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LetB be the real unit ball inR𝑛 and𝑓 ∈ C𝑁(B). Given amulti-index𝑚 = (𝑚
1
, . . . , 𝑚

𝑛
) of nonnegative integers with |𝑚| = 𝑁, we set

the quantity sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦(1− |𝑥|2)𝛼(1− |𝑦|2)𝛽(|𝜕𝑚𝑓(𝑥)−𝜕𝑚𝑓(𝑦)|/|𝑥−𝑦|𝛾[𝑥, 𝑦]1−𝛾), 𝑥 ̸= 𝑦,where 0 ≤ 𝛾 ≤ 1 and 𝛼+𝛽 = 𝑁+1.

In terms of it, we characterize harmonic Bloch and Besov spaces on the real unit ball. This generalizes the main results of Yoneda,
2002, into real harmonic setting.

1. Introduction

Let B be the real unit ball in R𝑛 with 𝑛 ≥ 2, where 𝑑V is the
normalized volume measure on B and 𝑑𝜎 is the normalized
surface measure on the unit sphere 𝑆 = 𝜕B. We denote the
class of all harmonic functions on the unit ball by 𝐻(B). For
𝑓 ∈ 𝐻(B), ∇𝑓(𝑥) denotes the gradient of 𝑓. Given a multi-
index 𝑚 = (𝑚

1
, . . . , 𝑚

𝑛
) of nonnegative integers, we use the

notations |𝑚| = 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑛
and

𝜕𝑚𝑓 =
𝜕|𝑚|𝑓

𝜕𝑥𝑚
=

𝜕|𝑚|𝑓

𝜕𝑥
𝑚
1

1
⋅ ⋅ ⋅ 𝜕𝑥
𝑚
𝑛

𝑛

. (1)

For each 𝛼 > 0, the harmonic 𝛼-Bloch space B𝛼 consists
of all functions 𝑓 ∈ 𝐻(B) such that

𝑓
𝛼 = sup
𝑥∈B

(1 − |𝑥|
2)
𝛼 ∇𝑓 (𝑥)

 < ∞, (2)

and the little 𝛼-Bloch space B𝛼
0
consists of the functions 𝑓 ∈

B𝛼 such that

lim
|𝑥|→1

−

sup
𝑥∈B

(1 − |𝑥|
2)
𝛼 ∇𝑓 (𝑥)

 = 0. (3)

The harmonic Besov spaceB
𝑝
is the space of all functions in

𝐻(B) for which

∫
B

(1 − |𝑥|
2)
𝑝 ∇𝑓 (𝑥)


𝑝

𝑑𝜏 (𝑥) < ∞, (4)

where 𝑝 > 𝑛−1 and 𝑑𝜏(𝑥) = (1−|𝑥|2)−𝑛𝑑V(𝑥) is the invariant
measure on B.

Let 𝑓 be a continuous function in B. If there exists a
constant 𝐶 such that

L
𝑓
(𝑥, 𝑦) = (1 − |𝑥|

2)
1/2

(1 −
𝑦


2

)
1/2



𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦



≤ 𝐶,

(5)

for any 𝑥, 𝑦 ∈ B, thenwe say that𝑓 satisfiesweighted Lipschitz
condition. By means of it, Ren and Kähler [1] obtained the
following.

Theorem A. Let 𝑓 ∈ 𝐻(B). Then 𝑓 ∈ B1 if and only if it
satisfies the weighted Lipschitz condition.

Theorem B. Let 𝑓 ∈ 𝐻(B) and 𝑝 ∈ (2(𝑛 − 1),∞). Then 𝑓 ∈
B
𝑝
if and only if

∬
B

L
𝑝

𝑓
(𝑥, 𝑦) 𝑑𝜏 (𝑥) 𝑑𝜏 (𝑦) < ∞. (6)
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Let D be the open unit disk in the complex plane C and
let 𝑓 be a continuous complex-value function in D. Denote
by

𝑀 = sup
𝑧∈D,𝑤∈𝐷(𝑧,𝑟),𝑧 ̸=𝑤

(1 − |𝑧|2)
𝛼

(1 − |𝑤|2)
𝛽 

�̂�
(𝑛−1)

𝑓 (𝑧) − �̂�
(𝑛−1)

𝑓 (𝑤)


|𝑧 − 𝑤|
, (7)

where 𝐷(𝑧, 𝑟) is the hyperbolic disc with center 𝑧 ∈ D and
radius 𝑟, 𝑛 ≥ 1 an integer, 𝛼 + 𝛽 = 𝑛, and �̂�

(𝑛)

= 𝜕𝑛/𝜕𝑧𝑛 +
𝜕𝑛/𝜕𝑧𝑛.

