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We prove that every bounded linear operator on weighted Bergman space over the polydisk can be approximated by Toeplitz
operators under some conditions.Themain tool here is the so-called (𝑚, 𝜆)-Berezin transform. In particular, our results generalized
the results of K. Nam and D. C. Zheng to the case of operators acting onA2

𝜆
(D𝑛
).

1. Introduction

LetD be the unit disk inC and𝑑𝐴
𝜇
(𝑧) = 𝑐

𝜇
(1−|𝑧|2)

𝜇
𝑑𝐴(𝑧) be

a positive standardweighted probabilitymeasure onD, where
the weighted parameter fulfills 𝜇 > −1 and the normalized
constant 𝑐

𝜇
= 𝜇+1. For a fixed positive integer 𝑛, the polydisk

D𝑛 is the Cartesian product of 𝑛 copies of D and

𝑑𝐴
𝜆
(𝑧) = 𝑑𝐴

𝜆
1

(𝑧
1
) ⋅ ⋅ ⋅ 𝑑𝐴

𝜆
𝑛

(𝑧
𝑛
) (1)

is the normalized weighted Lebesgue volume measure on the
polydisk D𝑛. The Bergman space A2

𝜆
(D𝑛
) = A2

𝜆
(D𝑛
, 𝑑𝐴

𝜆
)

is the set of all analytic functions on D𝑛 in 𝐿2
𝜆
(D𝑛, 𝑑𝐴

𝜆
) =

𝐿2
𝜆
(D𝑛). As is well knownA2

𝜆
(D𝑛) forms a closed subspace of

𝐿2
𝜆
(D𝑛) and has the structure of reproducing kernel Hilbert

space. We denote by 𝐵
𝜆
the Bergman projection of 𝐿2

𝜆
(D𝑛)

onto A2

𝜆
(D𝑛). In case of 𝜆 = 0, A2

0
(D𝑛) is the unweighted

Bergman space denoted by A2(D𝑛). Given an essentially
bounded measurable function 𝑎 ∈ 𝐿∞(D𝑛), we write 𝑇

𝑎

for the Toeplitz operator with the symbol 𝑎, which acts on
A2

𝜆
(D𝑛) as 𝑇

𝑎
𝑓 = 𝐵

𝜆
(𝑎𝑓). That is, the Toeplitz operator is

defined as the compression of a multiplication operator on
𝐿
2

𝜆
(D𝑛) onto the Bergman space.The Toeplitz algebraT(𝐿∞)

is the closed subalgebra of L(A2

𝜆
) generated by {𝑇

𝑎
: 𝑎 ∈

𝐿∞(D𝑛)}, where L(A2

𝜆
) denotes the algebra of all bounded

linear operators onA2

𝜆
(D𝑛).

Due to their simple structure Toeplitz operators form an
important, tractable, and intensively studied subclass in the

algebra L(A2

𝜆
) of all bounded linear operators on A2

𝜆
(D𝑛).

The natural question is whether the Toeplitz algebra is dense
in the algebra of all bounded linear operators on the Bergman
space. On unweighted Bergman space over the unit disk and
even more general domain in C, it is proved in [1] that the
Toeplitz algebra is dense in the algebra of all bounded linear
operators in the sense of strong operator topology (SOT).
In general, it is not true if the SOT is replaced by the norm
topology.

Nam and Zheng give a criterion for bounded operators
approximated by Toeplitz operators on A2

(D𝑛
). Since the

Berezin transform is a useful tool to study operators on any
reproducing kernel Hilbert space, the 𝑚-Berezin transform
for any bounded linear operators acting on A2(D𝑛) was
defined in [2]. The operator 𝑆 ∈ L(𝐿2

𝑎
) can be approximated

in the norm by Toeplitz operators on the unit ball (see
[3]) by using the 𝑚-Berezin transform. In [4], the (𝑘, 𝛼)-
Berezin transform for complex-valued regular measures
on the weighted 𝑝-Bergman space over the unit ball was
defined and studied. Using it, they show that every 𝑆 ∈

T(𝐿∞) can be approximated by certain localized operators
and introduce away to connect the behavior of these localized
operators with the Berezin transform. The (𝑚, 𝜆)-Berezin
transform for general bounded operators acting on the
weighted Bergman space A2

𝜆
(B𝑛) was defined in [5] and the

authors establish various results on norm approximations via
the (𝑚, 𝜆)-Berezin transform and describe conditions under
which a bounded linear operator 𝑆 can be approximated
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in norm by Toeplitz operators whose symbols are bounded
functions.

In this paper, we will define and study the (𝑚, 𝜆)-Berezin
transform for general bounded operators acting on the
weighted Bergman space A2

𝜆
(D𝑛) in the third section. The

(𝑚, 𝜆)-Berezin transform of a Toeplitz operator 𝑇
𝑎
acting on

A2

𝜆
(D𝑛) coincides with (0, 𝜆 + 𝑚)-Berezin transform for 𝑇

𝑎

considered on the weighted Bergman space A2

𝜆+𝑚
(D𝑛). We

will show that the (𝑚, 𝜆)-Berezin transforms are commuting
with each other. In Section 4, we will establish various results
on norm approximation by the (𝑚, 𝜆)-Berezin transform.
More precisely, we describe how to approximate a bounded
linear operator 𝑆 on A2

𝜆
(D𝑛) in norm by Toeplitz operators

whose symbols are bounded functions which are given as
the (𝑚, 𝜆)-Berezin transform of the initial operator 𝑆 under
some conditions.Wewould like to point out that these results
generalize ideas and theorems in [2] to the case of operators
acting onA2

𝜆
(D𝑛).

2. Preliminaries

Let D𝑛
= {𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
) : |𝑧

𝑖
| < 1, for 𝑖 = 1, . . . , 𝑛} be the

polydisk inC𝑛 equipped with the standard weighted measure
(1), where 𝜆 = (𝜆

1
, . . . , 𝜆

𝑛
) is fixed and 𝜆

𝑖
> −1 for any 𝑖 =

1, . . . , 𝑛. For a vector 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
) ∈ R𝑛 and a positive

integer𝑚 we will employ the notations

𝜆 + 𝑚 = (𝜆
1
+ 𝑚, . . . , 𝜆

𝑛
+ 𝑚) ,

|𝜆 + 𝑚| =

𝑛

∑
𝑖=1

(𝜆
𝑖
+ 𝑚) = 𝑛𝑚 +

𝑛

∑
𝑖=1

𝜆
𝑖
,

[𝜆 + 𝑚] =

𝑛

∏
𝑖=1

(𝜆
𝑖
+ 𝑚) .

(2)

In addition, if 𝜆
𝑖
is a positive integer for any 𝑖 = 1, . . . , 𝑛 and

𝑚 > 0, 𝜆 and 𝜆 + 𝑚 are multi-index. Let Z
+

fl {0, 1, . . .}

be the set of nonnegative integers. With 𝛼 ∈ Z𝑛

+
, we use the

standard notations 𝑧𝛼 fl 𝑧𝛼1
1
⋅ ⋅ ⋅ 𝑧𝛼𝑛

𝑛
, 𝛼! fl 𝛼

1
! ⋅ ⋅ ⋅ 𝛼

𝑛
! and |𝛼| fl

𝛼
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
.

As we all know, for all 𝛼 ∈ Z𝑛

+
and 𝜆 = (𝜆

1
, . . . , 𝜆

𝑛
), where

𝜆
𝑖
> −1, for 𝑖 = 1, . . . , 𝑛, we have

󵄩󵄩󵄩󵄩𝑤
𝛼󵄩󵄩󵄩󵄩2,𝜆 = √[𝜆 + 1]

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 1) Γ (𝜆

𝑖
+ 1)

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

(3)

and then {𝑒
𝛼
= 𝑤𝛼‖𝑤𝛼‖−1

2,𝜆
: 𝛼 ∈ Z𝑛

+
} is the standard ortho-

normal basis of A2

𝜆
(D𝑛). The reproducing kernel in A2

𝜆
(D𝑛)

is given by

𝐾
𝜆

𝑧
(𝑤) =

𝑛

∏
𝑖=1

1

(1 − 𝑧
𝑖
𝑤
𝑖
)
2+𝜆
𝑖

(4)

for 𝑧, 𝑤 ∈ D𝑛, and the normalized reproducing kernel
𝑘𝜆
𝑧
(𝑤) = 𝐾𝜆

𝑧
(𝑤)/‖𝐾𝜆

𝑧
‖ = 𝐾𝜆

𝑧
(𝑤)/√𝐾𝜆

𝑧
(𝑧) = ∏

𝑛

𝑖=1
((1 −

|𝑧
𝑖
|2)

(2+𝜆
𝑖
)/2
/(1 − 𝑧

𝑖
𝑤
𝑖
)
2+𝜆
𝑖). For 𝑧 ∈ D𝑛, let 𝜙

𝑧
(𝑤) =

(𝜙
𝑧
1

(𝑤
1
), . . . , 𝜙

𝑧
𝑛

(𝑤
𝑛
)), where 𝜙

𝑧
𝑖

(𝑤
𝑖
) = (𝑧

𝑖
− 𝑤

𝑖
)/(1 − 𝑤

𝑖
𝑧
𝑖
),

for 𝑖 = 1, . . . , 𝑛; then 𝜙
𝑧
(𝑤) is an automorphism on D𝑛 that

interchanges 0 and 𝑧. Let 𝜙󸀠
𝑧
(𝑤) = (𝜙󸀠

𝑧
1

(𝑤
1
), . . . , 𝜙󸀠

𝑧
𝑛

(𝑤
𝑛
));

then

[𝜙
󸀠

𝑧
(𝑤)] =

𝑛

∏
𝑖=1

(𝜙
󸀠

𝑧
𝑖

(𝑤
𝑖
)) =

𝑛

∏
𝑖=1

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

− 1

(1 − 𝑧
𝑖
𝑤
𝑖
)
2
. (5)

Given 𝑧 ∈ D𝑛, introduce the unitary operator 𝑈
𝑧
onA2

𝜆
(D𝑛)

given by 𝑈
𝑧
𝑓 = 𝑓 ∘ 𝜙

𝑧
⋅ [(𝜙󸀠

𝑧
)
(2+𝜆)/2

], where [(𝜙󸀠
𝑧
)
(2+𝜆)/2

] =

∏
𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2. It is easy to see that 𝑈

𝑧
is self-adjoint and so

𝑈2

𝑧
= 𝐼. We have 𝑈

0
𝑓(𝑤) = (−1)

|2+𝜆|/2
𝑓(−𝑤).

