝑥
Ω) ⊂ 𝑋

1
. (19)

Put 𝑋 fl 𝑋


∩ 𝑋
1
∩ 𝑋
2
and 𝛿 fl min{𝛿, 𝛿

1
, 𝛿
2
}. Fix any

𝑡 ∈ (0, 𝛿), any 𝑤 ∈ 𝑊, and any 𝑥 ∈ 𝑋 ∩ 𝑆. Then by (18) there
exist 𝑤 ∈ 𝑊 and 𝑦 ∈ Ω such that

𝑥 + 𝑡 (ℎ
2
+ 𝑤 + 𝛽

𝑥
𝑦) ∈ 𝑆. (20)

Put 𝑥 fl 𝑥+𝑡(ℎ
2
+𝑤+𝛽

𝑥
𝑦).Then the previous inclusion and

(19) ensure that 𝑥 ∈ 𝑋
1
∩ 𝑆 and hence we can use (17) to get

𝑥


+ 𝑡 (ℎ
1
+ 𝑤 − 𝑤) ∈ 𝑆. (21)

Therefore,

𝑥 + 𝑡 (ℎ
1
+ ℎ
2
+ 𝑤) ∈ 𝑆 − 𝑡𝛽

𝑥
Ω. (22)

Thus, for any 𝑥 ∈ 𝑋∩𝑆, any 𝑡 ∈ (0, 𝛿), and any ℎ ∈ 𝐻we have

𝑥 + 𝑡ℎ ∈ 𝑆 − 𝑡𝛽
𝑥
Ω. (23)

This ensures by definition of the (𝛽
𝑥
, Ω)-hypertangent cone

that ℎ
1
+ ℎ
2
∈ 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥).
(3) It is a direct consequence of Part (2) and the inclusions

𝐻
𝛽𝑥,Ω

(𝑆; 𝑥) ⊂ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥).

(4) First observe that since 𝑆 is epi-Lipschitz at 𝑥 we
have that 𝐻(𝑆; 𝑥) is nonempty. Hence, there exists some
ℎ
0
∈ 𝐻(𝑆; 𝑥). Now, since 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥) ⊂ 𝑇

𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) and

as 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥) is open, it is enough to show the inclusion
int[𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥)] ⊂ 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥). Consider ℎ ∈ int[𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥)].
Then there exists a positive number 𝜆 > 0 such that
ℎ − 𝜆ℎ

0
∈ int[𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥)]. Since 𝐻(𝑆; 𝑥) is a cone, we

have 𝜆ℎ
0

∈ 𝐻(𝑆; 𝑥) and hence by Part (2) we obtain
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ℎ = (ℎ − 𝜆ℎ
0
) + 𝜆ℎ

0
∈ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) + 𝐻(𝑆; 𝑥) ⊂ 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥)

and so the proof of Part (4) is finished.
(5) Taking into account the inclusion 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥) ⊂

𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) and the fact that𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) is closed, it is sufficient

to show the inclusion 𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥) ⊂ cl[𝐻
𝛽𝑥 ,Ω

(𝑆; 𝑥)].
Fix again some element ℎ

0
∈ 𝐻(𝑆; 𝑥). For any ℎ ∈ 𝑇𝐶

𝛽𝑥,Ω
(𝑆;

𝑥) we have by Part (2)

ℎ +
1

𝑛
ℎ
0
∈ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) + 𝐻 (𝑆; 𝑥) ⊂ 𝐻

𝛽𝑥,Ω
(𝑆; 𝑥) ,

∀𝑛 ≥ 1.

(24)

This ensures that ℎ ∈ cl[𝐻
𝛽𝑥 ,Ω

(𝑆; 𝑥)] because ℎ = lim
𝑛→∞

(ℎ+

(1/𝑛)ℎ
0
). So the proof is complete.

We require the notion of lower semicontinuity for set-
valued mappings. Let 𝐹 be a set-valued mapping on 𝑆 ⊂ 𝐸,
with values that are subsets of another Hausdorff topological
vector space 𝐺. We say that 𝐹 : 𝑆  𝐺 is lower
semicontinuous (l.s.c.) at (𝑥, 𝑦) ∈ gph𝐹 fl {(𝑥, 𝑦) ∈ 𝐸 × 𝐺 :

𝑦 ∈ 𝐹(𝑥)} provided that, for every 𝑉 ∈ N(0), there exists
𝑊 ∈ N(0) such that

𝑥 ∈ 𝑆 ∩ (𝑥 +𝑊) ⇒ 𝑦 ∈ 𝐹 (𝑥) + 𝑉. (25)

We say that 𝐹 : 𝑆  𝐺 is upper semicontinuous (u.s.c.) at
(𝑥, 𝑦) ∈ gph𝐹 provided that, for every𝑉 ∈ N(0), there exists
𝑊 ∈ N(0) such that

𝑥 ∈ 𝑆 ∩ (𝑥 +𝑊) ⇒ 𝐹 (𝑥) ⊂ 𝐹 (𝑥) + 𝑉. (26)

In [6], the author proved the l.s.c. of the set-valued mapping
𝑥 → 𝑇

𝐶

(𝑆; 𝑥) whenever 𝑆 is epi-Lipschitz. In the following
proposition we extend Theorem 3 in [6] to the set-valued
mapping 𝑥 → 𝑇

𝐶

𝛽,Ω
(𝑆; 𝑥) with 𝛽 ≥ 0. This l.s.c. property is

very important in the proof of our main result inTheorem 3.