In [2], Yoneda characterized harmonic Bloch and Besov
spaces in D in terms of 𝑀 as follows.

Theorem C. Let 𝑓 be a complex-value harmonic function in
D. Fix an integer 𝑛 ≥ 1 and a pair of real numbers 𝛼, 𝛽 such
that 𝛼 + 𝛽 = 𝑛. Then 𝑓 ∈ B1(D) if and only if 𝑀 is bounded.

Theorem D. Let 𝑓 be a complex-value harmonic function in
D. Fix an integer 𝑛 ≥ 2 and a pair of real numbers 𝛼, 𝛽 such
that 𝛼 + 𝛽 = 𝑛. Then for each 𝑝 ≥ 1, 𝑓 ∈ B

𝑝
(D) if and only if

∫
D

𝑀𝑝𝑑𝜆 (𝑧) < ∞, (8)

where 𝑑𝜆(𝑧) = (1 − |𝑧|2)−2𝑑𝑧.

See [3–5] for various characterizations of the Bloch, little
Bloch, and Besov spaces in the unit ball of C𝑛.

The main purpose of this paper is to give some charac-
terizations for the spaces B𝛼, B𝛼

0
, and B

𝑝
in the real unit

ball along Yoneda’s direction. In Section 2, we collect some
known results that will be needed in the proof of our results.
Our main results and their proofs are presented in Sections 3
and 4.

Throughout this paper, constants are denoted by 𝐶; they
are positive and may differ from one occurrence to the other.
The notation𝐴 ≍ 𝐵means there is a positive constant 𝐶 such
that 𝐵/𝐶 ≤ 𝐴 ≤ 𝐶𝐵.

2. Preliminaries

We will be using the same notation in [1, 6]: we write 𝑥, 𝑦 ∈
R𝑛 in polar coordinates by 𝑥 = |𝑥|𝑥 and 𝑦 = |𝑦|𝑦. For any
𝑎, 𝑏 ∈ R𝑛, let

[𝑎, 𝑏] =
|𝑎| 𝑏 − 𝑎

 . (9)

Then the symmetry lemma in [7] shows that

[𝑎, 𝑏] = [𝑏, 𝑎] . (10)

For any 𝑎 ∈ B, denote by 𝜙
𝑎
the Möbius transformation in B.

It is an involution of B such that 𝜙
𝑎
(0) = 𝑎 and 𝜙

𝑎
(𝑎) = 0,

which is of the form

𝜙
𝑎
(𝑥) =

|𝑥 − 𝑎|2 𝑎 − (1 − |𝑎|2) (𝑥 − 𝑎)

[𝑥, 𝑎]2
, 𝑥 ∈ B. (11)

By simple computations, we have

𝜙𝑎 (𝑥)
 =

|𝑥 − 𝑎|

[𝑥, 𝑎]
,

1 −
𝜙𝑎 (𝑥)


2

=
(1 − |𝑥|2) (1 − |𝑎|2)

[𝑥, 𝑎]2
.

(12)

For any 𝑎 ∈ B and 𝑟 ∈ (0, 1), we define the pseudo-
hyperbolic ball with center 𝑎 and radius 𝑟 as

𝐸 (𝑎, 𝑟) = {𝑤 ∈ B :
𝜙𝑎 (𝑤)

 < 𝑟} . (13)

Clearly, 𝐸(𝑎, 𝑟) = 𝜙
𝑎
(B(0, 𝑟)).

Lemma 1 (see [1, Lemma 2.1]). Let 𝑟 ∈ (0, 1) and 𝑦 ∈ 𝐸(𝑥, 𝑟).
Then

1 − |𝑥|
2 ≍ 1 −

𝑦

2

≍ [𝑥, 𝑦] ≍ |𝐸 (𝑥, 𝑟)| , (14)

where |𝐸(𝑥, 𝑟)| denotes the volume of 𝐸(𝑥, 𝑟).

The following is a characterization of the spaceB1 (resp.,
B1
0
) which is proved in [8].