For a fixed 𝑧 ∈ D𝑛 we define an automorphism on the
algebra L(A2

𝜆
) of all bounded operator on A2

𝜆
(D𝑛
) by 𝑆 󳨃→

𝑆
𝑧
fl 𝑈

𝑧
𝑆𝑈

𝑧
∈ L(A2

𝜆
). In particular, if 𝑆 = 𝑇

𝑎
is a Toeplitz

operator, then (𝑇
𝑎
)
𝑧
= 𝑇

𝑎∘𝜙
𝑧

.
The principle difference between the unit ball B𝑛 and

the polydisk D𝑛 is that the later domain is reducible,
which involves the tensor product structure of various
objects introduced and studied in the paper. In particu-
lar, 𝐿2

𝜆
(D𝑛, 𝑑𝐴

𝜆
(𝑧)) = 𝐿2

𝜆
1

(D, 𝑑𝐴
𝜆
1

(𝑧
1
)) ⊗ ⋅ ⋅ ⋅ ⊗ 𝐿2

𝜆
𝑛

(D,
𝑑𝐴

𝜆
𝑛

(𝑧
𝑛
)) and A2

𝜆
(D𝑛, 𝑑𝐴

𝜆
(𝑧)) = A2

𝜆
1

(D, 𝑑𝐴
𝜆
1

(𝑧
1
)) ⊗ ⋅ ⋅ ⋅ ⊗

A2

𝜆
𝑛

(D, 𝑑𝐴
𝜆
𝑛

(𝑧
𝑛
)). Therefore, for the orthonormal basis of

A2

𝜆
(D𝑛
) and the reproducing kernel inA2

𝜆
(D𝑛
), we have𝑤𝛼

=

𝑤𝛼
1 ⋅ ⋅ ⋅ 𝑤𝛼

𝑛 = 𝑤𝛼
1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑤𝛼

𝑛 and 𝐾𝜆

𝑧
(𝑤) = 𝐾𝜆

1

𝑧
1

(𝑤
1
) ⊗ ⋅ ⋅ ⋅ ⊗

𝐾𝜆
𝑛

𝑧
𝑛

(𝑤
𝑛
).

The unitary operator 𝑈
𝑧
on A2

𝜆
(D𝑛) can be written by

𝑈
𝑧
= 𝑈

𝑧
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑈
𝑧
𝑛

. In fact, 𝑈
𝑧
𝑤𝛼 = 𝜙𝛼

𝑧
(𝑤) ⋅ (𝜙󸀠

𝑧
(𝑤))

(2+𝜆)/2
=

∏
𝑛

𝑖=1
(𝜙𝛼𝑖

𝑧
𝑖

(𝑤
𝑖
))⋅(𝜙󸀠

𝑧
𝑖

(𝑤
𝑖
))
(2+𝜆
𝑖
)/2
= (𝜙𝛼1

𝑧
1

(𝑤
1
))⋅(𝜙󸀠

𝑧
1

(𝑤
1
))
(2+𝜆
1
)/2
⊗

⋅ ⋅ ⋅ ⊗ (𝜙𝛼𝑛
𝑧
𝑛

(𝑤
𝑛
)) ⋅ (𝜙󸀠

𝑧
𝑛

(𝑤
𝑛
))
(2+𝜆
𝑛
)/2
= 𝑈

𝑧
1

𝑤𝛼
1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑈

𝑧
𝑛

𝑤𝛼
𝑛 =

(𝑈
𝑧
1

⊗ ⋅ ⋅ ⋅ ⊗𝑈
𝑧
𝑛

)(𝑤𝛼
1 ⊗ ⋅ ⋅ ⋅ ⊗𝑤𝛼

𝑛). If 𝑆 ∈L(A2

𝜆
) can be written

by 𝑆 = 𝑆
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑆

𝑛
, then 𝑆

𝑧
= 𝑆

𝑧
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑆
𝑧
𝑛

.
Let 𝑆

1
= 𝑆

1
(A2

𝜆
) denote the class of trace operators on

A2

𝜆
(D𝑛). Given 𝑇 ∈ 𝑆

1
, we write tr[𝑇] for its trace and recall

that the trace norm of 𝑇 is given by ‖𝑇‖
𝑆
1

= tr[√𝑇∗𝑇]. Given
𝑓,𝑔 ∈ A2

𝜆
(D𝑛), the rank-one-operator𝑓⊗𝑔 acting onA2

𝜆
(D𝑛)

by the formula (𝑓 ⊗ 𝑔)ℎ = ⟨ℎ, 𝑔⟩
𝜆
𝑓 obviously belongs to 𝑆

1
.

It is easily proved that 𝑓 ⊗ 𝑔 is in 𝑆
1
and with norm equal to

‖𝑓 ⊗ 𝑔‖
𝑆
1

= ‖𝑓‖
2,𝜆
⋅ ‖𝑔‖

2,𝜆
and tr[𝑓 ⊗ 𝑔] = ⟨𝑓, 𝑔⟩

𝜆
. Recall

as well that if 𝑇 ∈ 𝑆
1
has rank 𝑛, then one has the inequality

‖𝑇‖
𝑆
1

≤ √𝑛(tr[𝑇∗𝑇])1/2. The pseudo-hyperbolic metric on
D𝑛 is defined as 𝜌(𝑧, 𝑤) = max

1≤𝑖≤𝑛
|𝜙

𝑧
𝑖

(𝑤
𝑖
)|.

Throughout the paper and as a convention we will denote
by 𝐶(𝑛, 𝜆) a positive constant depending only on 𝑛 and 𝜆 and
appearing in various estimates and whose value may change
at each occurrence.
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3. The (𝑚, 𝜆)-Berezin Transform

Recall that 𝑚-Berezin transform for unweighted Bergman
space over the unit disk and over the unit polydisk was
defined in [6] and [2], respectively. We will follow the recipe
in [2] and first introduce some notation. Put

𝐶
𝑚,𝛼
= (−1)

|𝛼|
(
𝑚

𝛼
1

) ⋅ ⋅ ⋅ (
𝑚

𝛼
𝑛

) , (6)

so that, for 𝑧, 𝑤 ∈ D𝑛, we know

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
𝑧
𝛼
𝑤
𝛼
=

𝑛

∏
𝑖=1

(1 − 𝑧
𝑖
𝑤
𝑖
)
𝑚

. (7)

For 𝑧 ∈ D𝑛, 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
) ∈ R𝑛, and a positive integer 𝑚,

let 𝐾𝑚+𝜆

𝑧
(𝑢) = ∏

𝑛

𝑖=1
(1/(1 − 𝑧

𝑖
𝑢
𝑖
)
𝑚+𝜆
𝑖
+2
).

A generalization of the concept of𝑚-Berezin transform to
an arbitrary bounded operator on the Bergman spaceA2(D𝑛)

requires a modification of the definition in [2].

Definition 1. We define the (𝑚, 𝜆)-Berezin transform of 𝑆 ∈
L(A2

𝜆
) by

(𝐵
𝑚,𝜆
𝑆) (𝑧)

fl [𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆

𝑧
𝑤
𝛼
, 𝑤

𝛼
⟩
𝜆
.

(8)

It is easy to see that the following pointwise estimate

󵄨󵄨󵄨󵄨(𝐵𝑚,𝜆𝑆) (𝑧)
󵄨󵄨󵄨󵄨 ≤ ‖𝑆‖

[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

󵄨󵄨󵄨󵄨𝐶𝑚,𝛼
󵄨󵄨󵄨󵄨

⋅
󵄩󵄩󵄩󵄩𝑤

𝛼󵄩󵄩󵄩󵄩𝜆 fl 𝐶 (𝜆,𝑚, 𝑛) ‖𝑆‖ ,

(9)

where the constant 𝐶(𝜆,𝑚, 𝑛) > 0 is independent of 𝑧 ∈ D𝑛;
that is, 𝐵

𝑚,𝜆
𝑆 is a bounded function on D𝑛 with ‖𝐵

𝑚,𝜆
𝑆‖

∞
≤

𝐶(𝜆,𝑚, 𝑛)‖𝑆‖.
In [5], the (𝑚, 𝜆)-Berezin transform of 𝑆 ∈ L(A2

𝜆
(D))

is defined by (𝐵
𝑚,𝜆
𝑆)(𝑧) = ((𝜆 + 𝑚 + 1)/(𝜆 +

1))∑
𝑚

𝑘=0
(−1)

𝑘
(𝑚
𝑘
) ⟨𝑆

𝑧
𝑤𝑘, 𝑤𝑘⟩, for the case of the unit

disk B1 = D. From the point of view of the tensor product
structure, given an elementary tensor 𝑆 = 𝑆

1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑆

𝑛
∈

L(A2

𝜆
1

(D, 𝑑𝐴
𝜆
1

(𝑧
1
))) ⊗ ⋅ ⋅ ⋅ ⊗ L(A2

𝜆
𝑛

(D, 𝑑𝐴
𝜆
𝑛

(𝑧
𝑛
))), its

(𝑚, 𝜆)-Berezin transform for 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
) obviously and

naturally has to be defined as

(𝐵
𝑚,𝜆
𝑆) (𝑧) =

𝑛

∏
𝑖=1

(𝐵
𝑚,𝜆
𝑖

𝑆
𝑖
) (𝑧

𝑖
) =

𝑛

∏
𝑖=1

𝜆
𝑖
+ 𝑚 + 1

𝜆
𝑖
+ 1

⋅

𝑚

∑
𝛼
𝑖
=0

(−1)
𝛼
𝑖 (
𝑚

𝛼
𝑖

)⟨(𝑆
𝑖
)
𝑧
𝑖

𝑤
𝛼
𝑖

𝑖
, 𝑤

𝛼
𝑖

𝑖
⟩
𝜆
𝑖

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

(−1)
|𝛼|
(
𝑚

𝛼
1

)

⋅ ⋅ ⋅ (
𝑚

𝛼
𝑛

)⟨(𝑆
1
)
𝑧
1

𝑤
𝛼
1

1
, 𝑤

𝛼
1

1
⟩
𝜆
1

⋅ ⋅ ⋅ ⟨(𝑆
𝑛
)
𝑧
𝑛

𝑤
𝛼
𝑛

𝑛
, 𝑤

𝛼
𝑛

𝑛
⟩
𝜆
𝑛

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆

𝑧
𝑤
𝛼
, 𝑤

𝛼
⟩
𝜆
.

(10)

Unfortunately, the set of those tensor product operators is not
a linear space; that is, for any operator 𝑆 ∈ L(A2

𝜆
(D𝑛)), 𝑆

cannot be written in the form of the tensor product operators.
Therefore, we define for any operator 𝑆 ∈ L(A2

𝜆
(D𝑛)) with

(10), and this coincideswithDefinition 1. If 𝑆 can be the tensor
product form, this definition is the tensor product of (𝑚, 𝜆

𝑖
)-

Berezin transform for the case of 𝑛 = 1.
As usual we define the (𝑚, 𝜆)-Berezin transform of a

function 𝑎 ∈ 𝐿∞(D𝑛) by

𝐵
𝑚,𝜆
(𝑎) (𝑧) fl (𝐵

𝑚,𝜆
𝑇
𝑎
) (𝑧)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨(𝑇

𝑎
)
𝑧
𝑤
𝛼
, 𝑤

𝛼
⟩
𝜆
.

