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Estimating the growth of meromorphic solutions has been an important topic of research in complex differential equations. In
this paper, we devoted to considering uniqueness problems by estimating the growth of meromorphic functions. Further, some
examples are given to show that the conclusions are meaningful.

1. Introduction and Main Results

Assuming that the reader is familiar with the notations and
results on Nevanlinna theory [1] and the applications of
normal family theory on estimating the growth of mero-
morphic functions (see [2–4]), it is an interesting attempt
to consider the growth properties of meromorphic functions
under the condition involved sharing value or some complex
differential (or difference) equations (see [5–9]).

For a meromorphic function 𝑓, the order 𝜌(𝑓) and
hyperorder 𝜎(𝑓) of 𝑓 are defined as follows [1]:

𝜌 (𝑓) fl lim sup
𝑟→∞

log𝑇 (𝑟, 𝑓)
log 𝑟

,

𝜎 (𝑓) fl lim sup
𝑟→∞

log log𝑇 (𝑟, 𝑓)
log 𝑟

.

(1)

Let 𝑓(𝑧) and 𝑔(𝑧) be two nonconstant meromorphic
functions in the complex planeC, and let 𝛼(𝑧) be ameromor-
phic function or a finite complex number. If 𝑔(𝑧) − 𝛼(𝑧) = 0
whenever 𝑓(𝑧) − 𝛼(𝑧) = 0, we write 𝑓(𝑧) = 𝛼(𝑧) ⇒ 𝑔(𝑧) =
𝛼(𝑧). If 𝑓(𝑧) = 𝛼(𝑧) ⇒ 𝑔(𝑧) = 𝛼(𝑧) and 𝑔(𝑧) = 𝛼(𝑧) ⇒
𝑓(𝑧) = 𝛼(𝑧), we write 𝑓(𝑧) = 𝛼(𝑧) ⇔ 𝑔(𝑧) = 𝛼(𝑧) and
say that 𝑓(𝑧) and 𝑔(𝑧) share 𝛼(𝑧) IM (ignoring multiplicity).
If 𝑔(𝑧) − 𝛼(𝑧) = 0 whenever 𝑓(𝑧) − 𝛼(𝑧) = 0 and the

multiplicity of the zero 𝑧
0
of 𝑔 − 𝛼 is greater than or equal

to that of the zero 𝑧
0
of 𝑓 − 𝛼, then we denote this condition

by 𝑓(𝑧) − 𝛼(𝑧) = 0 󳨃→ 𝑔(𝑧) − 𝛼(𝑧) = 0. Let 𝑅 be a rational
function which behaves asymptotically 𝑐𝑟𝛽 as 𝑟 → ∞, where
𝑐 ̸= 0, 𝛽 are constants.The degree of 𝑅 at infinity is defined as
deg𝑅 fl deg

∞
𝑅 fl max{0, 𝛽}.

In the following, for a linear differential polynomial of 𝑓,
we write

𝐿 (𝑓) fl 𝑎
𝑘
𝑓(𝑘) + 𝑎

𝑘−1
𝑓(𝑘−1) + ⋅ ⋅ ⋅ + 𝑎

2
𝑓󸀠󸀠 + 𝑎

1
𝑓󸀠 + 𝑎

0
𝑓, (2)

where 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑘
( ̸= 0) are constants and 𝑘 ≥ 2 is an

integer.
In 1986, Jank et al. [10] proved that, for an entire function

𝑓, if 𝑓 and 𝑓󸀠 share a finite nonzero value 𝑎 IM and if 𝑓(𝑧) =
𝑎 ⇒ 𝑓󸀠(𝑧) = 𝑎, then 𝑓 ≡ 𝑓󸀠. In 2006, Wang [11] replaced the
value 𝑎 by a polynomial 𝑄 ̸≡ 0 and obtained the following
result: let 𝑓 be a nonconstant entire function, let 𝑄 be a
polynomial of degree 𝑞 ≥ 1, and let 𝑘 > 𝑞 be an integer. If
𝑓 and 𝑓󸀠 share 𝑄 CM and if 𝑓(𝑧) = 𝑄(𝑧) ⇒ 𝑓(𝑘)(𝑧) = 𝑄(𝑧),
then 𝑓 ≡ 𝑓󸀠.

In 2010, Lü and Yi [12] obtained the following results.
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Theorem 1. Let 𝑓 be a nonconstant meromorphic function
with finitely many poles, and let 𝑅 be a nonzero rational
function. If

𝑓 (𝑧) = 𝑅 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝑅 (𝑧) ,

𝑓󸀠 (𝑧) = 𝑅 (𝑧) 󳨐⇒
󵄨󵄨󵄨󵄨𝐿 (𝑓) (𝑧)

󵄨󵄨󵄨󵄨 ≤ (𝑀 + 𝑜 (1)) |𝑅 (𝑧)| ,
(3)

where𝑀 is a positive number, then 𝑓 is of order at most 1.

Theorem 2. Let 𝑓 be a nonconstant meromorphic function
with finitely many poles, and let 𝑅 be a nonzero rational
function such that 𝑓 and 𝑅 have no common poles. If

𝑓 (𝑧) = 𝑅 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝑅 (𝑧) ,

𝑓󸀠 (𝑧) = 𝑅 (𝑧) 󳨐⇒ 𝐿 (𝑓) (𝑧) = 𝑅 (𝑧) ,

𝑓󸀠 (𝑧) − 𝑅 (𝑧) = 0 󳨃󳨀→ 𝑓 (𝑧) − 𝑅 (𝑧) = 0,

(4)

then one of the following three cases holds:

(i) 𝑓(𝑧) = 𝑏𝑒𝑧 and ∑𝑘
𝑛=0
𝑎
𝑛
= 1, where 𝑏 is a nonzero

constant;
(ii) 𝑅 reduces to a constant, say 𝑎, and 𝑎

0
+ 𝑎
1
+

∑
𝑘

𝑛=2
𝑎
𝑛
𝑐𝑛−1 = 1 for some nonzero constant 𝑐 such that

𝑓 (𝑧) = 𝑏𝑒
𝑐𝑧 −
𝑎 (1 − 𝑐)

𝑐
, (5)

where 𝑏 is a nonzero constant;
(iii) 𝑅 is a nonconstant polynomial with deg𝑅 = 𝑙 ≤ 𝑘 − 2,
𝑓(𝑧) = 𝜆𝑒𝑐𝑧 + 𝑄(𝑧), and

𝑎
0
+ 𝑎
1
= 1,

𝑎
2
= 𝑎
3
= ⋅ ⋅ ⋅ = 𝑎

𝑙
= 0,

𝑘

∑
𝑛=𝑙+1

𝑎
𝑛
𝑐𝑛−(𝑙+1) = 0,

(6)

where 𝜆, 𝑐 are two nonzero constants and 𝑄 is a
polynomial such that 𝑐𝑄 − 𝑄󸀠 = (𝑐 − 1)𝑅.