Lemma 2. Let ℎ ∈ 𝐻(B) and 𝑁 be a positive integer. Then
ℎ ∈ B1 (resp.,B1

0
) if and only if

sup
𝑥∈B

(1 − |𝑥|
2)
𝑁 𝜕
𝑚ℎ (𝑥)

 < ∞

(resp. lim
|𝑥|→1

−

sup
𝑥∈B

(1 − |𝑥|
2)
𝑁 𝜕
𝑚ℎ (𝑥)

 = 0)

(15)

for all multi-index 𝑚 with |𝑚| = 𝑁.

As an application of Lemma 2, we can obtain the follow-
ing.

Lemma 3. Let ℎ ∈ 𝐻(B). Then ℎ ∈ B1 if and only if for each
𝑗 ∈ {1, . . . , 𝑛},

sup
𝑥,𝑦∈B,𝑥≠𝑦

(1 − |𝑥|2) (1 −
𝑦


2

)
𝑥 − 𝑦





𝜕ℎ

𝜕𝑥
𝑗

(𝑥) −
𝜕ℎ

𝜕𝑥
𝑗

(𝑦)



< ∞.

(16)

Proof. Fixing a point 𝑥 and letting

𝑦 = 𝑥 + 𝑡∇(
𝜕ℎ

𝜕𝑥
𝑗

) (𝑥) → 𝑥 (17)
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with 𝑡 ∈ R, we have

(1 − |𝑥|
2)
2


∇(

𝜕ℎ

𝜕𝑥
𝑗

) (𝑥)


≤ 𝐿, (18)

for each 𝑗 ∈ {1, . . . , 𝑛}. By Lemma 2, we see that ℎ ∈ B1.
For the converse, we assume that ℎ ∈ B1. Let ℎ

𝑗
(𝑥) =

𝜕ℎ(𝑥)/𝜕𝑥
𝑗
; then for each 𝑗 ∈ {1, . . . , 𝑛}

ℎ𝑗 (𝑥) − ℎ
𝑗
(𝑦)

 =

∫
1

0

𝑑ℎ
𝑗

𝑑𝑠
(𝑠𝑥 + (1 − 𝑠) 𝑦) 𝑑𝑠



≤
𝑛

∑
𝑘=1


(𝑥
𝑘
− 𝑦
𝑘
) ∫
1

0

𝜕ℎ
𝑗

𝜕𝑥
𝑘

(𝑠𝑥 + (1 − 𝑠) 𝑦) 𝑑𝑠


≤ √𝑛
𝑥 − 𝑦

 ∫
1

0

∇ℎ
𝑗
(𝑠𝑥 + (1 − 𝑠) 𝑦)

 𝑑𝑠

≤ 𝐶
𝑥 − 𝑦

 ∫
1

0

𝑑𝑠

(1 −
𝑠𝑥 + (1 − 𝑠) 𝑦


2

)
2
.

(19)

It follows from [9] that there exists 𝐶 > 0 such that

∫
1

0

𝑑𝑠

(1 −
𝑠𝑥 + (1 − 𝑠) 𝑦


2

)
2

≤
𝐶

(1 − |𝑥|2) (1 −
𝑦


2

)
. (20)

This implies that

sup
𝑥,𝑦∈B,𝑥 ̸=𝑦

(1 − |𝑥|2) (1 −
𝑦


2

)
𝑥 − 𝑦



ℎ𝑗 (𝑥) − ℎ
𝑗
(𝑦)

 < ∞. (21)

So the result follows.

Combining Theorem A and Lemma 3, we extend [2,
Corollary 2.4] into the real harmonic setting as follows.

Corollary 4. Let ℎ ∈ 𝐻(B). Then for 𝑖 = 1, 2, ℎ ∈ B1 if and
only if

sup
𝑥,𝑦∈B,𝑥 ̸=𝑦

(1 − |𝑥|2)
𝑖/2

(1 −
𝑦


2

)
𝑖/2

𝑥 − 𝑦


𝜕
𝑖−1𝑓 (𝑥)

− 𝜕𝑖−1𝑓 (𝑦)
 < ∞,

(22)

where 𝜕1𝑓 = 𝜕𝑓/𝜕𝑥
𝑗
for all 𝑗 ∈ {1, . . . , 𝑛}.

In the following, we give an example which shows that
Corollary 4 does not hold for 𝑖 ≥ 3.