(11)

It is easy to see that 𝐵
𝑚,𝜆
(𝑎)(𝑧) = ∫

D𝑛
𝑎 ∘ 𝜙

𝑧
(𝑤)𝑑𝐴

𝜆+𝑚
(𝑤).

Thus, (𝑚, 𝜆)-Berezin transform of a Toeplitz operator 𝑇
𝑎

acting onA2

𝜆
(D𝑛) coincideswith (0, 𝜆+𝑚)-Berezin transform

for 𝑇
𝑎
now considered on the weighted Bergman space

A2

𝜆+𝑚
(D𝑛).

From the definition of 𝜙
𝑧
𝑖

(𝑢
𝑖
), we have the identity 1 −

𝜙
𝑧
𝑖

(𝑢
𝑖
)𝜙

𝑧
𝑖

(𝑤
𝑖
) = (1 − |𝑧

𝑖
|2)(1 − 𝑤

𝑖
𝑢
𝑖
)/(1 − 𝑧

𝑖
𝑢
𝑖
)(1 − 𝑤

𝑖
𝑧
𝑖
), for

𝑢
𝑖
, 𝑤

𝑖
∈ D and 𝑖 = 1, . . . , 𝑛. The following proposition gives

an integral representation of the (𝑚, 𝜆)-Berezin transform.

Proposition 2. Let 𝑆 ∈L(A2

𝜆
),𝑚 ⩾ 0, and 𝑧 ∈ D𝑛. Then

𝐵
𝑚,𝜆
(𝑆) (𝑧) =

[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚+2

× ∫
D𝑛
∫
D𝑛
(1 − 𝑤

𝑖
𝑢
𝑖
)
𝑚

𝐾
𝑚+𝜆

𝑧
(𝑢)

⋅ 𝐾𝑚+𝜆

𝑧
(𝑤) 𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤) .

(12)

Proof. For 𝑆 ∈ L(A2

𝜆
) and 𝑤 ∈ D𝑛, we have 𝑆(𝜙𝛼

𝑧
⋅

∏
𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2
)(𝑤) = ⟨𝑆(𝜙𝛼

𝑧
⋅ ∏

𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2
), 𝐾𝜆

𝑤
⟩
𝜆
=

⟨𝜙𝛼
𝑧
⋅ ∏

𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2
, 𝑆∗𝐾𝜆

𝑤
⟩
𝜆

and 𝑈
𝑧
𝑤𝛼 = 𝜙𝛼

𝑧
(𝑤) ⋅

∏
𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2. Using those by (5) and (7), we have
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𝐵
𝑚,𝜆
(𝑆) (𝑧) =

[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆

𝑧
𝑤
𝛼
, 𝑤

𝛼
⟩
𝜆

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆(𝜙

𝛼

𝑧
(𝑤) ⋅

𝑛

∏
𝑖=1

(𝜙
󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2

) , 𝜙
𝛼

𝑧
(𝑤) ⋅

𝑛

∏
𝑖=1

(𝜙
󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2

⟩

𝜆

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
× ∫

D𝑛
∫
D𝑛
𝜙
𝛼

𝑧
(𝑢)

⋅

𝑛

∏
𝑖=1

(𝜙
󸀠

𝑧
𝑖

(𝑢
𝑖
))

(2+𝜆
𝑖
)/2

𝜙𝛼
𝑧
(𝑤) ⋅

𝑛

∏
𝑖=1

(𝜙󸀠
𝑧
𝑖

(𝑤
𝑖
))

(2+𝜆
𝑖
)/2

𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 − 𝜙
𝑧
𝑖

(𝑢
𝑖
) 𝜙

𝑧
𝑖

(𝑤
𝑖
))

𝑚

(𝜙
󸀠

𝑧
𝑖

(𝑢
𝑖
))

(2+𝜆
𝑖
)/2

(𝜙󸀠
𝑧
𝑖

(𝑤
𝑖
))

(2+𝜆
𝑖
)/2

𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝑚+2+𝜆

𝑖

(1 − 𝑤
𝑖
𝑢
𝑖
)
𝑚

𝐾
𝑚+𝜆

𝑧
(𝑢)𝐾𝑚+𝜆

𝑧
(𝑤) 𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚+2

∫
D𝑛
∫
D𝑛
(1 − 𝑤

𝑖
𝑢
𝑖
)
𝑚

𝐾
𝑚+𝜆

𝑧
(𝑢)𝐾𝑚+𝜆

𝑧
(𝑤) 𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤) .

(13)

Proposition 3. Let 𝑆 ∈L(A2

𝜆
),𝑚 ⩾ 0, and 𝑧 ∈ D𝑛. Then

𝐵
𝑚,𝜆
(𝑆) (𝑧) fl

[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚+2

⋅

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆 (𝑤

𝛼
𝐾
𝑚+𝜆

𝑧
) , 𝑤

𝛼
𝐾
𝑚+𝜆

𝑧
⟩
𝜆
.

(14)

Proof. We have

∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 − 𝑤
𝑖
𝑢
𝑖
)
𝑚

𝐾
𝑚+𝜆

𝑧
(𝑢)

⋅ 𝐾𝑚+𝜆

𝑧
(𝑤) 𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
∫
D𝑛
∫
D𝑛
𝑤
𝛼
𝑢
𝛼
𝐾
𝑚+𝜆

𝑧
(𝑢)

⋅ 𝐾𝑚+𝜆

𝑧
(𝑤) 𝑆∗𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
∫
D𝑛
𝑆 (𝑢

𝛼
𝐾
𝑚+𝜆

𝑧
) (𝑤)

⋅ 𝑤𝛼𝐾𝑚+𝜆

𝑧
(𝑤) 𝑑𝐴

𝜆
(𝑤) =

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆 (𝑤

𝛼
𝐾
𝑚+𝜆

𝑧
) , 𝑤

𝛼
𝐾
𝑚+𝜆

𝑧
⟩
𝜆
.

(15)

For 𝑧, 𝑤 ∈ D𝑛, put 𝑡
𝑖
= (𝜙

𝑧
𝑖

(𝑤
𝑖
)𝑧

𝑖
− 1)/(1 − 𝑧

𝑖
𝜙
𝑧
𝑖

(𝑤
𝑖
)),

for 𝑖 = 1, . . . , 𝑛. In ([2], P98), the map 𝜙
𝑤
𝑖

∘ 𝜙
𝑧
𝑖

∘ 𝜙
𝜙
𝑤𝑖

is a

unitary map of D and maps 𝑡
𝑖
to 1. Let 𝑡 = (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) and

𝑡𝑢 = (𝑡
1
𝑢
1
, . . . , 𝑡

𝑛
𝑢
𝑛
), for 𝑢 ∈ D𝑛.

Lemma 4. For 𝑧, 𝑤 ∈ D𝑛,

𝑈
𝑤
𝑈
𝑧
= 𝑉

𝑡
𝑈
𝜙
𝑧
(𝑤)
, (16)

where (𝑉
𝑡
𝑓)(𝑢) = 𝑡(2+𝜆)/2𝑓(𝑡𝑢) and 𝑡(2+𝜆)/2 = ∏𝑛

𝑖=1
𝑡(2+𝜆)/2, for

𝑓 ∈ A2

𝜆
(D𝑛).

Proof. Since 𝑉
𝑡
𝑤𝛼 = 𝑡(2+𝜆)/2(𝑡𝑤)

𝛼
= 𝑡

(2+𝜆
1
)/2

1
(𝑡
1
𝑤
1
)
𝛼
1 ⊗ ⋅ ⋅ ⋅ ⊗

𝑡(2+𝜆𝑛)/2
𝑛

(𝑡
𝑛
𝑤
𝑛
)
𝛼
𝑛 = 𝑉

𝑡
1

𝑤
𝛼
1

1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑉

𝑡
𝑛

𝑤𝛼
𝑛

𝑛
= (𝑉

𝑡
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑉
𝑡
𝑛

)𝑤𝛼,
then 𝑉

𝑡
= 𝑉

𝑡
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑉
𝑡
𝑛

. It is sufficient to show that 𝑛 = 1.
For 𝑧, 𝑤, 𝑡 ∈ D and 𝜆 > −1, 𝜙

𝑧
∘ 𝜙

𝜙
𝑧
(𝑤)
(𝑡𝑢) = 𝜙

𝑤
(𝑢). Thus

for 𝑘 ≥ 0,

𝑈
𝑤
𝑈
𝑧
𝑢
𝑘
= 𝑈

𝑤
(𝜙

𝑘

𝑧
(𝑢) ⋅ (𝜙

󸀠

𝑧
(𝑢))

(2+𝜆)/2

) = (𝜙
𝑧

∘ 𝜙
𝑤
(𝑢))

𝑘

⋅ (𝜙
󸀠

𝑧
∘ 𝜙

𝑤
(𝑢))

(2+𝜆)/2

(𝜙
󸀠

𝑤
(𝑢))

(2+𝜆)/2

= (𝜙
𝜙
𝑧
(𝑤)
(𝑡𝑢))

𝑘

⋅ (𝜙
󸀠

𝑧
∘ 𝜙

𝑧
∘ 𝜙

𝜙
𝑧
(𝑤)
(𝑡𝑢) ⋅ 𝜙

󸀠

𝑧

∘ 𝜙
𝜙
𝑧
(𝑤)
(𝑡𝑢) ⋅ 𝜙

󸀠

𝜙
𝑧
(𝑤)
(𝑡𝑢) ⋅ 𝑡)

(2+𝜆)/2

= (𝜙
𝜙
𝑧
(𝑤)
(𝑡𝑢))

𝑘

⋅ (𝜙
󸀠

𝜙
𝑧
(𝑤)
(𝑡𝑢) ⋅ 𝑡)

(2+𝜆)/2

= 𝑉
𝑡
𝑈
𝜙
𝑧
(𝑤)
𝑢
𝑘
.

(17)

Note that 𝑡(2+𝜆)/2 is a complex number of modulus one.