Problem 3. In Theorem 1, we see that 𝑓, 𝑓󸀠, and 𝐿(𝑓) share
one function with zero order. So it is natural to ask what will
happen if they share a function of infinite order or positive
finite order?

Considering Problem 3, we derive the following results.

Theorem 4 (main theorem). Let 𝑅 be a nonzero rational
function and let 𝑓, 𝛾 be two entire functions. Let 𝑘 (≥ 2) be
an integer and let 𝐿(𝑓) be defined as (2). If

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒
󵄨󵄨󵄨󵄨𝐿 (𝑓) (𝑧)

󵄨󵄨󵄨󵄨 ≤ (𝑀 + 𝑜 (1)) |𝛼 (𝑧)| ,
(7)

where 𝛼 = 𝑅𝑒𝛾 (𝛼 ̸≡ 𝛼󸀠), and if 𝛼 − 𝛼󸀠 has at most finitely
many zeros, then 𝜎(𝑓) ≤ 𝜎(𝛼) = 𝜌(𝛾).

The following examples show that our conclusion 𝜎(𝑓) ≤
𝜌(𝛾) really exists and is sharp.

Example 5. Let 𝑓(𝑧) = 𝐴𝑒𝑧, where 𝐴 is a nonzero constant.
Let 𝛼(𝑧) = 𝑒𝑒

−𝑧

+𝑧. Noting that 𝑓 ≡ 𝑓󸀠 ≡ 𝑓(𝑘) (𝑘 ≥ 2), we have

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
(𝑘)

(𝑧) = 𝛼 (𝑧) .
(8)

Obviously, 𝛼(𝑧) − 𝛼󸀠(𝑧) = 𝑒𝑒
−𝑧

has no zeros. Thus it satisfies
the assumptions of Theorem 4 and 𝜎(𝑓) = 0 < 𝜎(𝛼) = 1.

Example 6. Let𝑓(𝑧) = 2𝑒𝑧 and 𝛼(𝑧) = (4𝑧2−𝑧+2)𝑒𝑧
2

. Noting
that 𝑓 ≡ 𝑓󸀠 ≡ 𝑓(𝑘), then

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
(𝑘)

(𝑧) = 𝛼 (𝑧) .
(9)

It satisfies the assumptions of Theorem 4 and 𝜎(𝑓) = 0.

Example 7. Let 𝑓(𝑧) = 4𝑧2 − 8𝑧 + 8, 𝛼(𝑧) = 2𝑧2. Noting that
𝑓 ̸≡ 𝑓󸀠 ̸≡ 𝑓󸀠󸀠, then 𝑓(𝑧) − 𝛼(𝑧) = 2(𝑧 − 2)2, 𝑓󸀠(𝑧) − 𝛼(𝑧) =
−2(𝑧 − 2)2, and 𝑓󸀠󸀠(𝑧) − 𝛼(𝑧) = 2(2 − 𝑧)(2 + 𝑧). It is easy
to see 𝑓(𝑧) = 𝛼(𝑧) ⇒ 𝑓󸀠(𝑧) = 𝛼(𝑧) and 𝑓󸀠(𝑧) = 𝛼(𝑧) ⇒
𝑓󸀠󸀠(𝑧) = 𝛼(𝑧) and 𝜎(𝑓) = 𝜎(𝛼). It satisfies the assumptions of
Theorem 4 and 𝜎(𝑓) = 𝜎(𝛼) = 0.

Example 8. Let 𝑓(𝑧) = 𝑧4𝐴𝑒𝑧 +𝑧4 +8𝑧3 +24𝑧2 +48𝑧+48 and
𝛼(𝑧) = 𝑧4 + 8𝑧3 + 24𝑧2 + 48𝑧+ 48, where𝐴 = 𝑒4 is a constant.
Differentiating 𝑓 twice yields 𝑓󸀠(𝑧) = (𝑧4 + 4𝑧3)𝐴𝑒𝑧 + 4𝑧3 +
24𝑧2+48𝑧+48 and𝑓󸀠󸀠(𝑧) = (𝑧4+8𝑧3+12𝑧2)𝐴𝑒𝑧+12𝑧2+48𝑧+
48; then 𝑓(𝑧) = 𝛼(𝑧) ⇒ 𝑓󸀠(𝑧) = 𝛼(𝑧) and 𝑓󸀠(𝑧) = 𝛼(𝑧) ⇒
𝑓󸀠󸀠(𝑧) = 𝛼(𝑧). Thus 𝜎(𝑓) ≤ 𝜎(𝛼), but 𝑓 ̸≡ 𝑓󸀠.

Theorem9 (main theorem). Let𝑓 be ameromorphic function
with at most finitely many poles, and let 𝛼 = 𝑅𝑒𝑄 (𝛼 ̸≡ 𝛼󸀠),
where 𝑅 ( ̸≡ 0) is a rational function and 𝑄 is a nonconstant
polynomial. Let 𝑘 (≥ 2) be an integer and let 𝐿(𝑓) be defined
as (2). Then 𝜌(𝑓) ≤ deg𝑄, if

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒
󵄨󵄨󵄨󵄨𝐿 (𝑓) (𝑧)

󵄨󵄨󵄨󵄨 ≤ (𝑀 + 𝑜 (1)) |𝛼 (𝑧)| .
(10)

Example 10. Let 𝑓(𝑧) = 4𝑒𝑧, 𝛼(𝑧) = 𝑧𝑒𝑧+1, so 𝜌(𝑓) = 1, and
deg𝑄 = 1. Noting that

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
(𝑘)

(𝑧) = 𝛼 (𝑧) ,
(11)

then 𝜌(𝑓) = 1 ≤ deg𝑄 = 1.

Remark 11. Example 10 illustrates that the conclusion of
Theorem 9 really occurs.
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Problem 12. If the rational function 𝑅 is replaced by a
function 𝛼 = 𝑅𝑒𝑄 (here 𝑄 is a polynomial) in Theorem 2,
what will happen?

Investigating Problem 12, we obtain the following result.

Theorem13. Let𝑓 be a nonconstant transcendentalmeromor-
phic function with finitely many poles. Let 𝛼 = 𝑅𝑒𝑄 (here𝑄 is a
polynomial and 𝛼 ̸≡ 𝛼󸀠) be a function and let 𝑅 be a nonzero
rational function such that𝑓 and𝑅 have no common poles, and
let 𝐿(𝑓) be defined as (2). Let 𝜌(𝛼) < 𝜌(𝑓). If

𝑓 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝑓
󸀠

(𝑧) = 𝛼 (𝑧) ,

𝑓󸀠 (𝑧) = 𝛼 (𝑧) 󳨐⇒ 𝐿 (𝑓) (𝑧) = 𝛼 (𝑧) ,
(12)

and 𝑓󸀠(𝑧) − 𝛼(𝑧) = 0 󳨃→ 𝑓(𝑧) − 𝛼(𝑧) = 0, then the conclusions
of Theorem 2 still hold and 𝑄(𝑧)must be a constant.

2. Some Lemmas

In order to prove our theorems, we need the following
lemmas.