Proposition 9. Let𝐸 be aHausdorff locally convex topological
vector space, let 𝑆 be a nonempty closed subset of 𝐸, and let
𝛽 ≥ 0, Ω be a convex bounded in 𝐸 with 0 ∈ Ω. If 𝑆 is epi-
Lipschitz at 𝑥 ∈ 𝑆, then the set-valuedmapping 𝑥 → 𝑇

𝐶

𝛽,Ω
(𝑆; 𝑥)

is lower semicontinuous at 𝑥.

Proof. Let 𝑥 ∈ 𝑆 and 𝑢 ∈ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥). Assume that 𝑆 is epi-

Lipschitz at 𝑥. Then there exists ℎ ∈ 𝐻(𝑆; 𝑥). Let 𝑈 be any
neighborhood of zero in 𝐺. Since 𝐺 is locally convex we can
choose a balanced neighborhood 𝑈

0
such that 𝑈

0
⊂ 𝑈. Set

𝑉 fl 𝑈
0
∩ (−𝑈

0
). Clearly𝑉 ⊂ 𝑈 is a symmetric convex neigh-

borhood of zero in𝐺. Fix any V
0
fl 𝑢+ℎ/(𝜌

𝑉
(ℎ)+1)where 𝜌

𝑉

is theMinkowski function associated with𝑉. Since𝐻(𝑆; 𝑥) is
a cone, we have ℎ/(𝜌

𝑉
(ℎ) + 1) ∈ 𝐻(𝑆; 𝑥) and hence by Part

(2) in Proposition 8 we obtain

V
0
= 𝑢 +

ℎ

𝜌
𝑉
(ℎ) + 1

∈ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) + 𝐻 (𝑆; 𝑥) ⊂ 𝐻

𝛽,Ω
(𝑆; 𝑥) . (27)

Thus, there exists 𝛿 > 0, 𝑉
1
∈ N(0), and 𝑉

2
∈ N(0) such that

(𝑥 + 𝑉
1
) ∩ 𝑆 + 𝑡 (V

0
+ 𝑉
2
) ⊂ 𝑆 − 𝑡𝛽Ω, ∀𝑡 ∈ (0, 𝛿) . (28)

Let𝑊 ∈ N(0) such that𝑊+𝑊 ⊂ 𝑉
1
. Fix any𝑥 ∈ (𝑥+𝑊)∩𝑆 ̸=

0. Let any 𝑥 ∈ (𝑥 + 𝑊) ∩ 𝑆. Then 𝑥 ∈ (𝑥 + 𝑊 + 𝑊) ∩ 𝑆 ⊂

(𝑥 + 𝑉
1
) ∩ 𝑆 and so by (28) we get

𝑥


+ 𝑡 (V
0
+ 𝑉
2
) ⊂ 𝑆 − 𝑡𝛽Ω, ∀𝑡 ∈ (0, 𝛿) . (29)

Therefore, for any 𝑥 ∈ (𝑥 + 𝑊) ∩ 𝑆 we have V
0
∈ 𝐻
𝛽,Ω
(𝑆; 𝑥).

Hence, 𝑢 ∈ 𝐻
𝛽,Ω
(𝑆; 𝑥) − ℎ/(𝜌

𝑉
(ℎ) + 1). Observe that 𝜌

𝑉
(ℎ/

(𝜌
𝑉
(ℎ) + 1)) = 𝜌

𝑉
(ℎ)/(𝜌

𝑉
(ℎ) + 1) < 1 which implies that ℎ/

(𝜌
𝑉
(ℎ) + 1) ∈ 𝑉 and hence −(ℎ/(𝜌

𝑉
(ℎ) + 1)) ∈ −𝑉 = 𝑉.

Thus, 𝑢 ∈ 𝐻
𝛽,Ω
(𝑆; 𝑥) + 𝑉 ⊂ 𝑇

𝐶

𝛽,Ω
(𝑆; 𝑥) + 𝑉 ⊂ 𝑇

𝐶

𝛽,Ω
(𝑆; 𝑥) + 𝑈.

Consequently, for any 𝑢 ∈ 𝑇𝐶
𝛽,Ω
(𝑆; 𝑥) and any𝑈 ∈ N(0) there

exists𝑊 ∈ N(0) such that

𝑥 ∈ 𝑆 ∩ (𝑥 +𝑊) ⇒ 𝑢 ∈ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) + 𝑈. (30)

This proves that the set-valued mapping 𝑥 → 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) is

lower semicontinuous at 𝑥 and the proof is complete.

Remark 10. Following the proof of the previous proposition,
we can prove the lower semicontinuity of the set-valued
mapping 𝑥 → 𝐻

𝛽,Ω
(𝑆; 𝑥) at 𝑥 whenever 𝑆 is epi-Lipschitz set

at 𝑥.

Lemma 11. For any 𝑥 ∈ 𝑆 and any 𝛽 ≥ 0 one has

𝐻(𝑆; 𝑥) − 𝛽Ω ⊂ 𝐻
𝛽,Ω

(𝑆; 𝑥) . (31)

Proof. Let 𝑥 ∈ 𝑆. Without loss of generality we assume that
𝐻(𝑆; 𝑥) − 𝛽Ω ̸= 0. Then, for any ℎ

0
∈ 𝐻(𝑆; 𝑥) − 𝛽Ω, there

exists ℎ ∈ 𝐻(𝑆; 𝑥) and 𝑤 ∈ Ω such that ℎ
0
= ℎ − 𝛽𝑤. By

definition of the hypertangent𝐻(𝑆; 𝑥) there exist 𝑉 ∈ N(0),
𝑋 ∈ N(𝑥), and 𝛿 > 0 such that

𝑋 ∩ 𝑆 + 𝑡 (ℎ + 𝑉) ⊂ 𝑆, ∀𝑡 ∈ (0, 𝛿) . (32)

By adding −𝑡𝛽𝑤 to both sides we obtain

𝑋 ∩ 𝑆 + 𝑡 (ℎ − 𝛽𝑤 + 𝑉) ⊂ 𝑆 − 𝑡𝛽𝑤 ⊂ 𝑆 − 𝑡𝛽Ω,

∀𝑡 ∈ (0, 𝛿) .