Theorem 5. Let 𝑆 ∈L(A2

𝜆
),𝑚 ⩾ 0, and 𝑧 ∈ D𝑛; then

𝐵
𝑚,𝜆
𝑆
𝑧
= (𝐵

𝑚,𝜆
𝑆) ∘ 𝜙

𝑧
. (18)
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Proof. By definition,

(𝐵
𝑚,𝜆
𝑆
𝑧
) (0)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆

𝑧
𝑈
0
𝑤
𝛼
, 𝑈

0
𝑤
𝛼
⟩
𝜆

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

𝑚

∑
𝛼
1
=0

⋅ ⋅ ⋅

𝑚

∑
𝛼
𝑛
=0

𝐶
𝑚,𝛼
⟨𝑆

𝑧
𝑤
𝛼
, 𝑤

𝛼
⟩
𝜆

= (𝐵
𝑚,𝜆
𝑆) (𝑧) = (𝐵

𝑚,𝜆
𝑆) ∘ 𝜙

𝑧
(0) .

(19)

For any 𝜂 ∈ D𝑛, by Proposition 2, Lemma 4, and 𝑉
𝑡
𝑉∗

𝑡
= 𝐼,

we have

(𝐵
𝑚,𝜆
𝑆
𝑧
) (𝜂) = (𝐵

𝑚,𝜆
𝑆
𝑧
) ∘ 𝜙

𝜂
(0) = (𝐵

𝑚,𝜆
(𝑆

𝑧
)
𝜂
) (0)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 − 𝑤
𝑖
𝑢
𝑖
)
𝑚

⋅ ((𝑆
𝑧
)
𝜂
)
∗

𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 − 𝑤
𝑖
𝑢
𝑖
)
𝑚

⋅ 𝑈
𝜂
𝑈
𝑧
𝑆∗𝑈

𝑧
𝑈
𝜂
𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛

𝑛

∏
𝑖=1

(1 − 𝑤
𝑖
𝑢
𝑖
)
𝑚

⋅ 𝑉
𝑡
𝑈
𝜙
𝑧
(𝜂)
𝑆∗𝑈

𝜙
𝑧
(𝜂)
𝑉∗

𝑡
𝐾𝜆

𝑤
(𝑢) 𝑑𝐴

𝜆
(𝑢) 𝑑𝐴

𝜆
(𝑤)

= (𝐵
𝑚,𝜆
𝑆
𝜙
𝑧
(𝜂)
) (0) = (𝐵

𝑚,𝜆
𝑆) ∘ 𝜙

𝜙
𝑧
(𝜂)
(0) = (𝐵

𝑚,𝜆
𝑆)

∘ 𝜙
𝑧
(𝜂) .

(20)

Then we have 𝐵
𝑚,𝜆
𝑆
𝑧
= (𝐵

𝑚,𝜆
𝑆) ∘ 𝜙

𝑧
.

Lemma 6. Let 𝑆 ∈ L(A2

𝜆
), and 𝑚, 𝑗 ⩾ 0. If |𝑆∗𝐾𝜆

𝑧
(𝑤)| ⩽ 𝐶

for any 𝑤 ∈ D𝑛, then

(𝐵
𝑚,𝜆
𝐵
𝑗,𝜆
) (𝑆) = (𝐵

𝑗,𝜆
𝐵
𝑚,𝜆
) (𝑆) . (21)

Proof. By Theorem 5, we only prove that (𝐵
𝑚,𝜆
𝐵
𝑗,𝜆
)(𝑆)(0) =

(𝐵
𝑗,𝜆
𝐵
𝑚,𝜆
)(𝑆)(0). Using Proposition 2, Fubini’s theorem, and

(11), we have

𝐵
𝑚,𝜆
(𝐵

𝑗,𝜆
𝑆) (0) =

[𝜆 + 𝑚 + 1]

[𝜆 + 1]
∫
D𝑛
𝐵
𝑗,𝜆
𝑆 ∘ 𝜙

0
(𝑤)

𝑛

∏
𝑖=1

(1

−
󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝑚

𝑑𝐴
𝜆
(𝑤) =

[𝜆 + 𝑚 + 1]

[𝜆 + 1]

[𝜆 + 𝑗 + 1]

[𝜆 + 1]

⋅ ∫
D𝑛

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚+𝑗+2

× ∫
D𝑛
∫
D𝑛
(1 − 𝜂

𝑖
𝜁
𝑖
)
𝑗

𝐾
𝑗+𝜆

𝑤
(𝜁)

⋅ 𝐾
𝑗+𝜆

𝑤 (𝜂) 𝑆∗𝐾𝜆

𝜂
(𝜁) 𝑑𝐴

𝜆
(𝜁) 𝑑𝐴

𝜆
(𝜂) 𝑑𝐴

𝜆
(𝑤)

=
[𝜆 + 𝑚 + 1]

[𝜆 + 1]

[𝜆 + 𝑗 + 1]

[𝜆 + 1]
∫
D𝑛
∫
D𝑛
𝐹
𝑚,𝑗
(𝜁, 𝜂)

⋅ 𝑆∗𝐾𝜆

𝜂
(𝜁) 𝑑𝐴

𝜆
(𝜁) 𝑑𝐴

𝜆
(𝜂) ,

(22)

where 𝐹
𝑚,𝑗
(𝜁, 𝜂) = ∏

𝑛

𝑖=1
(1 − 𝜂

𝑖
𝜁
𝑖
)
𝑗
∫
D𝑛
(1 −

|𝑤
𝑖
|2)

𝜆
𝑖
+𝑚+𝑗+2

𝐾𝑗+𝜆

𝑤
(𝜁)𝐾

𝑗+𝜆

𝑤 (𝜂) 𝑑𝐴
𝜆
(𝑤). Then 𝐹

𝑚,𝑗
(𝜁, 𝜂) =

∑
𝑙

𝑖=1
𝐻

𝑖
(𝜁)𝐺

𝑖
(𝜂), where𝐻

𝑖
and 𝐺

𝑖
are holomorphic functions

and for some 𝑙 ≥ 0. Then, it is sufficient to show that
𝐹
𝑚,𝑗
(𝜁, 𝜁) = 𝐹

𝑗,𝑚
(𝜁, 𝜁), for 𝑤 ∈ D𝑛.

𝐹
𝑚,𝑗
(𝜁, 𝜁) = [𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨
2

)
𝑗

⋅ ∫
D𝑛
(1 −

󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
2𝜆
𝑖
+𝑚+𝑗+2 󵄨󵄨󵄨󵄨󵄨

𝐾
𝑗+𝜆

𝑤
(𝜁)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝐴 (𝑤)

= [𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨
2

)
𝑗

⋅ ∫
D𝑛
(1 −

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑧
𝑖

(𝑤
𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

)
2𝜆
𝑖
+𝑚+𝑗+2 󵄨󵄨󵄨󵄨󵄨󵄨

𝐾
𝑗+𝜆

𝜁
(𝜙

𝑧
(𝑤))

󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝑘𝑧 (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝐴 (𝑤) = [𝜆 + 1]

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨
2

)
𝑚

⋅ ∫
D𝑛
(1 −

󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
2𝜆
𝑖
+𝑚+𝑗+2 󵄨󵄨󵄨󵄨󵄨

𝐾
𝑚+𝜆

𝑤
(𝜁)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝐴 (𝑤)

= 𝐹
𝑗,𝑚
(𝜁, 𝜁) .

(23)

Lemma 7. For any 𝑆 ∈ L(A2

𝜆
), there is a sequence {𝑆

𝛽
}

satisfying |𝑆∗
𝛽
𝐾𝜆

𝑧
(𝑤)| ≤ 𝐶(𝛽) for any 𝑤 ∈ D𝑛 and 𝑧 ∈ D𝑛,

such that 𝐵
𝑚,𝜆
𝑆
𝛽
converges to 𝐵

𝑚,𝜆
𝑆 pointwise.

Proof. Let 𝐻∞ = 𝐻∞(D𝑛) denote the algebra of bounded
holomorphic functions on D𝑛. Both the density of 𝐻∞ in
A2

𝜆
(D𝑛) and the density of finite rank operator in the idealK

of compact operators onL(A2

𝜆
) imply that the set {∑𝑙

𝑖=1
𝑓
𝑖
⊗

𝑔
𝑖
, 𝑓

𝑖
, 𝑔

𝑖
∈ 𝐻∞} is dense in the idealK in the norm topology.

Note that K is dense in the space of bounded operators on
A2

𝜆
(D𝑛) with respect to the strong operator topology. Thus,

for each 𝑆 ∈ L(A2

𝜆
), there is a sequence {𝑆

𝛽
} of finite rank

operators 𝑆
𝛽
= ∑

𝑙(𝛽)

𝑗=1
𝑓
𝛽,𝑗
⊗ 𝑔

𝛽,𝑗
converging strongly to 𝑆.

Then Proposition 2 shows that 𝐵
𝑚,𝜆
𝑆
𝛽
converges to 𝐵

𝑚,𝜆
𝑆

pointwise. To finish the proof we estimate

󵄨󵄨󵄨󵄨󵄨
𝑆
∗

𝛽
𝐾
𝜆

𝑧
(𝑤)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙(𝛽)

∑
𝑗=1

(𝑔
𝛽,𝑗
⊗ 𝑓

𝛽,𝑗
)𝐾

𝜆

𝑧
(𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙(𝛽)

∑
𝑗=1

⟨𝐾
𝜆

𝑧
(𝑤) , 𝑓

𝛽,𝑗
(𝑤)⟩

𝜆
𝑔
𝛽,𝑗
(𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤

𝑙(𝛽)

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝛽,𝑗
(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝛽,𝑗
(𝑤)
󵄨󵄨󵄨󵄨󵄨

≤

𝑙(𝛽)

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝛽,𝑗

󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝑔
𝛽,𝑗

󵄩󵄩󵄩󵄩󵄩∞
= 𝐶 (𝛽) .

(24)

Proposition 8. Let 𝑆 ∈ L(A2

𝜆
), and 𝑚, 𝑗 ⩾ 0; then

(𝐵
𝑚,𝜆
𝐵
𝑗,𝜆
)(𝑆) = (𝐵

𝑗,𝜆
𝐵
𝑚,𝜆
)(𝑆).