Normal families, in particular, of holomorphic functions
often appear in operator theory on spaces of analytic func-
tions; for example, see in [13, Lemma 3] and in [14, Lemma 4].
Using the samemethod of the famous Pang-Zalcman Lemma
[15, Lemma 2] and the result of Lü et al. [8, Lemma 2.1, page
595], it is easy to obtain the following lemma. It plays an
important role in the proof of Theorems 4 and 9.

Lemma 14 (see [8, 15]). Let {𝑓
𝑛
} be a family of meromorphic

(analytic) functions in the unit disc Δ. If 𝑎
𝑛
→ 𝑎, |𝑎| < 1, and

𝑓♯
𝑛
(𝑎
𝑛
) → ∞, and if there exists 𝐴 ≥ 1 such that |𝑓󸀠

𝑛
(𝑧)| ≤ 𝐴

whenever 𝑓
𝑛
(𝑧) = 0, then there exist

(i) a subsequence of 𝑓
𝑛
(which we still write as {𝑓

𝑛
}),

(ii) points 𝑧
𝑛
→ 𝑧
0
|𝑧
0
| < 1,

(iii) positive numbers 𝜌
𝑛
→ 0,

such that 𝜌−1
𝑛
𝑓
𝑛
(𝑧
𝑛
+ 𝜌
𝑛
𝜉) = 𝑔

𝑛
(𝜉) → 𝑔(𝜉) locally uniformly,

where 𝑔 is a nonconstant meromorphic (resp., entire) function
on C, such that 𝜌(𝑔) ≤ 2 (resp., 𝜌(𝑔) ≤ 1), 𝑔♯(𝜉) ≤ 𝑔♯(0) =
𝐴 + 1, and

𝜌
𝑛
≤
𝑀

𝑓
♯

𝑛
(𝑎
𝑛
)
, (13)

where𝑀 is a constant which is independent of 𝑛.
Here, as usual, 𝑔♯(𝜉) = |𝑔󸀠(𝜉)|/(1+ |𝑔(𝜉)|2) is the spherical

derivative.

Thenext lemma is an extending result obtained by Lü and
Qi in [16].

Lemma 15 (see [16]). Let 𝑓 be a meromorphic function of
hyperorder 𝜎(𝑓) > 0. Then, for any 𝜖 > 0, there exists a
sequence 𝑧

𝑛
→∞ such that

𝑓♯ (𝑧
𝑛
) > 𝑒|𝑧𝑛|

𝑑−𝜖 (14)

for large enough 𝑛, where 𝑑 = 𝜎(𝑓) if 𝜎(𝑓) < ∞ or 𝑑 is an
arbitrary positive number.

Lemma 16 (see [5]). Let 𝑓(𝑧) be an entire function with
𝜌(𝑓) > 1; then for each 0 < 𝜇 < 𝜌(𝑓) − 1, there exist points
𝑎
𝑛
→∞ (𝑛 → ∞), such that

lim
𝑛→∞

𝑓♯ (𝑎
𝑛
)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
𝜇
= +∞. (15)

Lemma 17 (see [17]). Let 𝑔 be a nonconstant entire function
with order 𝜌(𝑔) ≤ 1, let 𝑘 ≥ 2 be an integer, and let 𝑎 be a
nonzero finite value. If 𝑔(𝑧) = 0 ⇒ 𝑔󸀠(𝑧) = 𝑎 and 𝑔󸀠(𝑧) =
𝑎 ⇒ 𝑔(𝑘)(𝑧) = 0, then 𝑔(𝑧) = 𝑎(𝑧−𝑧

0
), where 𝑧

0
is a constant.

Lemma 18 (see [1]). Suppose that 𝑓(𝑧) and 𝑔(𝑧) are two
nonconstant meromorphic functions in the complex plane with
𝜌(𝑓) and 𝜌(𝑔) as their orders, respectively. Then

𝜌 (𝑓𝑔) ≤ max {𝜌 (𝑓) , 𝜌 (𝑔)} ,

𝜌 (𝑓 + 𝑔) ≤ max {𝜌 (𝑓) , 𝜌 (𝑔)} .
(16)

The following lemma is from the proof of Theorem 2 in
[18] (see pages 493–495 in [18]). It plays an important role in
the proof of Theorem 13.

Lemma 19 (see [18]). Let 𝑓 and 𝛼 be two meromorphic
functions of finite order such that both 𝑓 and 𝛼 have finitely
many poles, 𝑓 and 𝛼 have no common poles, and the order of 𝛼
is less than the order of𝑓. Let𝐹 = 𝑓−𝛼 and𝐴 = 𝛼−𝛼󸀠, let𝑃 be
a nonzero polynomial, and let Q be a polynomial. If 𝐹 is a
solution of differential equation

𝐹󸀠

𝐹
−
1

𝑃
𝑒𝑄 =

𝐴

𝐹
, (17)

then 𝑄 reduces to a constant and 𝑃 reduces a constant.

3. Proof of Theorem 4

In the proof, we use some ideas of [8, 19–21]. The proof of
Theorem 4 is as follows.

Noting that 𝛼 = 𝑅𝑒𝛾, thus 𝜎(𝛼) = 𝜌(𝛾). So we just need to
obtain 𝜎(𝑓) ≤ 𝜌(𝛾).

On the contrary, suppose that 𝜎(𝑓) > 𝜌(𝛾). Take 𝑑 such
that 𝜎(𝑓) > 𝑑 > 𝑐 fl 𝜌(𝛾), and set𝐻 fl 𝑓 − 𝛼. Then

(I) 𝐻 = 0 ⇒ 𝐻󸀠 = 𝛼 − 𝛼󸀠,
(II) 𝐻󸀠 = 𝛼 − 𝛼󸀠 ⇒ |𝐿(𝐻)| ≤ (𝑀 + 𝑜(1))|𝛼| + |𝐿(𝛼)|.

Put 𝛽 = 𝛼−𝛼󸀠 = (𝑅−𝑅󸀠 −𝑅𝛾󸀠)𝑒𝛾 and 𝜑 = (𝑀+𝑜(1))|𝛼|+
|𝐿(𝛼)| = 𝐴|𝑃

𝑅,𝛾
𝑒𝛾|. Here 𝑃

𝑅,𝛾
= 𝑅(𝑘) + 𝑅𝛾(𝑘) + 𝑅(𝑘−1)𝛾󸀠 + ⋅ ⋅ ⋅ +

𝑅(𝛾󸀠)𝑘 is a differential polynomial about 𝑅 and 𝛾 and 𝐴 is a
positive number. Set 𝐹 = 𝐻/𝛽. Obviously, 𝜎(𝐹) = 𝜎(𝑓). By
Lemma 15, then for 0 < 𝜖 < (𝑑 − 𝑐)/2, there exists a sequence
𝑤
𝑛
→∞ as 𝑛 → ∞ such that

𝐹♯ (𝑤
𝑛
) > 𝑒|𝑤𝑛|

𝜎(𝐹)−𝜖

> 𝑒|𝑤𝑛|
𝑑−𝜖

. (18)
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Noting that 𝛽 = 𝛼 − 𝛼󸀠 has at most finitely many zeros,
then there exists a positive number 𝑟 such that 𝐹 has no poles
in𝐷 = {𝑧 : |𝑧| > 𝑟}.