Example 5. Let 𝑓(𝑥) = ln((1 − 𝑥
1
)2 + 𝑥2

2
); then 𝑓 ∈ B1. By a

simple computation we have

𝜕2𝑓

𝜕𝑥2
1

=
2

(1 − 𝑥
1
)
2

+ 𝑥2
2

−
4 (1 − 𝑥

1
)
2

((1 − 𝑥
1
)
2

+ 𝑥2
2
)
2
,

sup
𝑥∈B

(1 − |𝑥|2)
3/2

|𝑥|



𝜕2

𝜕𝑥2
1

𝑓 (𝑥) −
𝜕2

𝜕𝑥2
1

𝑓 (0)

= ∞.

(23)

3. Results and Discussions

3.1. Harmonic Bloch Spaces. In this section, we give some
characterizations of the spacesB𝛼 which can be viewed as the
generalizations of Yoneda’s results into the real unit ball B of
R𝑛.

For a continuous function ℎ in B and 0 ≤ 𝛾 ≤ 1, we write

𝐿Λ (ℎ) =

ℎ (𝑥) − ℎ (𝑦)


𝑥 − 𝑦

𝛾

[𝑥, 𝑦]
1−𝛾

, 𝑥, 𝑦 ∈ B, 𝑥 ̸= 𝑦. (24)

By using the notation, we characterizeB1,B1
0
as follows.

Theorem 6. Let 𝑓 ∈ 𝐻(B), 𝑁 ≥ 0 be an integer and 0 < 𝑟 <

1. Then 𝑓 ∈ B1 if and only if

𝐿
𝑓

= sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓)

< ∞,

(25)

for all multi-index 𝑚 with |𝑚| = 𝑁, where 𝛼 + 𝛽 = 𝑁 + 1.

Proof. First we prove the sufficiency. Let 𝑓 ∈ 𝐻(B). Then for
each multi-index 𝑚, 𝜕𝑚𝑓 ∈ 𝐻(B). For 𝑟 ∈ (0, 1), it follows
from [1] that

∇ (𝜕𝑚𝑓) (𝑥)
 ≤

𝐶

(1 − |𝑥|2)
∫
𝐸(𝑥,𝑟)

𝜕
𝑚𝑓 (𝑦)

 𝑑𝜏 (𝑦) . (26)

Fixing 𝑥 ∈ B and replacing 𝜕𝑚𝑓 by 𝜕𝑚𝑓 − 𝜕𝑚𝑓(𝑥), we have

(1 − |𝑥|
2)
|𝑚|+1 ∇ (𝜕𝑚𝑓) (𝑥)



≤ 𝐶 (1 − |𝑥|
2)
|𝑚|

∫
𝐸(𝑥,𝑟)

𝜕
𝑚𝑓 (𝑦) − 𝜕𝑚𝑓 (𝑥)

 𝑑𝜏 (𝑦) .
(27)

By Lemma 1, we can deduce that

(1 − |𝑥|
2)
|𝑚|+1 ∇ (𝜕𝑚𝑓) (𝑥)

 ≤ 𝐶 (1 − |𝑥|
2)
|𝑚|+1

⋅ ∫
𝐸(𝑥,𝑟)

𝜕
𝑚𝑓 (𝑦) − 𝜕𝑚𝑓 (𝑥)


[𝑥, 𝑦]

𝑑𝜏 (𝑦)

≤ 𝐶∫
𝐸(𝑥,𝑟)

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

⋅ 𝐿Λ (𝜕𝑚𝑓) 𝑑𝜏 (𝑦) ≤ 𝐶𝐿
𝑓
𝜏 (B (0, 𝑟)) .

(28)

Since 𝜏(B(0, 𝑟)) = 𝑛 ∫
𝑟

0

𝑡𝑛−1(1 − 𝑡2)−𝑛𝑑𝑡 is a constant, we see
that

(1 − |𝑥|
2)
𝑁+1 ∇ (𝜕𝑚𝑓) (𝑥)

 < ∞, (29)

for any multi-index 𝑚 with |𝑚| = 𝑁. Hence Lemma 2 yields
that 𝑓 ∈ B1.
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Now we prove the necessity. Let 𝑦 ∈ 𝐸(𝑥, 𝑟), 𝑥 ̸= 𝑦. Then
for each multi-index 𝑚 with |𝑚| = 𝑁, we have

(𝜕
𝑚𝑓) (𝑥) − (𝜕𝑚𝑓) (𝑦)



=

∫
1

0

𝑑 (𝜕𝑚𝑓)