Proof. Let 𝑆 ∈ L(A2

𝜆
); then Lemma 7 implies that there

is a sequence {𝑆
𝛼
} satisfying |𝑆∗

𝛼
𝐾𝜆

𝑧
(𝑤)| ≤ 𝐶(𝛼); hence by

Lemma 6

𝐵
𝑚,𝜆
(𝐵

𝑗,𝜆
𝑆
𝛼
) = 𝐵

𝑗,𝜆
(𝐵

𝑚,𝜆
𝑆
𝛼
) . (25)

From (11), we know that 𝐵
𝑚,𝜆
(𝐵

𝑗,𝜆
𝑆
𝛼
) = ∫

D𝑛
(𝐵

𝑗,𝜆
𝑆
𝛼
) ∘

𝜙
𝑧
(𝑤) 𝑑𝐴

𝜆+𝑚
(𝑤) and ‖(𝐵

𝑗,𝜆
𝑆
𝛼
) ∘ 𝜙

𝑧
‖
∞

= ‖𝐵
𝑗,𝜆
𝑆
𝛼
‖
∞

≤

‖𝐵
𝑗,𝜆
‖ ⋅ ‖𝑆

𝛼
‖ ≤ 𝐶(𝑗, 𝜆)‖𝑆‖. Furthermore (𝐵

𝑗,𝜆
𝑆
𝛼
) ∘ 𝜙

𝑧
(𝑤)

converges to (𝐵
𝑗,𝜆
𝑆) ∘ 𝜙

𝑧
(𝑤). As a consequence the functions

𝐵
𝑚,𝜆
(𝐵

𝑗,𝜆
𝑆
𝛼
) and 𝐵

𝑗,𝜆
(𝐵

𝑚,𝜆
𝑆
𝛼
) converge to (𝐵

𝑚,𝜆
𝐵
𝑗,𝜆
𝑆)(𝑧) and

(𝐵
𝑗,𝜆
𝐵
𝑚,𝜆
𝑆)(𝑧), respectively. By the uniqueness of the limit, we

have (𝐵
𝑚,𝜆
𝐵
𝑗,𝜆
)(𝑆) = (𝐵

𝑗,𝜆
𝐵
𝑚,𝜆
)(𝑆).

Theorem9. Let 𝑆 ∈L(A2

𝜆
); then there is a constant𝐶(𝑛, 𝜆) >

0, such that

󵄨󵄨󵄨󵄨(𝐵0,𝜆𝑆) (𝑧) − (𝐵0,𝜆𝑆) (𝑤)
󵄨󵄨󵄨󵄨 ≤ 𝐶 (𝑛, 𝜆) ‖𝑆‖ 𝜌 (𝑧, 𝑤) . (26)

Proof.

󵄨󵄨󵄨󵄨(𝐵0,𝜆𝑆) (𝑧) − (𝐵0,𝜆𝑆) (𝑤)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨⟨𝑆𝑧1, 1⟩𝜆 − ⟨𝑆𝑤1, 1⟩𝜆

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨tr [𝑆𝑧 (1 ⊗ 1) − 𝑆𝑤 (1 ⊗ 1)]

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨tr [𝑆𝑧 (1 ⊗ 1) − 𝑆𝑈𝑧 (𝑈𝑧𝑈𝑤1 ⊗ 𝑈𝑧𝑈𝑤1)𝑈𝑧]

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
tr [𝑆

𝑧
(1 ⊗ 1 − 𝑈

𝜙
𝑤
(𝑧)
1 ⊗ 𝑈

𝜙
𝑤
(𝑧)
1)]
󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑆𝑧
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
1 ⊗ 1 − 𝑈

𝜙
𝑤
(𝑧)
1 ⊗ 𝑈

𝜙
𝑤
(𝑧)
1
󵄩󵄩󵄩󵄩󵄩𝑆
1

≤ √2
󵄩󵄩󵄩󵄩𝑆𝑧
󵄩󵄩󵄩󵄩(2 − 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨1,

𝑛

∏
𝑖=1

(𝜙
󸀠

𝜙
𝑤𝑖
(𝑧
𝑖
)
)
(2+𝜆
𝑖
)/2

⟩

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

1/2

≤ 2 ‖𝑆‖ [1 −

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜙
𝑤
𝑖

(𝑧
𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

)
(2+𝜆
𝑖
)/2

]

1/2

.

(27)

Let 𝛼
𝑖
= 𝜙

𝑤
𝑖

(𝑧
𝑖
); we have

[1 −

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
𝑖
)/2

]

= 1 − (1 −
󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
1
)/2

+ (1 −
󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
1
)/2

[1 −

𝑛

∏
𝑖=2

(1 −
󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
𝑖
)/2

]

≤ 𝐶 (𝜆
1
)
󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨
2

+ [1 −

𝑛

∏
𝑖=2

(1 −
󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
𝑖
)/2

] ⋅ ⋅ ⋅

≤ 𝐶 (𝑛, 𝜆)max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨
2

,

(28)

where 𝐶(𝑛, 𝜆) = 𝑛 ⋅ max
1≤𝑖≤𝑛

𝐶(𝜆
𝑖
); we obtain |(𝐵

0,𝜆
𝑆)(𝑧) −

(𝐵
0,𝜆
𝑆)(𝑤)| ≤ 𝐶(𝑛, 𝜆)‖𝑆‖𝜌(𝑧, 𝑤).

Corollary 10. Let 𝑆 ∈L(A2

𝜆
), and 𝑎 fl 𝐵

0,𝜆
𝑆 ∈ 𝐿∞(D𝑛); then

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝐵𝑚,𝜆𝑎 − 𝑎
󵄩󵄩󵄩󵄩∞ = 0. (29)

Proof. Let 𝜀 > 0; choose 𝛿 > 0with |𝑎(𝑧)−𝑎(𝑤)| < 𝜀whenever
𝑧,𝑤 ∈ D𝑛 with 𝜌(𝑧, 𝑤) < 𝛿. If𝑤 ∈ D𝑛,𝑚 ∈ N, by (11), we have

󵄨󵄨󵄨󵄨𝐵𝑚,𝜆 (𝑎) (𝑤) − 𝑎 (𝑤)
󵄨󵄨󵄨󵄨 ≤ [𝜆 + 𝑚 + 1]

⋅ ∫
D𝑛

󵄨󵄨󵄨󵄨𝑎 ∘ 𝜙𝑤 (𝑧) − 𝑎 ∘ 𝜙𝑤 (0)
󵄨󵄨󵄨󵄨

⋅

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚

𝑑𝐴 (𝑧) ≤ [𝜆 + 𝑚 + 1]

⋅ {∫
∏
𝑛

𝑖=1
0≤|𝑧
𝑖
|≤𝛿

+∫
∏
𝑛

𝑖=1
𝛿≤|𝑧
𝑖
|≤1

}
󵄨󵄨󵄨󵄨𝑎 ∘ 𝜙𝑤 (𝑧) − 𝑎

∘ 𝜙
𝑤
(0)
󵄨󵄨󵄨󵄨

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚

𝑑𝐴 (𝑧) .

(30)

Denote by 𝐼 the first integral, and

𝐼 = [𝜆 + 𝑚 + 1]∫
∏
𝑛

𝑖=1
0≤|𝑧
𝑖
|≤𝛿

󵄨󵄨󵄨󵄨𝐵0,𝜆𝑆 (𝜙𝑤 (𝑧) − 𝜙𝑤 (0))
󵄨󵄨󵄨󵄨

⋅

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚

𝑑𝐴 (𝑧) ≤ 𝐶 (𝑛, 𝜆, 𝛿) ‖𝑆‖ 𝜌 (𝑧, 0)

< 𝜀.

(31)

In the first inequality we use that 𝜌(⋅, ⋅) is invariant under the
automorphisms 𝜙

𝑤
and by the Lipschitz continuity of 𝐵

0,𝜆
𝑆.

Now we estimate the second integral above.

[𝜆 + 𝑚 + 1]∫
∏
𝑛

𝑖=1
𝛿≤|𝑧
𝑖
|≤1

󵄨󵄨󵄨󵄨𝑎 ∘ 𝜙𝑤 (𝑧) − 𝑎 ∘ 𝜙𝑤 (0)
󵄨󵄨󵄨󵄨

⋅

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚

𝑑𝐴 (𝑧) ≤ 2 [𝜆 + 𝑚 + 1] ⋅ ‖𝑎‖∞

⋅ ∫
∏
𝑛

𝑖=1
𝛿≤|𝑧
𝑖
|≤1

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖
+𝑚

𝑑𝐴 (𝑧)

= 2 [𝜆 + 𝑚 + 1] ‖𝑎‖∞ (1 − 𝛿
2
)
|𝜆|+𝑚

vol (D𝑛
) .

(32)

It is clear that the right-hand side converges to zero as 𝑚 →

∞.
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4. Toeplitz Operators to Approximate the
Bounded Operators

In this section we will give a criterion for an operator
approximated by Toeplitz operators with symbol equal to
their (𝑚, 𝜆)-Berezin transforms. From Proposition 1.4.10 in
[7] there exists Lemma 3.1 in [2].

Lemma 11 (see [2]). Suppose 𝑎 < 1 and 𝑎 + 𝑏 < 2. Then

sup
𝑧∈D𝑛

∫
D𝑛

𝑑𝐴 (𝑤)

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝑎 󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑤𝑖

󵄨󵄨󵄨󵄨
𝑏
< ∞. (33)

Let 1 < 𝑞 < ∞ and let 𝑝 be the conjugate exponent of 𝑞.
Note that the inequality

𝑞 = 1 +
1

𝑝 − 1
< max

1≤𝑖≤𝑛

{
1 + 2 (𝜆

𝑖
+ 1)

2 + 𝜆
𝑖

}

= max
1≤𝑖≤𝑛

{1 +
1 + 𝜆

𝑖

2 + 𝜆
𝑖

}

(34)

is equivalent to 𝑝 > max
1≤𝑖≤𝑛

{(1 + 2(𝜆
𝑖
+ 1))/(1 + 𝜆

𝑖
)}.

Lemma 11 gives the following lemma.

Lemma 12. Let 𝑆 ∈ L(A2

𝜆
) and 𝑝 > max

1≤𝑖≤𝑛
{(1 + 2(𝜆

𝑖
+

1))/(1 + 𝜆
𝑖
)} and put ℎ(𝑧) = ∏𝑛

𝑖=1
(1 − |𝑧

𝑖
|2)

−𝑎
𝑖 with 𝑎

𝑖
= (1 +

𝜆
𝑖
)(2 + 𝜆

𝑖
)/(1 + 2(𝜆

𝑖
+ 1)), 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑛. Then there exists

𝐶(𝑛, 𝑝, 𝜆) such that

∫
D𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑆𝐾

𝜆

𝑧
) (𝑤)

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑤) 𝑑𝐴

𝜆
(𝑤)

≤ 𝐶 (𝑛, 𝑝, 𝜆)
󵄩󵄩󵄩󵄩𝑆𝑧1

󵄩󵄩󵄩󵄩𝑝,𝜆 ℎ (𝑧)

(35)

for all 𝑧 ∈ D𝑛, and

∫
D𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑆𝐾

𝜆

𝑧
) (𝑤)

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑧) 𝑑𝐴

𝜆
(𝑧)

≤ 𝐶 (𝑛, 𝑝, 𝜆)
󵄩󵄩󵄩󵄩𝑆

∗

𝑤
1
󵄩󵄩󵄩󵄩𝑝,𝜆 ℎ (𝑤)

(36)

for all 𝑤 ∈ D𝑛.