In view of𝑤
𝑛
→∞ as 𝑛 → ∞, without loss of generality,

wemay assume |𝑤
𝑛
| ≥ 𝑟+1 for all 𝑛. Define𝐷

1
= {𝑧 : |𝑧| < 1}

and

𝐹
𝑛
(𝑧) = 𝐹 (𝑤

𝑛
+ 𝑧) =

𝐻 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)
, (19)

then every 𝐹
𝑛
is analytic in 𝐷

1
. Now, fix 𝑧 ∈ 𝐷

1
. If 𝐹
𝑛
(𝑧) = 0,

then 𝐻(𝑤
𝑛
+ 𝑧) = 0. It is clear from (I) that 𝐻󸀠(𝑤

𝑛
+ 𝑧) =

𝛽(𝑤
𝑛
+ 𝑧). Hence (for 𝑛 large enough)

󵄨󵄨󵄨󵄨󵄨𝐹
󸀠

𝑛
(𝑧)
󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻󸀠 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

−
𝐻 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

𝛽󸀠 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1.

(20)

Also 𝐹♯
𝑛
(0) → ∞ as 𝑛 → ∞. It follows fromMarty’s criterion

that (𝐹
𝑛
)
𝑛
is not normal at 𝑧 = 0.

Therefore, we can apply Lemma 14. Choosing an appro-
priate subsequence of (𝐹

𝑛
)
𝑛
if necessary, we may assume that

there exist sequences (𝑧
𝑛
)
𝑛
and (𝜌

𝑛
)
𝑛
with |𝑧

𝑛
| < 𝑟 < 1 and

𝜌
𝑛
→ 0 such that sequence (𝑔

𝑛
)
𝑛
is defined by

𝑔
𝑛
(𝜁) = 𝜌

−1

𝑛
𝐹
𝑛
(𝑧
𝑛
+ 𝜌
𝑛
𝜁)

= 𝜌−1
𝑛

𝐻(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔 (𝜁)

(21)

locally uniformly in C, where 𝑔 is a nonconstant entire
function of order at most 1. Moreover, 𝑔♯(𝜉) ≤ 𝑔♯(0) = 2
for all 𝜉 ∈ C and

𝜌
𝑛
≤
𝑀

𝐹
♯

𝑛 (0)
=

𝑀

𝐹♯ (𝑤
𝑛
)
≤ 𝑀𝑒−|𝑤𝑛|

𝑑−𝜖

(22)

for a positive number𝑀.
We claim that

𝜌𝑘−1
𝑛

𝐻(𝑘) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑘) (𝜁) (23)

locally uniformly in C.
Using the mathematical induction, we prove the claim as

follows.
From (21), we have

𝑔󸀠
𝑛
(𝜁) =

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

−
𝐻 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

=
𝐻󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌
𝑛
𝑔
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔󸀠 (𝜁) .

(24)

Noting that𝛽 = 𝛼−𝛼󸀠 = (𝑅−𝑅󸀠−𝑅𝛾󸀠)𝑒𝛾 and𝜑 = 𝛼−𝛼(𝑘) =
𝑃
𝑅,𝛾
𝑒𝛾, we have𝛽󸀠/𝛽 = (𝑅󸀠+𝑅𝛾󸀠−𝑅󸀠󸀠−2𝑅󸀠𝛾󸀠−𝑅𝛾󸀠󸀠−𝑅𝛾󸀠2)/(𝑅−

𝑅󸀠 − 𝑅𝛾󸀠) and 𝜌(𝛾󸀠󸀠) = 𝜌(𝛾󸀠) = 𝜌(𝛾󸀠2) = 𝜌(𝛾) = 𝑐. In view of
the definition of order, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽󸀠

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅󸀠 + 𝑅𝛾󸀠 − 𝑅󸀠󸀠 − 2𝑅󸀠𝛾󸀠 − 𝑅𝛾󸀠󸀠 − 𝑅𝛾󸀠2

𝑅 − 𝑅󸀠 − 𝑅𝛾󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑞

𝑀(
󵄨󵄨󵄨󵄨𝑤𝑛 + 𝑧𝑛 + 𝜌𝑛𝜁

󵄨󵄨󵄨󵄨 , 𝛾
󸀠)

≤
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑞

𝑀(2
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨 , 𝛾
󸀠) ≤
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑞

𝑒𝐴|𝑤𝑛|
𝑐+𝜖

,

(25)

where𝐴 is a positive constant and 𝑞 is an integer. Noting that
0 < 𝜖 < (𝑑−𝑐)/2, we have 𝑑−𝜖 > 𝑐+𝜖. Then, combining (22)
and (25) yields
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜌
𝑛
𝑔
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
󵄨󵄨󵄨󵄨𝑔𝑛 (𝜁)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑞

𝑒𝐴|𝑤𝑛|
𝑐+𝜖

−|𝑤
𝑛

|
𝑑−𝜖

󳨀→ 0,

as 𝑛 󳨀→ ∞.

(26)

From (24) and (26), we deduce that

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔󸀠 (𝜁) (27)

locally uniformly in C, which implies that the claim is right
when 𝑘 = 1.

We assume that the claim is also right when 𝑘 = 𝑙; that is,

𝜌𝑙−1
𝑛

𝐻(𝑙) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑙) (𝜁) (28)

locally uniformly in C.
Define𝐺

𝑛
(𝜁) = 𝜌𝑙−1

𝑛
(𝐻(𝑙)(𝑤

𝑛
+𝑧
𝑛
+𝜌
𝑛
𝜁)/𝛽(𝑤

𝑛
+𝑧
𝑛
+𝜌
𝑛
𝜁)).

Then

𝐺󸀠
𝑛
(𝜁)

= 𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌𝑙
𝑛

𝐻(𝑙) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

= 𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌
𝑛
𝐺
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑙+1) (𝜁)

(29)
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locally uniformly in C. Note the fact that

𝜌
𝑛
𝐺
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 0. (30)

We immediately derive that

𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󳨀→ 𝑔(𝑙+1) (𝜁) (31)

locally uniformly in C, which finishes the proof of the claim.
Furthermore, we have
𝜌𝑘−1
𝑛
𝐿 (𝐻) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

=
𝜌𝑘−1
𝑛
𝐻(𝑘) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

+ ⋅ ⋅ ⋅

+
𝜌𝑘−1
𝑛
𝑎
0
𝐻(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󳨀→ 𝑔(𝑘) (𝜁)

(32)

locally uniformly in C.
We claim that
(1) 𝑔(𝜁) = 0 ⇒ 𝑔󸀠(𝜁) = 1,
(2) 𝑔󸀠(𝜁) = 1 ⇒ 𝑔(𝑘)(𝜁) = 0.
Suppose that 𝑔(𝜁