(33)

This ensures by definition of𝐻
𝛽,Ω
(𝑆; 𝑥) that

ℎ
0
= ℎ − 𝛽𝑤 ∈ 𝐻

𝛽,Ω
(𝑆; 𝑥) . (34)

Therefore,𝐻(𝑆; 𝑥) − 𝛽Ω ⊂ 𝐻
𝛽,Ω
(𝑆; 𝑥) and hence the proof is

complete.

The next lemma establishes an analogue result for the
(𝛽, Ω)-Clarke tangent set.

Lemma 12. Assume thatΩ is a convex bounded set with 0 ∈ Ω
and that 𝑆 is epi-Lipschitz at 𝑥. Then

𝑇
𝐶

(𝑆; 𝑥) − 𝛽Ω ⊂ 𝑇
𝐶

Ω
(𝑆; 𝑥) . (35)

Proof. Let 𝑥 ∈ 𝑆. Since 𝑆 is epi-Lipschitz at 𝑥, we have by Part
(5) in Proposition 8 the equalities 𝑇𝐶(𝑆; 𝑥) = cl(𝐻(𝑆; 𝑥)) and
𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) = cl(𝐻

Ω
(𝑆; 𝑥)). Therefore, the conclusion follows

directly from the previous lemma.
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It is a natural question to ask whether the inclusion in
the previous lemma becomes an equality. The next lemma
establishes a positive answer whenever the set is assumed to
be tangentially regular. Its proof needs the following propo-
sition which is also needed in the proof of Theorem 19. It has
been proved in Proposition 5.1 in [5] forΩ-epi-Lipschitz sets.
The proof stated below is a direct adaptation of the proof in
[5] that we give for the sake of completeness of the paper. To
do that, we need the following characterization of 𝐾(𝑆; 𝑥) in
terms of nets (see, e.g., [9]). A vector V ∈ 𝐾(𝑆; 𝑥) if and only
if there exist a net (𝑡

𝑗
)
𝑗∈𝐽

of positive real numbers converging
to zero and a net (V

𝑗
)
𝑗∈𝐽

in 𝐸 converging to V such that

𝑥 + 𝑡
𝑗
V
𝑗
∈ 𝑆, for each 𝑗 ∈ 𝐽. (36)

Proposition 13. Let 𝐸 be a Hausdorff topological vector space,
let 𝑆 be a nonempty closed subset of𝐸, letΩ be a convex compact
set in 𝐸with 0 ∈ Ω, and let 𝑥 ∈ 𝑆. Assume that for some 𝛽

𝑥
≥ 0

one has ℎ ∈ 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥); then

ℎ ∈ 𝐾 (𝑆; 𝑥) − 𝛽
𝑥
Ω. (37)

Proof. By definition of 𝐻
𝛽𝑥,Ω

(𝑆; 𝑥), there exist 𝛿 > 0, 𝑊 ∈

N(0), and𝑋 ∈ N(𝑥) such that

[𝑥 + 𝑡 (ℎ + V) + 𝑡𝛽
𝑥
Ω] ∩ 𝑆 ̸= 0,

∀𝑡 ∈ (0, 𝛿) , ∀V ∈ 𝑊.
(38)

Choose𝑉 ∈ N(0) such that𝑉+𝑉 ⊂ 𝑊 and let (𝑡
𝑗
, V
𝑗
)
𝑗∈𝐽

be a
net converging to (0, 0) in (0, 𝛿)×𝑉. Applying (38) we get, for
any 𝑗 ∈ 𝐽, the existence of 𝑤

𝑗
∈ Ω such that

𝑥 + 𝑡
𝑗
(ℎ + V

𝑗
) + 𝑡
𝑗
𝛽
𝑥
𝑤
𝑗
∈ 𝑆. (39)

Since Ω is compact, we may extract a subnet (𝑤
𝑠(𝑗)
)
𝑗
of (𝑤
𝑗
)
𝑗

converging to some point 𝑤 ∈ Ω. Put 𝜏
𝑗
fl 𝑡
𝑠(𝑗)

, �̃�
𝑗
fl 𝑤
𝑠(𝑗)

,
and ℎ
𝑗
fl ℎ + V

𝑠(𝑗)
+ 𝛽
𝑥
�̃�
𝑗
. Then (39) ensures

𝑥 + 𝜏
𝑗
ℎ
𝑗
∈ 𝑆, ∀𝑗 ∈ 𝐽. (40)

Since ℎ
𝑗
→ ℎ + 𝛽

𝑥
𝑤 and 𝜏

𝑗
→ 0, we deduce from the

characterization of the Bouligand cone that ℎ+𝛽
𝑥
𝑤 ∈ 𝐾(𝑆; 𝑥).

Thus,

ℎ ∈ 𝐾 (𝑆; 𝑥) − 𝛽
𝑥
Ω. (41)

This completes the proof.