Proof. Given 𝑧 ∈ D𝑛, the equality 𝑈
𝑧
1 = ∏

𝑛

𝑖=1
(𝜙󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2
=

∏
𝑛

𝑖=1
(−1)

(2+𝜆
𝑖
)/2
(1 − |𝑧

𝑖
|2)

(2+𝜆
𝑖
)/2
𝐾𝜆

𝑧
= (−1)

|2+𝜆|/2
∏

𝑛

𝑖=1
(1 −

|𝑧
𝑖
|2)

(2+𝜆
𝑖
)/2
𝐾𝜆

𝑧
implies that

𝑆𝐾
𝜆

𝑧
=

(−1)
|2+𝜆|/2

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
𝑖
)/2
𝑆𝑈

𝑧
1

=
(−1)

|2+𝜆|/2

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
(2+𝜆
𝑖
)/2
(S

𝑧
1 ∘ 𝜙

𝑧
)

𝑛

∏
𝑖=1

(𝜙
󸀠

𝑧
𝑖

)
(2+𝜆
𝑖
)/2

= 𝑆
𝑧
1 ∘ 𝜙

𝑧
𝐾
𝜆

𝑧
.

(37)

Thus, let 𝑢 = 𝜙
𝑧
(𝑤), and apply the Hölder’s inequality

∫
D𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑆𝐾𝜆

𝑧
) (𝑤)

󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖

𝑑𝐴
𝜆
(𝑤) = [𝜆 + 1]

⋅ ∫
D𝑛

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑧
1 ∘ 𝜙

𝑧
(𝑤)𝐾

𝜆

𝑧
(𝑤)
󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑤𝑖

󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖

𝑑𝐴 (𝑤)

= [𝜆 + 1]

⋅ ∫
D𝑛

󵄨󵄨󵄨󵄨𝑆𝑧1 (𝑢)
󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑧
𝑖

(𝑢
𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

)
𝑎
𝑖
−𝜆
𝑖

𝑛

∏
𝑖=1

󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑢𝑖
󵄨󵄨󵄨󵄨
2+𝜆
𝑖

(1 −
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

⋅
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
2

󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑢𝑖
󵄨󵄨󵄨󵄨
4
𝑑𝐴 (𝑢) =

[𝜆 + 1]

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖

⋅ ∫
D𝑛

󵄨󵄨󵄨󵄨𝑆𝑧1 (𝑢)
󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖
−𝜆
𝑖 󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑢𝑖

󵄨󵄨󵄨󵄨
2+𝜆
𝑖
−2𝑎
𝑖

𝑑𝐴 (𝑢)

=
1

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖

⋅ ∫
D𝑛

󵄨󵄨󵄨󵄨𝑆𝑧1 (𝑢)
󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖 󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑢𝑖

󵄨󵄨󵄨󵄨
2+𝜆
𝑖
−2𝑎
𝑖

𝑑𝐴
𝜆
(𝑢)

≤

󵄩󵄩󵄩󵄩𝑆𝑧1
󵄩󵄩󵄩󵄩𝑝

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖

([𝜆 + 1]

⋅ ∫
D𝑛

𝑑𝐴 (𝑢)

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
𝑎
𝑖
𝑞−𝜆
𝑖 󵄨󵄨󵄨󵄨1 − 𝑧𝑖𝑢𝑖

󵄨󵄨󵄨󵄨
(2+𝜆
𝑖
−2𝑎
𝑖
)𝑞

)

1/𝑞

.

(38)

According to (34) we have 𝑎
𝑖
𝑞−𝜆

𝑖
< 1 and 𝑎

𝑖
𝑞−𝜆

𝑖
+ (2+𝜆

𝑖
−

2𝑎
𝑖
)𝑞 < 2, for any 𝑖 = 1, . . . , 𝑛. Hence inequality (35) follows

from Lemma 11.
The second inequality (36) follows from (35) after replac-

ing 𝑆 by 𝑆∗, interchanging 𝑤 and 𝑧, and making use of

(𝑆
∗
𝐾
𝜆

𝑤
) (𝑧) = ⟨𝑆

∗
𝐾
𝜆

𝑤
, 𝐾

𝜆

𝑧
⟩
𝜆
= ⟨𝐾

𝜆

𝑤
, 𝑆𝐾

𝜆

𝑧
⟩
𝜆

= 𝑆𝐾𝜆

𝑧
(𝑤),

(39)

which holds for all 𝑧, 𝑤 ∈ D𝑛.

Lemma 13. Let 𝑆 ∈ L(A2

𝜆
) and 𝑝 > max

1≤𝑖≤𝑛
{(1 + 2(𝜆

𝑖
+

1))/(1 + 𝜆
𝑖
)}; then

‖𝑆‖

≤ 𝐶 (𝑛, 𝑝, 𝜆) (sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩𝑆𝑧1
󵄩󵄩󵄩󵄩𝑝,𝜆)

1/2

(sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩𝑆
∗

𝑧
1
󵄩󵄩󵄩󵄩𝑝,𝜆)

1/2

,

(40)

where 𝐶(𝑛, 𝑝, 𝜆) is the constant of Lemma 12.
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Proof. For 𝑓 ∈ A2

𝜆
(D𝑛), (𝑆𝑓)(𝑤) = ⟨𝑆𝑓,𝐾𝜆

𝑤
⟩
𝜆

=

∫
D𝑛
𝑓(𝑧)𝑆∗𝐾𝜆

𝑧
(𝑤) 𝑑𝐴

𝜆
(𝑧). Thus 𝑆 is the integral operator

with kernel function 𝑆∗𝐾𝜆

𝑧
(𝑤). By classical Schur’s The-

orem [8], it is sufficient to prove that there exist posi-
tive constants 𝐶

1
= 𝐶(𝑛, 𝑝, 𝜆)sup

𝑧∈D𝑛‖𝑆𝑧1‖𝑝,𝜆 and 𝐶
2
=

𝐶(𝑛, 𝑝, 𝜆)sup
𝑧∈D𝑛‖𝑆

∗

𝑧
1‖

𝑝,𝜆
and a positive measurable function

𝑔 on D𝑛 such that ∫
D𝑛
|𝑆∗𝐾𝜆

𝑧
(𝑤)|𝑔2(𝑤) 𝑑𝐴

𝜆
(𝑤) ≤ 𝐶

1
𝑔2(𝑧)

for almost every 𝑧 ∈ D𝑛 and ∫
D𝑛
|𝑆∗𝐾𝜆

𝑧
(𝑤)|𝑔2(𝑧) 𝑑𝐴

𝜆
(𝑧) ≤

𝐶
1
𝑔2(𝑤) for almost every𝑤 ∈ D𝑛. By Lemma 12, let 𝑔 = ℎ1/2;

we get the conclusion.

Lemma 14. Let {𝑆
𝑚
} be a bounded sequence in L(A2

𝜆
)

such that ‖𝐵
0,𝜆
𝑆
𝑚
‖
∞

→ 0 as 𝑚 → ∞. Then
sup

𝑧∈D𝑛 |⟨(𝑆𝑚)𝑧1, 𝑓⟩| → 0 as 𝑚 → ∞ for any 𝑓 ∈ A2

𝜆
(D𝑛),

and sup
𝑧∈D𝑛 |(𝑆𝑚)𝑧1(⋅)| → 0 uniformly on compact subsets of

D𝑛 as𝑚 →∞.

Proof. To prove the first statement it is sufficient to check that
for each multi-index 𝑘

sup
𝑧∈D𝑛

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝑘
⟩
󵄨󵄨󵄨󵄨󵄨
󳨀→ 0 (41)

as 𝑚 → ∞. Since 𝐾𝜆

𝑢
(𝑤) = ∏

𝑛

𝑖=1
(1/(1 − 𝑢

𝑖
𝑤
𝑖
)
𝜆
𝑖
+2
) =

∏
𝑛

𝑖=1
∑
∞

𝛼
𝑖
=0
(Γ(𝛼

𝑖
+ 𝜆

𝑖
+ 2)/(𝛼

𝑖
)!Γ(𝜆

𝑖
+ 2))𝑢

𝑖

𝛼
𝑖𝑤

𝛼
𝑖

𝑖
=

∑
∞

|𝛼|=0
(1/𝛼!)[∏

𝑛

𝑖=1
(Γ(𝛼

𝑖
+ 𝜆

𝑖
+ 2)/Γ(𝜆

𝑖
+ 2))𝑢

𝛼
𝑤𝛼], by

Proposition 3 andTheorem 5 we have

𝐵
0,𝜆
𝑆
𝑚
(𝜙

𝑧
(𝑢)) = 𝐵

0,𝜆
(𝑆

𝑚
)
𝑧
(𝑢) =

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

⋅ ⟨(𝑆
𝑚
)
𝑧
𝐾
𝜆

𝑢
, 𝐾

𝜆

𝑢
⟩
𝜆
=

𝑛

∏
𝑖=1

(1 −
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

⋅

∞

∑
|𝛼|=0

∞

∑
|𝛽|=0

1

𝛼!

1

𝛽!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

𝑛

∏
𝑗=1

Γ (𝛽
𝑗
+ 𝜆

𝑗
+ 2)

Γ (𝜆
𝑗
+ 2)

⋅ ⟨(𝑆
𝑚
)
𝑧
𝑤
𝛼
, 𝑤

𝛽
⟩
𝜆
𝑢
𝛼
𝑢
𝛽
.

(42)

Given a multi-index 𝑘 and 𝑟 ∈ (0, 1), we have

∫
𝑟D𝑛

𝐵
0,𝜆
𝑆
𝑚
(𝜙

𝑧
(𝑢)) 𝑢

𝑘

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

𝑑𝐴
𝜆
(𝑢) =

∞

∑
|𝛼|=0

∞

∑
|𝛽|=0

1

𝛼!

1

𝛽!

⋅

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

𝑛

∏
𝑗=1

Γ (𝛽
𝑗
+ 𝜆

𝑗
+ 2)

Γ (𝜆
𝑗
+ 2)

⟨(𝑆
𝑚
)
𝑧

⋅ 𝑤
𝛼
, 𝑤

𝛽
⟩
𝜆
∫
𝑟D𝑛
𝑢
𝛼+𝑘
𝑢
𝛽
𝑑𝐴

𝜆
(𝑢) =

∞

∑
|𝛼|=0

1

𝛼! (𝛼 + 𝑘)!

⋅

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

⟨(𝑆
𝑚
)
𝑧

⋅ 𝑤
𝛼
, 𝑤

𝛼+𝑘
⟩
𝜆
× ∫

𝑟D𝑛

󵄨󵄨󵄨󵄨󵄨
𝑢
𝛼+𝑘󵄨󵄨󵄨󵄨󵄨

2

𝑑𝐴
𝜆
(𝑢)

=

∞

∑
|𝛼|=0

[𝜆 + 1]

𝛼! (𝛼 + 𝑘)!