0
) = 0; then by Hurwitz’s theorem there

exist 𝜁
𝑛
, 𝜁
𝑛
→ 𝜁
0
, such that (for 𝑛 sufficiently large)

𝑔
𝑛
(𝜁
𝑛
) = 𝜌−1
𝑛

𝐻(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
)
= 0. (33)

Thus𝐻(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
) = 0; by (I) we have

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
) = 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
) . (34)

By (27), we derive that

𝑔󸀠 (𝜁
0
) = lim
𝑛→∞

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁
𝑛
)
= 1, (35)

which implies that 𝑔(𝜁) = 0 ⇒ 𝑔󸀠(𝜁) = 1.
To prove (2), suppose that 𝑔󸀠(𝜂

0
) = 1. We know 𝑔󸀠 ̸≡ 1;

otherwise 𝑔♯(0) ≤ 1 < 2 is a contradiction. Hence by (27)
and Hurwitz’s theorem, there exist 𝜂

𝑛
→ 𝜂
0
such that (for 𝑛

sufficiently large)

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
) = 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
) . (36)

It is obvious from (II) that |𝐿(𝐻)(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)| ≤

𝐴|𝑃
𝑅,𝛾
𝑒𝛾(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)|. By (23), (32), and 𝜌(𝛾(𝑘)) = 𝜌(𝛾󸀠) =

𝜌((𝛾󸀠)𝑘) = 𝜌(𝛾) = 𝑐, similarly with (25) and (26), we obtain

𝑔(𝑘) (𝜂
0
) = lim
𝑛→∞

𝜌𝑘−1
𝑛
𝐿 (𝐻) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

= 0

≤ lim
𝑛→∞

𝜌𝑘−1
𝑛
𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑅,𝛾

𝑎
𝑘
(𝑅 − 𝑅󸀠 − 𝑅𝛾󸀠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜂
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0

(37)

which yields (2). By Lemma 17, it is easy to deduce that 𝑔(𝜁) =
𝜁−𝑏
0
, where 𝑏

0
is a constant; then 𝑔♯(0) ≤ 1 < 2, which is also

a contradiction.
Thus, we complete the proof of Theorem 4.

4. Proof of Theorem 9

Set𝐻 = 𝑓 − 𝛼. Then

(I) 𝐻(𝑧) = 0 ⇒ 𝐻󸀠(𝑧) = 𝛼(𝑧) − 𝛼󸀠(𝑧),
(II) 𝐻󸀠(𝑧) = 𝛼 − 𝛼󸀠 ⇒ |𝐿(𝐻)| ≤ (𝑀 + 𝑜(1))|𝛼| + |𝐿(𝛼)|.

Put 𝛽 = 𝛼 − 𝛼󸀠 = (𝑅 − 𝑅󸀠 − 𝑅𝑄󸀠)𝑒𝑄 = 𝑅
1
𝑒𝑄 and 𝜑 =

(𝑀 + 𝑜(1))|𝛼| + |𝐿(𝛼)| = 𝐴|𝑅
2
𝑒𝑄|. Here 𝑅

2
= 𝑅(𝑘) + 𝑅𝑄(𝑘) +

𝑅(𝑘−1)𝑄󸀠 + ⋅ ⋅ ⋅ + 𝑅(𝑄󸀠)𝑘, 𝑅
1
( ̸≡ 0) and 𝑅

2
are two rational

functions, deg𝑅
2
= deg𝑅𝑄󸀠𝑘,𝐴 is a positive number. Set 𝐹 =

𝐻/𝛽.
Noting that 𝛽 = 𝛼−𝛼󸀠 has at most finitely many zeros and

𝑓 has finitely many poles, then there exists a positive number
𝑟 such that 𝐹 has no poles in𝐷 = {𝑧 : |𝑧| > 𝑟}.

If 𝜌(𝐹) > deg𝑄, by Lemma 16, for every 0 < 𝜇 < 𝜌(𝐹)−1,
there exist 𝑤

𝑛
→∞, such that, for 𝑛 → ∞,

lim
𝑛→∞

𝐹♯ (𝑤
𝑛
)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝜇
= +∞. (38)

In view of𝑤
𝑛
→∞ as 𝑛 → ∞, without loss of generality,

wemay assume |𝑤
𝑛
| ≥ 𝑟+1 for all 𝑛. Define𝐷

1
= {𝑧 : |𝑧| < 1}

and

𝐹
𝑛
(𝑧) = 𝐹 (𝑤

𝑛
+ 𝑧) =

𝐻 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)
; (39)

then every 𝐹
𝑛
is analytic in 𝐷

1
. Now, fix 𝑧 ∈ 𝐷

1
. If 𝐹
𝑛
(𝑧) = 0,

then 𝐻(𝑤
𝑛
+ 𝑧) = 0. It is clear from (I) that 𝐻󸀠(𝑤

𝑛
+ 𝑧) =

𝛽(𝑤
𝑛
+ 𝑧). Hence (for 𝑛 large enough)

󵄨󵄨󵄨󵄨󵄨𝐹
󸀠

𝑛
(𝑧)
󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻󸀠 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

−
𝐻 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

𝛽󸀠 (𝑤
𝑛
+ 𝑧)

𝛽 (𝑤
𝑛
+ 𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1.

(40)

Also 𝐹♯
𝑛
(0) → ∞ as 𝑛 → ∞. It follows fromMarty’s criterion

that (𝐹
𝑛
)
𝑛
is not normal at 𝑧 = 0.

Therefore, we can apply Lemma 14. Choosing an appro-
priate subsequence of (𝐹

𝑛
)
𝑛
if necessary, we may assume that

there exist sequences (𝑧
𝑛
)
𝑛
and (𝜌

𝑛
)
𝑛
with |𝑧

𝑛
| < 𝑟 < 1 and

𝜌
𝑛
→ 0 such that sequences (𝑔

𝑛
)
𝑛
is defined by

𝑔
𝑛
(𝜁) = 𝜌

−1

𝑛
𝐹
𝑛
(𝑧
𝑛
+ 𝜌
𝑛
𝜁) 󳨀→ 𝑔 (𝜁) (41)

locally uniformly in C, where 𝑔 is a nonconstant entire
function of order at most 1. Moreover, 𝑔♯(𝜉) ≤ 𝑔♯(0) = 2
for all 𝜉 ∈ C and

𝜌
𝑛
≤
𝑀

𝐹
♯

𝑛 (0)
=

𝑀

𝐹♯ (𝑤
𝑛
)
≤ 𝑀

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
−𝜇−𝜖

(42)

for a positive number𝑀.
We claim that

𝜌𝑘−1
𝑛

𝐻(𝑘) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑘) (𝜁) (43)

locally uniformly in C.
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Using the mathematical induction, we prove the claim as
follows.

From (41), we have

𝑔󸀠
𝑛
(𝜁) =

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

−
𝐻 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

=
𝐻󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌
𝑛
𝑔
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔󸀠 (𝜁) .