Lemma 14. Let 𝛽 ≥ 0. Assume thatΩ is convex compact with
0 ∈ Ω and that 𝑆 is epi-Lipschitz at 𝑥. If, in addition, 𝑆 is
assumed to be tangentially regular at 𝑥, then one has

𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) = 𝑇

𝐶

(𝑆; 𝑥) − 𝛽Ω. (42)

Proof. Let 𝑥 ∈ 𝑆. Since 𝑆 is epi-Lipschitz at 𝑥, then 𝑆 is
(𝛽, Ω)-epi-Lipschitz at 𝑥 and hence 𝐻

𝛽,Ω
(𝑆; 𝑥) ̸= 0. Fix any

ℎ ∈ 𝐻
𝛽,Ω
(𝑆; 𝑥). By Proposition 13, we have ℎ ∈ 𝐾(𝑆; 𝑥) − 𝛽Ω.

Consequently, the tangential regularity of 𝑆 at 𝑥 implies that

ℎ ∈ 𝐾 (𝑆; 𝑥) − 𝛽Ω = 𝑇
𝐶

(𝑆; 𝑥) − 𝛽Ω. (43)

Since ℎ is taken to be arbitrary in𝐻
𝛽,Ω
(𝑆; 𝑥), then

𝐻
𝛽,Ω

(𝑆; 𝑥) ⊂ 𝑇
𝐶

(𝑆; 𝑥) − 𝛽Ω. (44)

Taking the closure of both sides of the previous inclusion and
taking into account the fact that 𝑇𝐶

𝛽,Ω
(𝑆; 𝑥) = cl(𝐻

𝛽,Ω
(𝑆; 𝑥)),

we obtain

𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) = cl (𝐻

𝛽,Ω
(𝑆; 𝑥)) ⊂ cl (𝑇𝐶 (𝑆; 𝑥) − 𝛽Ω)

= 𝑇
𝐶

(𝑆; 𝑥) − 𝛽Ω.

(45)

Therefore, the proof of this lemma is finished since the reverse
inclusion is always true by Lemma 12.

A direct and very important result on the convexity of the
set𝐻
𝛽,Ω
(𝑆; 𝑥) can be deduced from the previous lemma.

Corollary 15. Let 𝛽 ≥ 0, letΩ be convex compact with 0 ∈ Ω,
and let 𝑆 be epi-Lipschitz at 𝑥. If 𝑆 is tangentially regular at 𝑥 ∈
𝑆, then𝐻

𝛽,Ω
(𝑆; 𝑥) and 𝑇𝐶

𝛽,Ω
(𝑆; 𝑥) are both convex.

Using Lemma 14 we can easily construct many examples
of closed sets 𝑆 and set-valued mappings 𝐹 for which the
tangential condition (2) is not satisfied and the new tangential
condition (4) is satisfied.

Example 16. Let 𝐸 = R2, 𝑆 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
, 𝑥
2
∈

[−1, 0]}, Ω = −𝑆 (see Figure 1), and 𝐹(𝑥
1
, 𝑥
2
) = (2𝑥

1
+

𝑥
2
, 2𝑥
2
+ 3𝑥
1
− 1) + B. Let 𝑢

1
fl (−1, 0), 𝑢

2
fl (0, −1), and

𝑢
3
fl (−1, −1). Simple computations yield the following:

𝐹 (𝑢
1
) = (−1, −4) + B,

𝑇
𝐶

(𝑆; 𝑢
1
) = R

+
×R
−
,

𝑇
𝐶

𝛽,Ω
(𝑆; 𝑢
1
) = [−𝛽,∞) ×R

−
,

𝐹 (𝑢
2
) = (−1, −3) + B,

𝑇
𝐶

(𝑆; 𝑢
2
) = R

−
×R
+
,

𝑇
𝐶

𝛽,Ω
(𝑆; 𝑢
2
) = R

−
× [−𝛽,∞) ,

𝐹 (𝑢
3
) = (−2, −6) + B,

𝑇
𝐶

(𝑆; 𝑢
3
) = R

+
×R
+
,

𝑇
𝐶

𝛽,Ω
(𝑆; 𝑢
3
) = [−𝛽,∞)

2

.

(46)

Hence, 𝐹(𝑢
𝑖
) ∩ 𝑇
𝐶

(𝑆; 𝑢
𝑖
) = 0, for 𝑖 = 1, 2, 3. And 𝐹(𝑥

1
, 𝑥
2
) ∩

𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) ̸= 0, for 𝛽 = 5 and for any (𝑥

1
, 𝑥
2
) ∈ 𝑆.

Although the set 𝑆 is closed convex, the tangential condition
(2) is not satisfied while the tangential condition (4) is
satisfied.

Consider now another examplewith 𝑆 that is a nonconvex
tangentially regular set.

Example 17. Let 𝐸 = R2 and 𝑆 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 1 ≤ 𝑥

2

1
+

𝑥
2

2
≤ 4} (see Figure 2). Clearly 𝑆 is a closed nonconvex set in
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Ω = −S
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S = {(x1, x2): x1, x2∈ [−1,0]}

Figure 1: The convex set 𝑆 and the target set Ω in Example 16.

R2. Also the set 𝑆 is epi-Lipschitz and tangentially regular. Let
𝑥 = (𝑥

1
, 𝑥
2
) ∈ 𝑆. We can check the following:

𝑇
𝐶

(𝑆; (𝑥
1
, 𝑥
2
))

=

{{{{

{{{{

{

R2; 1 < 𝑥
2

1
+ 𝑥
2

2
< 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≤ −𝑥

1
𝑢} ; 𝑥

2

1
+ 𝑥
2

2
= 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≥ −𝑥

1
𝑢} ; 𝑥

2

1
+ 𝑥
2

2
= 1.