⋅

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

⟨(𝑆
𝑚
)
𝑧

⋅ 𝑤
𝛼
, 𝑤

𝛼+𝑘
⟩
𝜆
× ∫

𝑟D𝑛

𝑛

∏
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝛼
𝑖
+𝛽
𝑖

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
𝜆
𝑖

𝑑𝐴 (𝑢) .

(43)

Passing to the polar coordinates, the integral part is
∏

𝑛

𝑖=1
∫
𝑟
2

0
𝜌𝛼𝑖+𝑘𝑖+1−1(1 − 𝜌)

𝜆
𝑖
+1−1

𝑑𝜌. Define 𝐼
𝑥
(𝑎, 𝑏) in the

standard way ([9], Formula 8.392), 𝐼
𝑥
(𝑎, 𝑏) = (Γ(𝑎 + 𝑏)/

Γ(𝑎)Γ(𝑏)) ∫
𝑥

0
𝑡𝑎−1(1 − 𝑡)

𝑏−1
𝑑𝑡; then we have

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 1) Γ (𝜆

𝑖
+ 1)

⋅ ∫
𝑟
2

0

𝜌
𝛼
𝑖
+𝑘
𝑖
+1−1

(1 − 𝜌)
𝜆
𝑖
+1−1

𝑑𝜌

=

𝑛

∏
𝑖=1

𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1) .

(44)

In addition, (43) equals

∞

∑
|𝛼|=0

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

⟨(𝑆
𝑚
)
𝑧
𝑤
𝛼
, 𝑤

𝛼+𝑘
⟩
𝜆

⋅ 𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1) = ⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝑘
⟩
𝜆

⋅

𝑛

∏
𝑖=1

𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1) +

∞

∑
|𝛼|=1

1

𝛼!

⋅

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

⟨(𝑆
𝑚
)
𝑧
𝑤
𝛼
, 𝑤

𝛼+𝑘
⟩
𝜆

⋅ 𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1) .

(45)

Thus we have

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝑘
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨

≤
1

∏
𝑛

𝑖=1
𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑟D𝑛

𝐵
0,𝜆
𝑆
𝑚
(𝜙

𝑧
(𝑢)) 𝑢

𝑘

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

𝑑𝐴
𝜆
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
|𝛼|=1

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

⟨(𝑆
𝑚
)
𝑧
𝑤
𝛼
, 𝑤

𝛼+𝑘
⟩
𝜆
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⋅
𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
[𝜆 + 1]

󵄩󵄩󵄩󵄩𝐵0,𝜆𝑆𝑚
󵄩󵄩󵄩󵄩∞

∏
𝑛

𝑖=1
𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑟D𝑛

󵄨󵄨󵄨󵄨󵄨
𝑢𝑘
󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

𝑑𝐴 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

∞

∑
|𝛼|=1

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑤

𝛼󵄩󵄩󵄩󵄩2,𝜆 ⋅
󵄩󵄩󵄩󵄩󵄩
𝑤
𝛼+𝑘󵄩󵄩󵄩󵄩󵄩2,𝜆

⋅
𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

≤
[𝜆 + 1]

󵄩󵄩󵄩󵄩𝐵0,𝜆𝑆𝑚
󵄩󵄩󵄩󵄩∞

∏
𝑛

𝑖=1
𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑟D𝑛

󵄨󵄨󵄨󵄨󵄨
𝑢𝑘
󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=1
(1 −

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨
2

)
2+𝜆
𝑖

𝑑𝐴 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐶

∞

∑
|𝛼|=1

𝑛

∏
𝑖=1

𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

= 𝐼 + 𝐶Σ,

(46)

where 𝐶 > 0 is a constant independent of𝑚 and 𝑧. In the last
estimate we used the boundedness of the sequence 𝑆

𝑚
and the

inequality

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄩󵄩󵄩󵄩𝑤
𝛼󵄩󵄩󵄩󵄩2,𝜆 ⋅

󵄩󵄩󵄩󵄩󵄩
𝑤
𝛼+𝑘󵄩󵄩󵄩󵄩󵄩2,𝜆

=

𝑛

∏
𝑖=1

√
Γ (𝛼

𝑖
+ 𝜆

𝑖
+ 2) Γ (𝛼

𝑖
+ 𝑘

𝑖
+ 1)

(𝛼
𝑖
)!Γ (𝛼

𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

≤ 1

(47)

which easily follows from (3). The first summand 𝐼 above
tends to zero as𝑚 →∞. It is sufficient to estimate the second
summand Σ.

Σ =

∞

∑
|𝛼|=1

𝑛

∏
𝑖=1

𝐼
𝑟
2 (𝛼

𝑖
+ 𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

𝐼
𝑟
2 (𝑘

𝑖
+ 1, 𝜆

𝑖
+ 1)

= (

𝑛

∏
𝑖=1

Γ (𝑘
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝑘
𝑖
+ 1) Γ (𝜆

𝑖
+ 1)

⋅ ∫
𝑟
2

0

𝜌
𝑘
𝑖 (1 − 𝜌)

𝜆
𝑖 𝑑𝜌)

−1

×

∞

∑
|𝛼|=1

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 1) Γ (𝜆

𝑖
+ 1)

⋅ ∫
𝑟
2

0

𝜌
𝛼
𝑖
+𝑘
𝑖 (1 − 𝜌)

𝜆
𝑖 𝑑𝜌.

(48)

Estimating the multiple (1 − 𝜌)𝜆𝑖 for any 𝑖 = 1, . . . , 𝑛 in both
integrals (1 − 𝑟2)𝜆𝑖 ≤ (1 − 𝜌)𝜆𝑖 ≤ 1, for 𝜆

𝑖
≥ 0, and 1 ≤

(1−𝜌)
𝜆
𝑖 ≤ (1−𝑟2)

𝜆
𝑖 , for𝜆

𝑖
∈ (−1, 0). By ([9], Formula 8.328.2),

lim
𝛼
𝑖
→∞

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 1) (𝛼

𝑖
+ 𝑘

𝑖
+ 1)

𝜆
𝑖
+1
= 1, (49)

and thus there exists 𝐶
𝑖
> 0 such that, for all 𝛼 ∈ Z𝑛

+
, Γ(𝛼

𝑖
+

𝑘
𝑖
+ 𝜆

𝑖
+ 2)/Γ(𝛼

𝑖
+ 𝑘

𝑖
+ 1)(𝛼

𝑖
+ 𝑘

𝑖
+ 1)

𝜆
𝑖
+1
< 𝐶

𝑖
. Then

Σ ≤

𝑛

∏
𝑖=1

Γ (𝑘
𝑖
+ 1) Γ (𝜆

𝑖
+ 1) (𝑘

𝑖
+ 1)

Γ (𝑘
𝑖
+ 𝜆

𝑖
+ 2)

(1 − 𝑟2)
−|𝜆
𝑖
|

𝑟2𝑘𝑖+2

⋅

∞

∑
|𝛼|=1

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝛼
𝑖
+ 𝑘

𝑖
+ 1) Γ (𝜆

𝑖
+ 1)

𝑟2(𝛼𝑖+𝑘𝑖)+2

(𝛼
𝑖
+ 𝑘

𝑖
+ 1)

≤

𝑛

∏
𝑖=1

𝐶
𝑖

Γ (𝑘
𝑖
+ 2)

Γ (𝑘
𝑖
+ 𝜆

𝑖
+ 2)

(1 − 𝑟
2
)
−|𝜆
𝑖
|

⋅

∞

∑
|𝛼|=1

𝑛

∏
𝑖=1

(𝛼
𝑖
+ 𝑘

𝑖
+ 1)

𝜆
𝑖 𝑟

2𝛼
𝑖 .

(50)

The power series in 𝑟 in the last line has radius of convergence
equal to 1 and vanishes at 0.Thus the value ofΣ becomes small
if one takes 𝑟 sufficiently closed to 0.

In order to prove the second statement we use the series
representations (3) and (4) again,

󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑢)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝐾

𝜆

𝑢
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨(𝑆
𝑚
)
𝑧
1,

∞

∑
|𝛼|=0

1

𝛼!
[

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

𝑢
𝛼
𝑤
𝛼
]⟩

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑
|𝛼|=0

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝛼
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑢

𝛼󵄨󵄨󵄨󵄨

≤

𝑙−1

∑
|𝛼|=0

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝛼
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨

+

∞

∑
|𝛼|=𝑙

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝛼
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑢

𝛼󵄨󵄨󵄨󵄨

≤

𝑙−1

∑
|𝛼|=0

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝛼
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨

+

∞

∑
|𝛼|=𝑙

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄩󵄩󵄩󵄩𝑆𝑚
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑤

𝛼󵄩󵄩󵄩󵄩𝜆 ⋅
󵄨󵄨󵄨󵄨𝑢

𝛼󵄨󵄨󵄨󵄨

≤

𝑙−1

∑
|𝛼|=0

1

𝛼!

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑤

𝛼
⟩
𝜆

󵄨󵄨󵄨󵄨󵄨

+ 𝐶

∞

∑
|𝛼|=𝑙

(

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

(𝛼
𝑖
)!Γ (𝜆

𝑖
+ 2)

)

1/2

󵄨󵄨󵄨󵄨𝑢
𝛼󵄨󵄨󵄨󵄨 = Σ1 + Σ2.

(51)

By the first statement of the lemma the expression Σ
1

uniformly tends to zero as 𝑚 → ∞ with 𝑙 being already
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fixed. To estimate Σ
2
we use the Cauchy-Schwarz inequal-

ity,

Σ
2
= 𝐶

∞

∑
𝑗=𝑙

∑
|𝛼|=𝑗

(

𝑛

∏
𝑖=1

Γ (𝛼
𝑖
+ 𝜆

𝑖
+ 2)

(𝛼
𝑖
)!Γ (𝜆

𝑖
+ 2)

)

1/2

󵄨󵄨󵄨󵄨𝑢
𝛼󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑
𝑗=𝑙

(
1

𝑗!
)

1/2 𝑛

∏
𝑖=1

(
Γ (𝑗 + 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

)

1/2

⋅ ∑
|𝛼|=𝑗

[
𝑗!

𝛼!
]
1/2

󵄨󵄨󵄨󵄨𝑢
𝛼󵄨󵄨󵄨󵄨 ≤ 𝐶

∞

∑
𝑗=𝑙

(
1

𝑗!
)

1/2

⋅

𝑛

∏
𝑖=1

(
Γ (𝑗 + 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

)

1/2

(∑
|𝛼|=𝑗

𝑗!

𝛼!