(44)

Noting that 𝛽 = 𝛼 − 𝛼󸀠 = 𝑅
1
𝑒𝑄 and 𝜑 = (𝑀 + 𝑜(1))|𝛼| +

|𝐿(𝛼)| = 𝐴|𝑅
2
𝑒𝑄|, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽󸀠

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅󸀠
1
+ 𝑅
1
𝑄󸀠

𝑅
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅󸀠 − 𝑅󸀠󸀠 − 2𝑅󸀠𝑄󸀠 − 𝑅𝑄󸀠󸀠 + 𝑅𝑄󸀠 − 𝑅𝑄󸀠2

𝑅 − 𝑅󸀠 − 𝑅𝑄󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑤
𝑛

+𝑧
𝑛

+𝜌
𝑛

𝜁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂 (
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑙
1) .

(45)

By (38) and (42), combining with 𝜌(𝐹) > deg𝑄 and 0 <
𝜇 < 𝜌(𝐹) − 1, we deduce that

lim
𝑛→∞

𝑤𝑙1
𝑛
𝜌
𝑛
≤ lim
𝑛→∞

𝑀
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑙
1

−(𝜇+𝜖)

= 0, (46)

where 𝑙
1
= deg((𝑅󸀠−𝑅󸀠󸀠−2𝑅󸀠𝑄󸀠−𝑅𝑄󸀠󸀠+𝑅𝑄󸀠−𝑅𝑄󸀠2)/(𝑅−𝑅󸀠−

𝑅𝑄󸀠)) = deg((𝑅󸀠/𝑅−𝑅󸀠󸀠/𝑅−2(𝑅󸀠/𝑅)𝑄󸀠 −𝑄󸀠󸀠 +𝑄󸀠 −𝑄󸀠2)/(1−
𝑅󸀠/𝑅−𝑄󸀠))=deg𝑄󸀠 is a fixed constant.Then, combining (38),
(42), (45), and (46) yields

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜌
𝑛
𝑔
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
󵄨󵄨󵄨󵄨𝑔𝑛 (𝜁)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑙
1

−𝜇−𝜖

󳨀→ 0, as 𝑛 󳨀→ ∞.

(47)

From (44) and (47), we deduce that

𝐻󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔󸀠 (𝜁) (48)

locally uniformly in C, which implies that the claim is right
when 𝑘 = 1.

We assume that the claim is also right when 𝑘 = 𝑙; that is,

𝜌𝑙−1
𝑛

𝐻(𝑙) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑙) (𝜁) (49)

locally uniformly in C.

Define𝐺
𝑛
(𝜁) = 𝜌𝑙−1

𝑛
(𝐻(𝑙)(𝑤

𝑛
+𝑧
𝑛
+𝜌
𝑛
𝜁)/𝛽(𝑤

𝑛
+𝑧
𝑛
+𝜌
𝑛
𝜁)).

Then
𝐺󸀠
𝑛
(𝜁)

= 𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌𝑙
𝑛

𝐻(𝑙) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁) 𝛽 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

= 𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

− 𝜌
𝑛
𝐺
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 𝑔(𝑙+1) (𝜁)

(50)

locally uniformly in C. Note the fact that

𝜌
𝑛
𝐺
𝑛
(𝜁)
𝛽󸀠 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)
󳨀→ 0. (51)

We immediately derive that

𝜌𝑙
𝑛

𝐻(𝑙+1) (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󳨀→ 𝑔(𝑙+1) (𝜁) (52)

locally uniformly in C, which finishes the proof of the claim.
Furthermore, we have

𝜌𝑘−1
𝑛
𝐿 (𝐻) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

=
𝜌𝑘−1
𝑛
𝐻(𝑘) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

+ ⋅ ⋅ ⋅

+
𝜌𝑘−1
𝑛
𝑎
1
𝐻󸀠 (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

+
𝜌𝑘−1
𝑛
𝑎
0
𝐻(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜁)

󳨀→ 𝑔(𝑘) (𝜁)

(53)

locally uniformly in C.
We claim that
(1) 𝑔(𝜁) = 0 ⇒ 𝑔󸀠(𝜁) = 1,
(2) 𝑔󸀠(𝜁) = 1 ⇒ 𝑔(𝑘)(𝜁) = 0.
The proof of (1) is exactly the same as in the proof of

Theorem 4. To prove (2), just replace (53) in the previous
proof by

𝑔(𝑘) (𝜂
0
) = lim
𝑛→∞

𝜌𝑘−1
𝑛
𝐿 (𝐻) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

≤ lim
𝑛→∞

𝜌𝑘−1
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

𝑎
𝑘
𝛽 (𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

𝜌𝑘−1
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
2
(𝑤
𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

𝑎
𝑘
(𝑅 − 𝑅󸀠 − 𝑅𝑄󸀠) (𝑤

𝑛
+ 𝑧
𝑛
+ 𝜌
𝑛
𝜂
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

𝜌𝑘−1
𝑛
(𝑂(
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑙
2)) .

(54)
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Here 𝑙
2
= deg(𝑅

2
/(𝑅 − 𝑅󸀠 − 𝑅𝑄󸀠)) = deg(𝑅

2
/𝑅/(1 − 𝑅󸀠/𝑅 −

𝑄󸀠)) = deg(𝑄󸀠)𝑘−1 is also a fixed constant.
By (38) and (42), combining with 𝜌(𝐹) > deg𝑄 and 0 <

𝜇 < 𝜌(𝐹) − 1, we deduce that

lim
𝑛→∞

𝑤𝑙2
𝑛
𝜌𝑘−1
𝑛
≤ lim
𝑛→∞

𝑀
󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨
𝑙
2

−(𝑘−1)(𝜇+𝜖)

= 0, (55)

which yields (2). From Lemma 17, it is easy to deduce that
𝑔(𝜁) = 𝜁 − 𝑏

0
, where 𝑏

0
is a constant; then 𝑔♯(0) ≤ 1 < 2,

which is also a contradiction.
So 𝜌(𝐹) ≤ deg𝑄. Next we will prove 𝜌(𝑓) ≤ 𝜌(𝐹) ≤

deg𝑄.
If 𝜌(𝛼) < 𝜌(𝑓), noting that 𝜌(𝛼−𝛼󸀠) ≤ 𝜌(𝛼), by Lemma 18,

then 𝜌(𝐹(𝛼−𝛼󸀠)) ≤ max{𝜌(𝐹), 𝜌(𝛼)}. Due to 𝐹 = (𝑓−𝛼)/(𝛼−
𝛼󸀠), we have 𝑓 = 𝛼 + 𝐹(𝛼 − 𝛼󸀠). Thus, by Lemma 18, 𝜌(𝑓) ≤
max{𝜌(𝛼), 𝜌(𝐹(𝛼 − 𝛼󸀠))} ≤ max{𝜌(𝛼), 𝜌(𝐹)}. Then, it follows
from 𝜌(𝛼) < 𝜌(𝑓) that 𝜌(𝑓) ≤ 𝜌(𝐹) ≤ deg𝑄.