(47)

Let Ω = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
, 𝑥
2
∈ [1, 0]} and 𝛽 ≥ 0. Then

using Lemma 14 we obtain

𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) =

{{{{

{{{{

{

R2; 1 < 𝑥
2

1
+ 𝑥
2

2
< 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≤ −𝑥

1
𝑢 + 𝛽 (𝑥

1
+ 𝑥
2
)} ; 𝑥

2

1
+ 𝑥
2

2
= 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≥ −𝑥

1
𝑢 + 𝛽 (𝑥

1
+ 𝑥
2
)} ; 𝑥

2

1
+ 𝑥
2

2
= 1.

(48)

Also, we can verify that for 𝛽 = 1 and for some points in 𝑆 we
have

𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) = 𝑇

𝐶

(𝑆; (𝑥
1
, 𝑥
2
))

=

{{{{

{{{{

{

R2; 1 < 𝑥
2

1
+ 𝑥
2

2
< 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≥ −𝑥

1
𝑢} ; 𝑥

1
≤ 0, 𝑥

2
≤ 0, 𝑥

2

1
+ 𝑥
2

2
= 4;

{(𝑢, V) ∈ R2 : 𝑥
2
V ≥ −𝑥

1
𝑢} ; 𝑥

1
≥ 0, 𝑥

2
≥ 0, 𝑥

2

1
+ 𝑥
2

2
= 1.

(49)

For the rest of points in 𝑆 the Clarke tangent cone 𝑇𝐶(𝑆;
(𝑥
1
, 𝑥
2
)) is strictly included in 𝑇𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)). Define now

the set-valued mapping 𝐹 as follows:

𝐹 (𝑥
1
, 𝑥
2
) = (

𝑥1
 ,
𝑥2

) +
3

2
B. (50)

Clearly 𝐹 is an u.s.c. set-valued mapping with closed convex
values. For this couple 𝐹 and 𝑆 we have the following facts:

(i)

𝐹 (𝑥
1
, 𝑥
2
) ∩ 𝑇
𝐶

(𝑆; (𝑥
1
, 𝑥
2
))

{

{

{

= 0; for any 𝑥
1
≥ 0, 𝑥

2
≥ 0, 𝑥

2

1
+ 𝑥
2

2
= 4;

̸= 0; otherwise,
(51)

(ii)

𝐹 (𝑥
1
, 𝑥
2
) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) ̸= 0,

for any (𝑥
1
, 𝑥
2
) ∈ 𝑆.

(52)

Thus, for the nonconvex epi-Lipschitz tangentially regular set
𝑆, the tangential condition (2) is not satisfied and the tangen-
tial condition (4) is satisfied.

3. Existence Results

Throughout this section 𝐸 = R𝑛. Let us recall the following
important facts needed in our next proofs.

Fact 1 (see [10]). For any finite covering ∪𝑘
𝑖=1
𝐶
𝑖
of a compact

set 𝑆 ⊂ 𝐸, with each 𝐶
𝑖
being open and bounded, there exists

a Lipschitz partition of unity {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
}; that is, each 𝑝

𝑖

is a Lipschitz function and the following hold:

(i) 0 ≤ 𝑝
𝑖
(𝑥) ≤ 1, ∀𝑥 ∈ 𝑆, ∀𝑖 = 1, 2, . . . , 𝑘.

(ii) 𝑥 ∉ 𝐶
𝑖
⇒ 𝑝
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑘.

(iii) ∑𝑘
𝑖=1

𝑝
𝑖
(𝑥) = 1, ∀𝑥 ∈ 𝑆.

Fact 2 (see [11]). Let 𝑆 be a compact subset of 𝐸 and suppose
that𝐹 is an u.s.c. set-valuedmapping on 𝑆with images that are
nonempty closed convex sets in 𝐸. Let 𝛾

𝑖
↓ 0 be given. Then

there exists a sequence of set-valued mappings 𝐹
𝑗
: 𝑆  𝐸

with closed convex values such that the following hold:

(a) 𝐹(𝑥) ⊂ 𝐹
𝑗+1
(𝑥) ⊂ 𝐹

𝑗
(𝑥) ⊂ 𝐹({𝑥 + 𝛾

𝑗
int(B)}), ∀𝑥 ∈ 𝑆,

∀𝑗 = 1, 2, . . .;
(b) 𝐹
𝑗
is l.s.c.
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Figure 2: The nonconvex set 𝑆 in Example 17.

Fact 3 (see [1]). Let 𝑆 ⊂ R𝑛 be homeomorphic to a convex
compact set and let 𝐹 be an upper semicontinuous set-valued
mapping on 𝑆 with nonempty closed convex values in 𝐸.
Assume that 𝑆 is epi-Lipschitz and suppose that (2) holds.
Then 𝐹 has a zero on 𝑆.

In order to prove the first main result we need to prove
the following lemma.