𝑑𝑠
(𝑠𝑥 + (1 − 𝑠) 𝑦) 𝑑𝑠



≤
𝑛

∑
𝑘=1


(𝑥
𝑘
− 𝑦
𝑘
) ∫
1

0

𝜕 (𝜕𝑚𝑓)

𝜕𝑥
𝑘

(𝑠𝑥 + (1 − 𝑠) 𝑦) 𝑑𝑠


≤ √𝑛
𝑥 − 𝑦

 ∫
1

0

∇ (𝜕(𝑚)𝑓) (𝑠𝑥 + (1 − 𝑠) 𝑦)
 𝑑𝑠

≤ 𝐶
𝑥 − 𝑦

 ∫
1

0

𝑑𝑠

(1 −
𝑥𝑧 + (1 − 𝑠) 𝑦

)
𝑁+1

.

(30)

By Lemma 1 we infer that there exists 𝜆 > 0 such that 1−|𝑦| =
𝜆(1 − |𝑥|) and

𝐿Λ (𝜕𝑚𝑓) ≤ 𝐶∫
1

0

𝑑𝑠

(𝑠 (1 − |𝑥|) + (1 − 𝑠) (1 −
𝑦

))
𝑁+1

≤
𝐶

(1 − |𝑥|2)
𝑁+1

∫
1

0

𝑑𝑠

[𝑠 + 𝜆 (1 − 𝑠)]𝑁+1

≤
𝐶

(1 − |𝑥|2)
𝛼

(1 −
𝑦


2

)
𝛽

.

(31)

Thus,

𝐿
𝑓

= sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓)

< ∞.

(32)

So the proof is complete.

Theorem7. Let𝑓 ∈ 𝐻(B),𝑁 ≥ 0 be an integer and 0 < 𝑟 < 1.
Then 𝑓 ∈ B1

0
if and only if

lim
|𝑥|→1

−

sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓)

= 0,

(33)

for all multi-index 𝑚 with |𝑚| = 𝑁, where 𝛼 + 𝛽 = 𝑁 + 1.

Proof. Sufficiency: assume that (33) holds.Then for any 𝜖 > 0,
there exists 𝛿 ∈ (0, 1) such that

sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓) < 𝜖 (34)

whenever 𝛿 < |𝑥| < 1. It follows from an argument similar to
that in proof of Theorem 6 that we have

(1 − |𝑥|
2)
𝑁+1 ∇ (𝜕𝑚𝑓) (𝑥)



≤ 𝐶 sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓)

< 𝐶𝜖,

(35)

whenever 𝛿 < |𝑥| < 1. Hence

lim
|𝑥|→1

−

sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓)

= 0,

(36)

from which we see that 𝑓 ∈ B1
0
.

Necessity: for 𝑡 ∈ (0, 1), let 𝑓
𝑡
(𝑥) = 𝑓(𝑡𝑥). By Lemma 1

and proof of Theorem 6, we see that, for each multi-index 𝑚
with |𝑚| = 𝑁,

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚 (𝑓 − 𝑓
𝑡
))

≤ 𝐶 (1 −
𝜉

2

)
𝑁+1 ∇𝜕𝑚 (𝑓 − 𝑓

𝑡
) (𝜉)

 ,

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓
𝑡
)

≤
𝐶 (1 − |𝑥|2)

𝛼+𝛽

(1 − |𝑡|2)
𝑁+1

(1 −
𝑡𝜂


2

)
𝑁+1 ∇ (𝜕𝑚𝑓

𝑡
) (𝜂)



(37)

for all 𝑥 ∈ B and 𝜉, 𝜂 ∈ 𝐸(𝑥, 𝑟). So

𝐿
𝑓

≤ 𝐶 (1 −
𝜉

2

)
𝑁+1 ∇𝜕𝑚 (𝑓 − 𝑓

𝑡
) (𝜉)



+
𝐶 (1 − |𝑥|2)

𝛼

(1 −
𝑦


2

)
𝛽

(1 − |𝑡|2)
𝑁+1

(1 −
𝑡𝜂


2

)
𝑁+1

⋅
∇ (𝜕𝑚𝑓

𝑡
) (𝜂)

 .

(38)

First letting |𝑥| → 1− and then letting 𝑡 → 1−, we obtain the
desired result.

In the following, by removing the restriction 𝑦 ∈ 𝐸(𝑥, 𝑟)
in Theorem 6, we obtain the following.