If 𝜌(𝛼) = 𝜌(𝑓), noting that 𝜌(𝛼) = deg𝑄, we obtain
𝜌(𝑓) = 𝜌(𝛼) = deg𝑄.

If 𝜌(𝛼) > 𝜌(𝑓), due to 𝐹 = (𝑓 − 𝛼)/(𝛼 − 𝛼󸀠) = (𝑓 − 𝑅𝑒𝑄)/
𝑅
1
𝑒𝑄 = 𝑓/𝑅

1
𝑒𝑄 − 𝑅/𝑅

1
, hence 𝑓 = (𝐹 + 𝑅/𝑅

1
)𝑅
1
𝑒𝑄. Because

𝑅/𝑅
1
is a rational function, we get 𝜌(𝑅/𝑅

1
) = 𝜌(𝑅

1
) = 0. By

Lemma 18, we may obtain deg𝑄 = 𝜌(𝑅𝑒𝑄) = 𝜌(𝛼) < 𝜌(𝑓) ≤
max{𝜌(𝐹 + 𝑅/𝑅

1
), 𝜌(𝑅

1
𝑒𝑄)} ≤ max{𝜌(𝐹), 𝜌(𝑅

1
𝑒𝑄)} ≤ deg𝑄,

a contradiction.
At last, we obtain 𝜌(𝑓) ≤ deg𝑄.
Thus, we complete the proof of Theorem 9.

5. Proof of Theorem 13

Now we distinguish two cases.

Case 1 (if𝑄 is a nonconstant polynomial). By the assumption
of Theorem 13 and the result of Theorem 9, we easily deduce
that 𝑓 is of order at most deg𝑄. Define

𝜇 =
𝑓󸀠 − 𝛼

𝑓 − 𝛼
. (56)

The fact that 𝑓 is transcendental and 𝜌(𝛼) < 𝜌(𝑓) implies
𝜇 ̸≡ 0.

Because of 𝑓󸀠(𝑧) − 𝛼(𝑧) = 0 󳨃→ 𝑓(𝑧) − 𝛼(𝑧) = 0, it
is easy to obtain that 𝜇 has no zeros. With the assumption
𝑓(𝑧) = 𝛼(𝑧) ⇒ 𝑓󸀠(𝑧) = 𝛼(𝑧), we derive that 𝑓 − 𝛼 has
finitely many multiple zeros. We know that the possible poles
of 𝜇 are from the multiple zeros of 𝑓 − 𝛼 and the poles of 𝑓;
thus 𝜇 has finitely many poles. Moreover, from (56), we have
𝜌(𝜇) ≤ 𝜌(𝑓) ≤ deg𝑄. Therefore, we can set

𝜇 =
1

𝑃 (𝑧)
𝑒𝑄
∗

(𝑧), (57)

where𝑃 is a nonzero polynomial and deg𝑄∗ is at most deg𝑄.
Set 𝐹 = 𝑓 − 𝛼 and 𝐴 = 𝛼 − 𝛼󸀠. We obtain

𝐹󸀠

𝐹
−
1

𝑃
𝑒𝑄
∗

=
𝐴

𝐹
. (58)

By Lemma 19, we get 𝑄∗ and 𝑃; both are constants. Thus 𝜇 is
a nonzero constant. Set 𝜇 = 𝑐, rewriting (56) as

𝑓󸀠 = 𝑐𝑓 + (1 − 𝑐) 𝛼 = 𝑐𝑓 + 𝐻, (59)

where𝐻 = (1 − 𝑐)𝛼.
If 𝑐 = 1, then𝑓 = 𝑓󸀠 and𝑓(𝑧) = 𝑏𝑒𝑧, where 𝑏 is a nonzero

constant. So 𝜌(𝑓) = 1. Since 𝑄 is a nonconstant polynomial,
we get 𝜌(𝛼) = 𝜌(𝑅𝑒𝑄) ≥ 1. It is a contradiction with the
condition 𝜌(𝛼) < 𝜌(𝑓).

Next, we consider 𝑐 ̸= 1. Differentiating (59) 𝑘 − 1 times
yields

𝑓(𝑘) = 𝑐𝑘𝑓 + 𝑐𝑘−1𝐻 + 𝑐𝑘−2𝐻󸀠 + ⋅ ⋅ ⋅ + 𝑐𝐻(𝑘−2)

+ 𝐻(𝑘−1).
(60)

Furthermore, we get

𝐿 (𝑓) =
𝑘

∑
𝑛=0

𝑎
𝑛
𝑐𝑛𝑓 +

𝑘

∑
𝑛=1

𝑎
𝑛
𝑐𝑛−1𝐻 +

𝑘

∑
𝑛=2

𝑎
𝑛
𝑐𝑛−2𝐻󸀠 + ⋅ ⋅ ⋅

+
𝑘

∑
𝑛=𝑝+1

𝑎
𝑛
𝑐𝑛−(𝑝+1)𝐻(𝑝) + ⋅ ⋅ ⋅ + 𝑎

𝑘
𝐻(𝑘−1).

(61)

Set

𝜙 =
𝑘

∑
𝑛=0

𝑎
𝑛
𝑐𝑛𝛼 +

𝑘

∑
𝑛=1

𝑎
𝑛
𝑐𝑛−1 (1 − 𝑐) 𝛼

+
𝑘

∑
𝑛=2

𝑎
𝑛
𝑐𝑛−2 (1 − 𝑐) 𝛼

󸀠 + ⋅ ⋅ ⋅

+
𝑘

∑
𝑛=𝑝+1

𝑎
𝑛
𝑐𝑛−(𝑝+1) (1 − 𝑐) 𝛼

(𝑝) + ⋅ ⋅ ⋅

+ 𝑎
𝑘
(1 − 𝑐) 𝛼

(𝑘−1)

= (𝑎
0
+ 𝑎
1
+
𝑘

∑
𝑛=2

𝑎
𝑛
𝑐𝑛−1)𝛼 +

𝑘

∑
𝑛=2

𝑎
𝑛
𝑐𝑛−2 (1 − 𝑐) 𝛼

󸀠

+ ⋅ ⋅ ⋅ +
𝑘

∑
𝑛=𝑝+1

𝑎
𝑛
𝑐𝑛−(𝑝+1) (1 − 𝑐) 𝛼

(𝑝) + ⋅ ⋅ ⋅

+ 𝑎
𝑘
(1 − 𝑐) 𝛼

(𝑘−1) = 𝑅
1
𝑒𝑄.

(62)

Obviously, 𝑅
1
is a rational function.