Lemma 18. Let 𝑆 be a compact set. Assume that 𝑆 is an epi-
Lipschitz compact set, 𝜖 > 0, 𝐹 is l.s.c. on 𝑆, and for any 𝑥 ∈ 𝑆
there exists 𝛽

𝑥
≥ 0 such that

𝐹 (𝑥) ∩ int (𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥)) ̸= 0. (53)

Then there exists 𝛽 ≥ 0 (not depending on 𝑥 nor on 𝜖) and a
Lipschitz function 𝑓

𝜖
such that

𝑓
𝜖
(𝑥) ∈ (𝐹 (𝑥) + 𝜖 intB) ∩ 𝐻

𝛽,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (54)

Proof. Since 𝑆 is epi-Lipschitz, we have that by Proposition 9
the set-valued mapping 𝑇𝐶

𝛽𝑥,Ω
(𝑆; ⋅) is l.s.c. at any 𝑥 ∈ 𝑆. Let

𝜖 > 0 be too small so that 𝜖 < 𝜖. Thus, for any 𝑥 ∈ 𝑆 and any
𝑦 ∈ 𝐹(𝑥) ∩ int(𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥)) ̸= 0, the l.s.c. of both 𝐹 and

𝑇
𝐶

𝛽𝑥,Ω
(𝑆; ⋅) imply the existence of 𝛿(𝑥, 𝑦, 𝜖) > 0 such that

we have 𝑦 ∈ (𝐹 (𝑥) + 𝜖 int (B)) ∩ (int𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥


))

∀𝑥


∈ int (B (𝑥, 𝛿 (𝑥, 𝑦, 𝜖))) .
(55)

Hence, the family of open balls

int (B (𝑥, 𝛿 (𝑥, 𝑦, 𝜖))) fl {𝑥 + 𝛿 (𝑥, 𝑦, 𝜖) intB; 𝜖

∈ (0, 𝜖) , 𝑥 ∈ 𝑆, 𝑦 ∈ 𝐹 (𝑥) ∩ int (𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥))}

(56)

forms an open covering of 𝑆. By compactness of 𝑆 there
exists a finite subcover ∪𝑘

𝑖=1
intB(𝑥

𝑖
; 𝛿(𝑥
𝑖
, 𝑦
𝑖
, 𝜖
𝑖
)) of 𝑆 and let

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
} be a Lipschitz partition of unity subordinate

to this subcover (by Fact 1). Define now the Lipschitz function

𝑓
𝜖
(𝑧) fl

𝑘

∑

𝑖=1

𝑝
𝑖
(𝑧) 𝑦
𝑖
. (57)

Then

𝑝
𝑖
(𝑧) ̸= 0 ⇒

𝑧 ∈ intB (𝑥
𝑖
; 𝛿 (𝑥
𝑖
, 𝑦
𝑖
, 𝜖
𝑖
)) ⇒

𝑦
𝑖
∈ (𝐹 (𝑧) + 𝜖

𝑖
int (B)) ∩ int (𝑇𝐶

𝛽𝑥𝑖
,Ω
(𝑆; 𝑧)) .

(58)

Therefore, the convexity of both (𝛽
𝑥𝑖
, Ω)-Clarke tangent sets

(by Corollary 15) and images of the set-valued mappings 𝐹
imply that the selection 𝑓 satisfies

𝑓
𝜖
(𝑧) ∈ (𝐹 (𝑧) + 𝜖

𝑖
int (B)) ∩ int (𝑇𝐶

𝛽𝑥𝑖
,Ω
(𝑆; 𝑧))

∀𝑧 ∈ 𝑆, ∃𝑖 ∈ {1, 2, . . . , 𝑘} .

(59)

Set 𝛽 fl max{𝛽
𝑥𝑖
; 𝑖 ∈ {1, . . . , 𝑘}}. Then the fact that 𝜖

𝑖
< 𝜖 and

𝛽 ≥ 𝛽
𝑥𝑖
for any 𝑖 and the fact that Ω is balanced ensure the

inclusion

𝑇
𝐶

𝛽𝑥𝑖
,Ω
(𝑆; 𝑧) ⊂ 𝑇

𝐶

𝛽,Ω
(𝑆; 𝑧) ,

𝐹 (𝑧) + 𝜖
𝑖
int (B) ⊂ 𝐹 (𝑧) + 𝜖 int (B) .

(60)

By Proposition 8 we have int(𝑇𝐶
𝛽,Ω
(𝑆; 𝑧)) = 𝐻

𝛽,Ω
(𝑆; 𝑧), and

consequently we obtain

𝑓
𝜖
(𝑧) ∈ (𝐹 (𝑧) + 𝜖 int (B)) ∩ 𝐻

𝛽,Ω
(𝑆; 𝑧) , ∀𝑧 ∈ 𝑆, (61)

which completes the proof.

The following result can be seen as an approximate
equilibria result. It will be used to prove the main result of
the paper.

Theorem 19. Let 𝑆 be homeomorphic to a convex compact
set in R𝑛 which is epi-Lipschitz and let 𝐹 be an u.s.c. set-
valued mapping with nonempty closed convex values. LetΩ be
a convex compact set in R𝑛 with 0 ∈ Ω. Assume that for any
𝑥 ∈ 𝑆 there exist some 𝛽

𝑥
≥ 0 such that

𝐹 (𝑥) ∩ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (62)

If 𝑆 is tangentially regular, then there exist 𝛽 ≥ 0 and 𝑥∗ ∈ 𝑆

such that

0 ∈ 𝐹 (𝑥
∗

) + 𝛽Ω. (63)

Proof.