Theorem 8. Let 𝑓 ∈ 𝐻(B), 0 ≤ 𝛽 < 1, and 𝛽 ≤ 𝛼 < 1 + 𝛽.
Then 𝑓 ∈ B𝛼 if and only if

𝑄 = sup
𝑥,𝑦∈B,𝑥 ̸=𝑦

(1 − |𝑥|
2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

𝐿Λ (𝑓) < ∞. (39)

Proof. We only need to prove the necessity since the proof of
sufficiency is similar to that in proof of Theorem 6. Assume
that 𝑓 ∈ B𝛼. For 𝑥, 𝑦 ∈ B, 𝑠 ∈ [0, 1],

(1 −
𝑠𝑥 + (1 − 𝑠) 𝑦


2

)
𝛼

≥ (𝑠(
1 − |𝑥|2

2
) + (1 − 𝑠)(

1 −
𝑦


2

2
))

𝛼

≥ (
𝑠

2
)
𝛽

(
1 − 𝑠

2
)
𝛼−𝛽

(1 − |𝑥|
2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

,

(40)
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which gives

𝐿Λ (𝑓) ≤ 𝐶∫
1

0

𝑑𝑠

(1 −
𝑠𝑥 + (1 − 𝑠) 𝑦


2

)
𝛼

≤ 𝐶∫
1

0

𝑑𝑠

(𝑠/2)𝛽 ((1 − 𝑠) /2)𝛼−𝛽 (1 − |𝑥|2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

≤
𝐶

(1 − |𝑥|2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

∫
1

0

𝑑𝑠

𝑠𝛽 (1 − 𝑠)𝛼−𝛽

≤
𝐶

(1 − |𝑥|2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

,

(41)

where the last integral converges since 𝛼 < 1 + 𝛽. Thus

(1 − |𝑥|
2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

𝐿Λ (𝑓) < ∞. (42)

Similarly, we can prove the following.

Theorem 9. Let 𝑓 ∈ B𝛼, 0 ≤ 𝛽 < 1, and 𝛽 ≤ 𝛼 < 1 + 𝛽. Then
𝑓 ∈ B𝛼

0
if and only if

lim
|𝑥|→1

−

sup
𝑥,𝑦∈B,𝑥 ̸=𝑦

𝜔((1 − |𝑥|
2)
𝛽

(1 −
𝑦


2

)
𝛼−𝛽

) 𝐿Λ (𝑓)

= 0.

(43)

3.2. Harmonic Besov Space. In order to prove our next result,
we need the following lemma.

Lemma 10. Let 𝑓 ∈ 𝐻(B). Then 𝑓 ∈ B
𝑝
if and only if

sup
𝑥∈B

(1 − |𝑥|
2)
𝑁+1 ∇ (𝜕𝑚𝑓) (𝑥)

 ∈ 𝐿𝑝 (B, 𝑑𝜏) (44)

for all multi-index 𝑚 with |𝑚| = 𝑁.

Proof. This follows from [10, Theorem 3.7] by letting 𝛼 = 𝑝 −
𝑛.

Lemma 11. Let ℎ ∈ 𝐻(B) and 0 < 𝑟 < 1. Then there exist
constants 𝐶 > 0, 𝑟 < 𝑟 < 1 such that

sup
𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦



ℎ (𝑥) − ℎ (𝑦)

𝑥 − 𝑦


≤ 𝐶∫
𝐸(𝑥,𝑟

)

|∇ℎ (𝑢)| 𝑑𝜏 (𝑢) . (45)

Proof. By Cauchy’s estimates and Lemma 1, for each 𝑥 ∈ B,
we have

sup
𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦



ℎ (𝑥) − ℎ (𝑦)

𝑥 − 𝑦


≤ 𝐶 sup
𝜁∈𝐸(𝑥,𝑟)

∇ℎ (𝜁)


≤
𝐶

𝐸 (𝑥, 𝑟)

∫
𝐸(𝑥,𝑟

)

∇ℎ (𝜁)
 𝑑V (𝜁)

≤ 𝐶∫
𝐸(𝑥,𝑟

)

∇ℎ (𝜁)
 𝑑𝜏 (𝜁)

(46)

for some 𝑟 > 𝑟.

Now, we come to state and prove the result for harmonic
Besov spaces.