󵄨󵄨󵄨󵄨𝑢
𝛼󵄨󵄨󵄨󵄨
2

)

1/2

⋅ ( ∑
|𝛼|=𝑗

1)

1/2

= 𝐶

∞

∑
𝑗=𝑙

(
1

𝑗!
)

1/2

⋅

𝑛

∏
𝑖=1

(
Γ (𝑗 + 𝜆

𝑖
+ 2)

Γ (𝜆
𝑖
+ 2)

)

1/2

(∑
|𝛼|=𝑗

𝑗!

𝛼!

󵄨󵄨󵄨󵄨𝑢
𝛼󵄨󵄨󵄨󵄨
2

)

1/2

⋅ (
(𝑛 + 𝑗 − 1)!

𝑗! (𝑛 − 1)!
)

1/2

.

(52)

In [5], we get ∑
|𝛼|=𝑗

(𝑗!/𝛼!)|𝑢𝛼|2 = |𝑢|2𝑗; we finally have Σ
2
≤

𝐶∑
∞

𝑗=𝑙
(1/𝑗!)

1/2
((𝑛+𝑗−1)!/𝑗!(𝑛−1)!)

1/2
∏

𝑛

𝑖=1
(Γ(𝑗+𝜆

𝑖
+2)/Γ(𝜆

𝑖
+

2))
1/2
𝑟𝑗. By choosing 𝑙 sufficiently large we can make Σ

2
as

small as needed. This ends the proof.

Lemma 15. Let {𝑆
𝑚
} be a bounded sequence in L(A2

𝜆
) such

that ‖𝐵
0,𝜆
𝑆
𝑚
‖
∞
→ 0 as 𝑚 → ∞. Assume that, for some 𝑝 >

max
1≤𝑖≤𝑛

{(1 + 2(𝜆
𝑖
+ 1))/(1 + 𝜆

𝑖
)}, the following inequalities

hold:

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩𝑝,𝜆 ≤ 𝐶,

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆
∗

𝑚
)
𝑧
1
󵄩󵄩󵄩󵄩𝑝,𝜆 ≤ 𝐶,

(53)

where 𝐶 > 0 is independent of𝑚. Then 𝑆
𝑚
→ 0 as𝑚 →∞ in

theL(A2

𝜆
)-norm.

Proof. By Lemma 13,

󵄩󵄩󵄩󵄩𝑆𝑚
󵄩󵄩󵄩󵄩 ≤ 𝐶 (𝑛, 𝑝, 𝜆) (sup

𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩𝑝,𝜆)

1/2

⋅ (sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆
∗

𝑚
)
𝑧
1
󵄩󵄩󵄩󵄩𝑝,𝜆)

1/2

≤ 𝐶 (𝑛, 𝑝, 𝜆) .

(54)

Then, for max
1≤𝑖≤𝑛

{(1 + 2(𝜆
𝑖
+ 1))/(1 + 𝜆

𝑖
)} < 𝑠 < 𝑝, Hölder’s

inequality gives

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩
𝑠

𝑠,𝜆
≤ sup

𝑧∈D𝑛
∫
D𝑛\𝑟D𝑛

󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑤)
󵄨󵄨󵄨󵄨
𝑠

𝑑𝐴
𝜆
(𝑤)

+ sup
𝑧∈D𝑛

∫
𝑟D𝑛

󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑤)
󵄨󵄨󵄨󵄨
𝑠

𝑑𝐴
𝜆
(𝑤)

≤ (sup
𝑧∈D𝑛

∫
D𝑛\𝑟D𝑛

(
󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑤)

󵄨󵄨󵄨󵄨
𝑠

)
𝑝/𝑠

𝑑𝐴
𝜆
(𝑤))

𝑠/𝑝

⋅ (∫
D𝑛\𝑟D𝑛

𝑑𝐴
𝜆
(𝑤))

(1−𝑠/𝑝)

+ sup
𝑧∈D𝑛

∫
𝑟D𝑛

󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑤)
󵄨󵄨󵄨󵄨
𝑠

𝑑𝐴
𝜆
(𝑤)

≤ sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩
𝑠

𝑝,𝜆
(∫

D𝑛\𝑟D𝑛
𝑑𝐴

𝜆
(𝑤))

(1−𝑠/𝑝)

+ sup
𝑧∈D𝑛

∫
𝑟D𝑛

󵄨󵄨󵄨󵄨(𝑆𝑚)𝑧 1 (𝑤)
󵄨󵄨󵄨󵄨
𝑠

𝑑𝐴
𝜆
(𝑤) .

(55)

Then the first term is less than or equal to𝐶𝑠(𝑛(1−𝑟2)𝜆+1/(𝜆+
1))

(1−𝑠/𝑝) which converges to 0 as 𝑟 goes to 1 and the second
term tends to 0 as 𝑚 → ∞ by Lemma 14. Finally, Lemma 13
gives

󵄩󵄩󵄩󵄩𝑆𝑚
󵄩󵄩󵄩󵄩 ≤ 𝐶 (𝑛, 𝑠, 𝜆) (sup

𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩𝑠,𝜆)

1/2

⋅ (sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆
∗

𝑚
)
𝑧
1
󵄩󵄩󵄩󵄩𝑠,𝜆)

1/2

≤ 𝐶 (𝑛, 𝑠, 𝜆)

⋅ (sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆𝑚)𝑧 1
󵄩󵄩󵄩󵄩𝑠,𝜆)

1/2

(sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩(𝑆
∗

𝑚
)
𝑧
1
󵄩󵄩󵄩󵄩𝑝,𝜆)

1/2

󳨀→ 0,

(56)

as𝑚 → 0, proving the statement of the lemma.

Corollary 16. Let 𝑆 ∈ L(A2

𝜆
) such that, for some 𝑝 >

max
1≤𝑖≤𝑛

{(1 + 2(𝜆
𝑖
+ 1))/(1 + 𝜆

𝑖
)}, the following inequalities

hold

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑧
1 − (𝑇

𝐵
𝑚,𝜆

𝑆
)
𝑧
1
󵄩󵄩󵄩󵄩󵄩󵄩𝑝,𝜆

≤ 𝐶,

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
∗

𝑧
1 − (𝑇

𝐵
𝑚,𝜆

𝑆
∗)

𝑧
1
󵄩󵄩󵄩󵄩󵄩󵄩𝑝,𝜆

≤ 𝐶,

(57)

where 𝐶 > 0 is independent of𝑚. Then 𝑇
𝐵
𝑚,𝜆

𝑆
→ 𝑆 as𝑚 →∞

in theL(A2

𝜆
)-norm.

Proof. Let 𝑆
𝑚
= 𝑆 − 𝑇

𝐵
𝑚,𝜆

𝑆
and by Proposition 8, we have

𝐵
0,𝜆
𝑆
𝑚
= 𝐵

0,𝜆
𝑆 − 𝐵

0,𝜆
𝑇
𝐵
𝑚,𝜆

𝑆
= 𝐵

0,𝜆
𝑆 − 𝐵

0,𝜆
(𝐵

𝑚,𝜆
𝑆)

= 𝐵
0,𝜆
𝑆 − 𝐵

𝑚,𝜆
(𝐵

0,𝜆
𝑆) .

(58)
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By Corollary 10, the right of equation uniformly tends to 0 as
𝑚 →∞; that is, ‖𝐵

0,𝜆
𝑆
𝑚
‖
∞
→ 0. An application of Lemma 15

finishes the proof.

Theorem 17. Let 𝑆 ∈ L(A2

𝜆
). If there is 𝑝 > max

1≤𝑖≤𝑛
{(1 +

2(𝜆
𝑖
+ 1))/(1 + 𝜆

𝑖
)}, such that

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

1
󵄩󵄩󵄩󵄩󵄩𝑝,𝜆

≤ 𝐶,

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∗

(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

1
󵄩󵄩󵄩󵄩󵄩󵄩𝑝,𝜆

≤ 𝐶,

(59)

where 𝐶 > 0 is independent of𝑚, then 𝑇
𝐵
𝑚,𝜆

𝑆
→ 𝑆 as𝑚 → ∞

in theL(A2

𝜆
)-norm.

Proof. Since 𝑇
(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

= (𝑇
𝐵
𝑚,𝜆

𝑆
)
𝑧
and 𝑇∗

(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

= 𝑇∗
𝐵
𝑚,𝜆

𝑆
𝑧

=

𝑇
𝐵
𝑚,𝜆

𝑆
𝑧

= 𝑇
𝐵
𝑚,𝜆

𝑆
∗

𝑧

= 𝑇
(𝐵
𝑚,𝜆

𝑆
∗
)∘𝜙
𝑧

, by Corollary 16, we only need
to prove that (59) implies (53). Hence, it is sufficient to prove
that

sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩𝑆𝑧1
󵄩󵄩󵄩󵄩𝑝,𝜆 < ∞. (60)

By Lemma 13, we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐵
𝑚,𝜆

𝑆

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶 (𝑛, 𝑝, 𝜆) (sup

𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

1
󵄩󵄩󵄩󵄩󵄩𝑝,𝜆
)

1/2

⋅ (sup
𝑧∈D𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∗

(𝐵
𝑚,𝜆

𝑆)∘𝜙
𝑧

1
󵄩󵄩󵄩󵄩󵄩󵄩𝑝,𝜆
)

1/2

< 𝐶,

(61)

where 𝐶 is independent of 𝑚. Let 𝑆
𝑚
= 𝑆 − 𝑇

𝐵
𝑚,𝜆

𝑆
; then

‖𝑆
𝑚
‖ ≤ 𝐶, where 𝐶 is independent of 𝑚. According to the

proof of Corollary 16, we get lim
𝑚→∞

‖𝐵
0,𝜆
𝑆
𝑚
‖
∞
= 0. Let 𝑓

be an analytic polynomial with ‖𝑓‖
𝑞,𝜆
= 1; Lemma 14 implies

sup
𝑧∈D𝑛 |⟨(𝑆𝑚)𝑧1, 𝑓⟩| → 0 as𝑚 →∞.Then, for any 𝜀 > 0 and

any 𝑧
0
∈ D𝑛, there is a sufficiently large𝑚 such that

󵄨󵄨󵄨󵄨󵄨
⟨𝑆

𝑧
0

1, 𝑓⟩
𝜆

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
0

1, 𝑓⟩
𝜆

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨(𝑇

𝐵
𝑚,𝜆

𝑆
)
𝑧
0

1, 𝑓⟩
𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑧∈D𝑛

󵄨󵄨󵄨󵄨󵄨
⟨(𝑆

𝑚
)
𝑧
1, 𝑓⟩

𝜆

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨(𝑇

𝐵
𝑚,𝜆

𝑆
)
𝑧
0

1, 𝑓⟩
𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 + 𝐶,

(62)

where 𝐶 is independent of 𝑚 and 𝑧
0
. Since 𝜀 is arbitrary, we

have inequality (60).
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