Case 1. First assume that 𝐹 is l.s.c. on 𝑆 and

𝐹 (𝑥) ∩ int (𝑇𝐶
𝛽𝑥,Ω

(𝑆; 𝑥)) ̸= 0, ∀𝑥 ∈ 𝑆. (64)

Then for any 𝜖 > 0 there exists, by the previous lemma, a
Lipschitz function 𝑓

𝜖
and a constant 𝛽 ≥ 0 such that

𝑓
𝜖
(𝑧) ∈ (𝐹 (𝑧) + 𝜖 int (B)) ∩ 𝐻

𝛽,Ω
(𝑆; 𝑧) ∀𝑧 ∈ 𝑆. (65)

Let us introduce the ordinary differential equation

�̇� (𝑡) = 𝑓
𝜖
(𝑥 (𝑡)) . (66)
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In view of (65) we have for any 𝑧 ∈ 𝑆

𝑓
𝜖
(𝑧) ∈ 𝐻

𝛽,Ω
(𝑆; 𝑧) ; (67)

that is, for any 𝑧 ∈ 𝑆 the set 𝑆 is (𝛽, Ω)-epi-Lipschitz at 𝑧 in
the direction 𝑓

𝜖
(𝑧). Use now Proposition 13 to deduce that

𝑓
𝜖
(𝑧) ∈ 𝐾 (𝑆; 𝑧) − 𝛽Ω. (68)

Since 𝑆 is tangentially regular, we get

𝑇
𝐶

(𝑆; 𝑧) ∩ (𝑓
𝜖
(𝑧) + 𝛽Ω) ̸= 0, ∀𝑧 ∈ 𝑆. (69)

Define the set-valued mapping 𝐹
𝜖
(𝑥) fl 𝑓

𝜖
(𝑥) + 𝛽Ω. Clearly

this set-valued mapping satisfies the hypothesis of Fact 3 and
so there exists 𝑥∗

𝜖
∈ 𝑆 such that 0 ∈ 𝐹

𝜖
(𝑥
∗

𝜖
) fl 𝑓

𝜖
(𝑥
∗

𝜖
) + 𝛽Ω.

Clearly,

0 ∈ 𝑓
𝜖
(𝑥
∗

𝜖
) + 𝛽Ω ⊂ 𝐹 (𝑥

∗

𝜖
) + 𝜖 int (B) + 𝛽Ω. (70)

Case 2. Assume now that 𝐹 is u.s.c. Let 𝛾
𝑗
↓ 0 as 𝑗 → ∞ and

let 𝐹
𝑗
be a sequence of l.s.c. approximations of 𝐹 as in Fact 2.

Let 𝜖
𝑗
↓ 0 as 𝑗 → ∞ and let �̃�

𝑗
(𝑥) fl 𝐹

𝑗
(𝑥) + 𝛾

𝑗
B. Clearly �̃�

𝑗

is l.s.c. and �̃�
𝑗
(𝑥)∩ int𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. Indeed, by Part

(b) in Fact 2 we have

0 ̸= 𝐹 (𝑥) ∩ 𝑇
𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) ⊂ 𝐹

𝑗
(𝑥) ∩ 𝑇

𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) , (71)

and so obviously we obtain

(𝐹
𝑗
(𝑥) + 𝛾

𝑗
B) ∩ int𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) ̸= 0. (72)

And hence

�̃�
𝑗
(𝑥) ∩ int𝑇𝐶

𝛽𝑥,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (73)

Applying Case 1 for all �̃�
𝑗
we obtain a constant 𝛽 ≥ 0 and an

element 𝑥∗
𝑗
∈ 𝑆 such that

0 ∈ �̃�
𝑗
(𝑥
∗

𝑗
) + 𝜖
𝑗
int (B) + 𝛽Ω. (74)

Consequently, from the monotonicity of 𝐹
𝑗
(by Part (a) in

Fact 1), we have

0 ∈ �̃�
𝑗
(𝑥
∗

𝑖
) + 𝜖
𝑖
int (B) + 𝛽Ω, ∀𝑖 > 𝑗. (75)

Since 𝑆 is assumed to be compact, we can extract a sub-
sequence of 𝑥∗

𝑗
(still denoted by 𝑥∗

𝑗
) converging to a limit

𝑥
∗

∈ 𝑆. Let 𝑥∗
𝑖𝑗
be such that 𝑖

𝑗
> 𝑗. Then

0 ∈ �̃�
𝑗
(𝑥
∗

𝑖𝑗
) + 𝜖
𝑖𝑗
int (B) + 𝛽Ω

⊂ 𝐹
𝑗
(𝑥
∗

𝑖𝑗
) + 𝛾
𝑗
B + 𝜖
𝑖𝑗
int (B) + 𝛽Ω

⊂ 𝐹
𝑗
(𝑥
∗

𝑖𝑗
) + (2𝛾

𝑗
+ 𝜖
𝑖𝑗
) int (B) + 𝛽Ω

(76)

and therefore by Part (a) in Fact 1 we get

0 ∈ 𝐹 ({𝑥
∗

𝑖𝑗
+ 𝛾
𝑗
int (B)}) + (2𝛾

𝑗
+ 𝜖
𝑖𝑗
) int (B) + 𝛽Ω. (77)

Upon letting 𝑗 → ∞ we obtain 0 ∈ 𝐹(𝑥
∗

) + 𝛽Ω and hence
the proof is complete.

Observe that 𝛽 in the previous theorem cannot be
controlled since it depends on the pointwise constants 𝛽

𝑥
in

(4). However, if we assume that the tangential condition (4)
is satisfied with a uniform 𝛽 (i.e., 𝛽 does not depend on 𝑥 and
it is the same for any 𝑥 ∈ 𝑆), then we get the following first
corollary in which the constant is the same satisfying (4).

Corollary 20. Let 𝑆 be homeomorphic to a convex compact set
inR𝑛 and let 𝐹 be an u.s.c. set-valued mapping with nonempty
closed convex values. LetΩ be a convex compact set inR𝑛 with
0 ∈ Ω. Assume that 𝑆 is epi-Lipschitz and for some 𝛽 ≥ 0 one
has

𝐹 (𝑥) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (78)

If 𝑆 is tangentially regular, then there exists 𝑥∗ ∈ 𝑆 such that

0 ∈ 𝐹 (𝑥
∗

) + 𝛽Ω. (79)

Using this corollary we prove ourmain result establishing
an existence result of exact equilibria of 𝐹 on 𝑆.