Theorem 12. Let 𝑓 ∈ 𝐻(B), 𝑁 ≥ 0 be an integer and 0 < 𝑟 <
1. Then 𝑓 ∈ B

𝑝
if and only if

𝐾
𝑝
= ∫

B

( sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥≠𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

⋅ 𝐿Λ (𝜕𝑚𝑓))

𝑝

𝑑𝜏 (𝑥) < ∞,

(47)

for all multi-index 𝑚 with |𝑚| = 𝑁, where 𝛼 + 𝛽 = 𝑁 + 1.

Proof. Let 𝑓 ∈ 𝐻(B). Suppose that

𝐾
𝑝
= ∫

B

sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦

(1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

⋅ 𝐿Λ (𝜕𝑚𝑓) 𝑑𝜏 < ∞.

(48)

Set

𝐿
𝑓
(𝑥) = lim

𝑦→𝑥

sup (1 − |𝑥|
2)
𝛼

(1 −
𝑦


2

)
𝛽

𝐿Λ (𝜕𝑚𝑓) . (49)

It follows from proof of Theorem 6 that we have

(1 − |𝑥|
2)
𝑁+1 ∇ (𝜕𝑚𝑓) (𝑥)

 ≤ 𝐶𝐿
𝑓
(𝑥) . (50)

Since 𝐿
𝑓
(𝑥) ≤ 𝐿

𝑓
, we see that

∫
B

(1 − |𝑥|
2)
𝑝(𝑁+1) ∇ (𝜕𝑚𝑓) (𝑥)


𝑝

𝑑𝜏 (𝑥)

≤ 𝐶∫
B

𝐿
𝑝

𝑓
(𝑥) 𝑑𝜏 (𝑥) ≤ 𝐶∫

B

𝐿
𝑝

𝑓
𝑑𝜏 (𝑥) = 𝐶𝐾

𝑝
,

(51)

for all multi-index 𝑚 with |𝑚| = 𝑁. By Lemma 10, 𝑓 ∈ B
𝑝
.

To prove the necessity, we suppose that 𝑓 ∈ B
𝑝
. By

Lemmas 1 and 11, for each multi-index 𝑚 and 𝑟 < 𝑟 < 1,

𝐿
𝑓

≤ 𝐶 sup
𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦

(1 − |𝑥|
2)
𝛼+𝛽

𝐿Λ (𝜕𝑚𝑓)

≤ 𝐶∫
𝐸(𝑥,𝑟

)

(1 − |𝑢|
2)
𝑁+1 ∇ (𝜕𝑚𝑓) (𝑢)

 𝑑𝜏 (𝑢) .

(52)

Since

∫
𝐸(𝑥,𝑟

)

𝑑𝜏 < ∞, (53)

by Hölder’s inequality and Fubini’s theorem, we can obtain

𝐾
𝑝
≤ 𝐶∫

B

(∫
𝐸(𝑥,𝑟

)

(1 − |𝑢|
2)
𝑁+1

⋅
∇ (𝜕𝑚𝑓) (𝑢)

 𝑑𝜏 (𝑢))
𝑝

𝑑𝜏 (𝑥)

≤ 𝐶∫
B

((1 − |𝑢|
2)
𝑁+1 ∇ (𝜕𝑚𝑓)

⋅ (𝑢)
)
𝑝

𝑑𝜏 (𝑢) .

(54)
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It follows fromLemma 10 that we see that𝐾
𝑝
is bounded.This

completes the proof.

4. Conclusions

In this paper, we characterize harmonic Bloch and Besov
spaces by using the quantity sup

𝑥∈B,𝑦∈𝐸(𝑥,𝑟),𝑥 ̸=𝑦(1 − |𝑥|2)𝛼(1 −

|𝑦|2)𝛽(|𝜕𝑚𝑓(𝑥)−𝜕𝑚𝑓(𝑦)|/|𝑥−𝑦|𝛾[𝑥, 𝑦]1−𝛾), 𝑥 ̸= 𝑦. Since |𝑥−
𝑦| ≤ [𝑥, 𝑦], our results can be viewed as the generalizations
of Yoneda’s results (see [2]) into real harmonic setting. Fur-
thermore, we obtain a characterization of the space B𝛼 in
terms of𝑄 = sup

𝑥,𝑦∈B,𝑥 ̸=𝑦(1−|𝑥|2)𝛽(1−|𝑦|2)𝛼−𝛽𝐿Λ(𝑓), where
0 ≤ 𝛽 < 1, 𝛽 ≤ 𝛼 < 1 + 𝛽.
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