Suppose 𝑧
0
is a zero of 𝑓 − 𝛼. Substituting 𝐻 = (1 − 𝑐)𝛼

and 𝑧
0
into (61), we get 𝛼(𝑧

0
) = 𝜙(𝑧

0
); this shows that 𝑧

0
is

also a zero of 𝛼 − 𝜙.
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Next, we will prove that 𝛼 ≡ 𝜙. Otherwise, we assume
that 𝛼 ̸≡ 𝜙. Combining the above discussion and the fact
that 𝑓 − 𝛼 has finitely many multiple zeros yields

𝑁(𝑟,
1

𝑓 − 𝛼
) = 𝑁

1) (𝑟,
1

𝑓 − 𝛼
) + 𝑁(2 (𝑟,

1

𝑓 − 𝛼
)

≤ 𝑁(𝑟,
1

𝛼 − 𝜙
) + 𝑂 (log 𝑟)

= 𝑁(𝑟,
1

(𝑅 − 𝑅
1
) 𝑒𝑄
) + 𝑂 (log 𝑟)

= 𝑂 (log 𝑟) ,

(63)

and it implies that 𝑓− 𝛼 has finitely many zeros. Thus we can
set 𝑓 − 𝛼 = 𝑅

2
(𝑧)𝑒𝑄1 , where 𝑅

2
is a rational function and 𝑄

1

is a polynomial and degree at most deg𝑄. Differentiating the
above equation leads to

𝑓󸀠 (𝑧) = 𝛼
󸀠

(𝑧) + (𝑅
󸀠

2
+ 𝑄󸀠
1
𝑅
2
) 𝑒𝑄1 . (64)

By the fact that 𝑓 − 𝛼 has finitely many zeros and the
assumption 𝑓󸀠(𝑧) = 𝛼(𝑧) 󳨃→ 𝑓(𝑧) = 𝛼(𝑧), we deduce that
𝑓󸀠 − 𝛼 also has finitely many zeros. Noting that

𝑓󸀠 (𝑧) − 𝛼 (𝑧) = 𝛼
󸀠

(𝑧) − 𝛼 (𝑧)

+ (𝑅󸀠
2
(𝑧) + 𝑄

󸀠

1
(𝑧) 𝑅
2
(𝑧)) 𝑒
𝑄
1

(𝑧);
(65)

thus 𝛼 − 𝛼󸀠 or 𝑅󸀠
2
+ 𝑅
2
𝑄󸀠
1
≡ 0. By the assumptions of

Theorem 13, 𝛼 ̸≡ 𝛼󸀠, this is impossible.
If 𝑅󸀠
2
+ 𝑄󸀠
1
𝑅
2
= 0, then 𝑅󸀠

2
/𝑅
2
= −𝑄󸀠

1
. By the definition,

we get deg(𝑅󸀠
2
/𝑅
2
) = 0 and also deg𝑄󸀠

1
= 0. So we may set

𝑄
1
= 𝑏𝑧+𝑑 or𝑄

1
= 𝑎, where 𝑏 is a nonzero constant and 𝑎, 𝑑

are two constants.
If 𝑄
1
= 𝑎, then 𝑓 = 𝛼 + 𝑎. So 𝜌(𝑓) = 𝜌(𝛼). It is a

contradiction about the condition 𝜌(𝛼) < 𝜌(𝑓).
If 𝑄
1
= 𝑏𝑧 + 𝑑, then 𝑓 − 𝛼 = 𝑅

2
(𝑧)𝑒𝑏𝑧+𝑑. So (64) changes

to

𝑓󸀠 = 𝛼󸀠 + (𝑅󸀠
2
+ 𝑏𝑅
2
) 𝑒𝑏𝑧+𝑑, (66)

and (65) turns into

𝑓󸀠 − 𝛼 = 𝛼󸀠 − 𝛼 + (𝑅󸀠
2
+ 𝑏𝑅
2
) 𝑒𝑏𝑧+𝑑. (67)

Thus 𝛼 − 𝛼󸀠 = 0 or 𝑅󸀠
2
+ 𝑅
2
𝑏 = 0. Also 𝛼 ̸= 𝛼󸀠 is impossible. If

𝑅󸀠
2
+ 𝑅
2
𝑏 = 0, then 𝑏 = 0, a contradiction.

At last, we complete the proof of

𝛼 ≡ 𝜙. (68)

Next, we distinguish the following subcases.

Subcase 1.1 (𝑅 is not a polynomial). Suppose that 𝑎
0
is a pole

of 𝑅 with multiplicity 𝑚. By (62) and the fact that 𝑐 ̸= 1 and
𝑎
0
is a pole of 𝜙withmultiplicity𝑚+𝑘−1, it contradicts (68).

Subcase 1.2 (𝑅 is nonconstant polynomial). From (62), 𝑅
1

is a polynomial. By simple calculation, we get deg𝑅
1
=

deg(𝑅(𝑄󸀠)𝑘−1). Combining with (68), we deduce deg𝑅 =
deg𝑅
1
= deg(𝑅(𝑄󸀠)𝑘−1) = deg𝑅+deg(𝑄󸀠)𝑘−1. So𝑄 = 𝑚𝑧+𝑛

and 𝜌(𝛼) = 1. Here 𝑚 is a nonzero constant, and 𝑛 is a
constant.

By integrating (59), we have

𝑓 (𝑧) = 𝜆𝑒
𝑐𝑧 + 𝐴 (𝑧) 𝑒

𝑚𝑧, (69)

where 𝜆 is a nonzero constant and 𝐴 is a polynomial.
So 𝜌(𝑓) ≤ 1 = 𝜌(𝛼), a contradiction.

Subcase 1.3 (𝑅 is a constant). Set 𝑅 = 𝑎. So 𝛼 = 𝑎𝑒𝑄. As
subcase 1.2, we also get 𝑄(𝑧) = 𝑚𝑧 + 𝑛. Here 𝑚 is a nonzero
constant, and 𝑛 is a constant. Integrating (59) yields

𝑓 (𝑧) = [𝑎 (1 − 𝑐) ∫ 𝑒
𝑄(𝑧)−𝑐𝑧𝑑𝑧 + 𝑐

0
] 𝑒𝑐𝑧, (70)

where 𝑐
0
is a constant.

If𝑚 = 𝑐, by calculation, 𝑓(𝑧) = (𝑎𝑏(1 − 𝑐)𝑧 + 𝑐∗
0
)𝑒𝑐𝑧 (here

𝑏 = 𝑒𝑛 and 𝑐∗
0
is an arbitrary constant), and 𝜌(𝑓) = 𝜌(𝛼) = 1,

a contradiction.
So𝑚 ̸= 𝑐, by calculation;𝑓(𝑧) = 𝑎𝑏(1−𝑐)(1/(𝑚−𝑐))𝑒𝑚𝑧+

𝑐∗
0
𝑒𝑐𝑧 (here 𝑏 = 𝑒𝑛 and 𝑐∗

0
is an arbitrary constant), and 𝜌(𝑓) ≤

1 = 𝜌(𝛼), a contradiction.

Case 2. If 𝑄 is a constant, because 𝑓 is a transcendental
meromorphic function, obviously the condition 𝜌(𝛼) < 𝜌(𝑓)
and 𝛼 ̸≡ 𝛼󸀠 hold.

So Theorem 13 turns into Theorem 2, and the results of
Theorem 2 still hold.

The proof is completed.
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