Theorem 21. Let 𝑆 be homeomorphic to a convex compact set
inR𝑛 and let 𝐹 be an u.s.c. set-valued mapping with nonempty
closed convex values. LetΩ be a convex compact set inR𝑛 with
0 ∈ Ω. Assume that 𝑆 is epi-Lipschitz and for some 𝛽 ≥ 0 one
has

𝐹 (𝑥) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (80)

If 𝑆 is tangentially regular, then there exists 𝑥∗ ∈ 𝑆 such that

0 ∈ 𝐹 (𝑥
∗

) . (81)

Proof. We proceed by approximation. Fix any 𝜖 > 0. First
observe the following fact due to the balanced property ofΩ:

𝑇
𝐶

𝜖𝛽,Ω
(𝑆; 𝑥) = 𝑇

𝐶

(𝑆; 𝑥) − 𝜖𝛽Ω = 𝑇
𝐶

(𝑆; 𝑥) − 𝛽Ω

= 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥) .

(82)

Then (80) ensures

𝐹 (𝑥) ∩ 𝑇
𝐶

𝜖𝛽,Ω
(𝑆; 𝑥) ̸= 0, ∀𝑥 ∈ 𝑆. (83)

Applying now Theorem 19 we obtain for any 𝜖 > 0 the
existence of some point 𝑥∗

𝜖
∈ 𝑆 with 0 ∈ 𝐹(𝑥∗

𝜖
) + 𝜖𝛽Ω. Using

the fact that 𝑆 is compact we can extract a subsequence of
{𝑥
∗

𝜖
}
𝜖
converging to some limit 𝑥∗ ∈ 𝑆 and since obviously

our assumptions on𝐹 ensure that the limit satisfies 0 ∈ 𝐹(𝑥∗),
then the proof is complete.

We apply this existence result to the following two
examples for which we cannot apply the results in [1] because
the tangential condition (2) is not satisfied.

Example 22. Let 𝐸 = R2, 𝑆 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
, 𝑥
2
∈

[−1, 0]},Ω = −𝑆, and 𝐹(𝑥
1
, 𝑥
2
) = (2𝑥

1
+𝑥
2
, 2𝑥
2
+3𝑥
1
−1)+B.

Since 𝐹(𝑥
1
, 𝑥
2
) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) ̸= 0 for any (𝑥

1
, 𝑥
2
) ∈ 𝑆

(by Example 16) and since all the assumptions on 𝐹 and 𝑆 in
Theorem 21 are fulfilled, then there exists some 𝑥∗ ∈ 𝑆 with
(0, 0) ∈ 𝐹(𝑥

∗

). In this example the equilibrium is𝑥∗ = (0, 0) ∈
𝑆 and it is unique.
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Figure 3: The nonconvex set 𝑆 in Example 23.

Example 23. Let 𝐸 = R2, 𝑆 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
, 𝑥
2
≥

0, 1 ≤ 𝑥
2

1
+ 𝑥
2

2
≤ 4}, and 𝐹(𝑥

1
, 𝑥
2
) = (𝑥

1
, 𝑥
2
) + (3/2)B.The

set 𝑆 is the intersection of the set given in Example 17 with
the first quarter inR2 (see Figure 3). Using the computations
presented in Example 17 we can check that, for any (𝑥

1
, 𝑥
2
) ∈

𝑆, 𝐹(𝑥
1
, 𝑥
2
) ∩ 𝑇
𝐶

𝛽,Ω
(𝑆; (𝑥
1
, 𝑥
2
)) ̸= 0. Also, the set 𝑆 is homeo-

morphic to a convex compact set. Indeed, 𝑆 can be mapped
continuously and with continuous inverse to the segment
{(0, 𝑥
2
) : 𝑥
2
∈ [1, 2]} by projection. Thus, all the assumptions

of Theorem 21 are satisfied and so there exists 𝑥∗ ∈ 𝑆 such
that (0, 0) ∈ 𝐹(𝑥

∗

). In this example we do not have the
uniqueness of the equilibria 𝑥∗ and there is an infinity of
them. Indeed, for any (𝑥

1
, 𝑥
2
) ∈ 𝑆 with 𝑥2

1
+ 𝑥
2

2
= 1 we have

(0, 0) ∈ 𝐹(𝑥
1
, 𝑥
2
).

Let us now apply our main result in Theorem 21 for
the existence of fixed points for set-valued mappings on
nonconvex sets. It extends Theorems 1.7 and 1.8 in [1] from
the case of 𝑆 and 𝐹 satisfying the tangential condition (80)
with 𝛽 = 0 to the general case with any 𝛽 ≥ 0.

Theorem 24. Let 𝑆 be homeomorphic to a convex compact set
inR𝑛 and let 𝐹 be an u.s.c. set-valued mapping with nonempty
closed convex values. LetΩ be a convex compact set inR𝑛 with
0 ∈ Ω. Assume that 𝑆 is epi-Lipschitz and tangentially regular
and for some 𝛽 ≥ 0 one has

𝐺 (𝑥) ∩ [𝑥 + 𝑇
𝐶

𝛽,Ω
(𝑆; 𝑥)] ̸= 0, ∀𝑥 ∈ 𝑆. (84)

Then 𝐺 has a fixed point in 𝑆; that is, there exists 𝑥∗ ∈ 𝑆 such
that 𝑥∗ ∈ 𝐺(𝑥∗).

Proof. It follows directly from Theorem 21 by taking 𝐹(𝑥) fl
𝐺(𝑥) − 𝑥.
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