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Continuity (both lower and upper semicontinuities) results of the Pareto/efficient solution mapping for a parametric vector
variational inequality with a polyhedral constraint set are established via scalarization approaches, within the framework of strict
pseudomonotonicity assumptions. As a direct application, the continuity of the solution mapping to a parametric weak Minty
vector variational inequality is also discussed. Furthermore, error bounds for the weak vector variational inequality in terms of two
known regularized gap functions are also obtained, under strong pseudomonotonicity assumptions.

1. Introduction

The concept of the vector variational inequality (VVI, for
short) was first introduced by Giannessi in his well-known
paper [1]. This model has received extensive attentions in the
last three decades. Many important results on various kinds
of vector variational inequalities (VVIs, for short) have been
established; for example, see [2–4] and the references therein.

Nowadays, VVIs as powerful tools appear in many im-
portant problems from theory to applications, such as mul-
tiobjective/vector optimization, network economics, and
financial equilibrium. In such situation it is very important
to understand behaviors of solutions of a VVI when the prob-
lem’s data vary. In other words, we need to know properties
of solutions of parametric VVIs when the parameters vary.
Therefore, one of the main topics is to investigate stability of
the solution mappings for parametric VVIs and vector equi-
librium problems (VEPs, for short). Usually, solution stability
investigations were devoted to upper and lower semicontinu-
ities, Lipschitz/Hölder continuity, and error bounds; see, for
example, [5–22].Our interest in this paper is to further discuss
the continuity (both upper and lower semicontinuities) of
solution mappings for parametric VVIs and error bounds for
weak VVIs in terms of the known regularized gap functions.

In the available literature on the subject of solution
semicontinuity for parametric VVIs and VEPs, there are

two phenomena that could be observed. On the one hand,
among many approaches dealing with the lower semicon-
tinuity and continuity of solution mappings for parametric
VVIs and VEPs, the scalarization method is of considerable
interest and effective (see [7, 8, 10–14, 19]). On the other
hand, most of the semicontinuity results were devoted to
the weak Pareto/efficient solutions of parametric VVIs and
VEPs, while there have been only few investigations on the
Pareto/efficient solutions of parametric VVIs and VEPs (see
[12–14]). Obviously, the latter ismore difficult, as the ordering
relations involved are neither closed nor open. Based on the
above observations, we would study the continuity (both
lower and upper semicontinuities) of Pareto/efficient solution
mappings for parametric VVIs via scalarization.

It is well known that the monotonicity of mappings
plays a vital role in the study of VVIs and VEPs, such as
solution existence and stability analysis. In particular, we
notice that almost all scalarization methods dealing with the
lower semicontinuity of parametric VVIs and VEPs share a
common feature: sufficient conditions are guaranteed under
strict monotonicity assumptions or some variants (see [7, 8,
11, 12, 14]). Recently,Wang andHuang [10] have discussed the
lower semicontinuity of the weak Pareto/efficient solutions to
a parametric vectormixed variational inequality under a kind
of strict pseudomonotonicity assumptions. To the best of our
knowledge, there was nearly no lower semicontinuity result
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for parametric VVIs and VEPs with strict pseudomonotone
mappings via scalarization in the literature. Therefore, we
will further study the continuity (both lower and upper
semicontinuities) of the Pareto/efficient solutionmapping for
a parametric VVI with a polyhedral constraint set discussed
in our previous work [12], within the framework of strict
pseudomonotonicity assumptions. The technique of proofs
is adopted by scalarization, based on the useful properties
proposed by Lee and Yen [23] and Lee et al. [24]. The results
obtained relax strict monotonicity assumptions used in [12]
to strict pseudomonotonicity ones. As a direct application,
the continuity of the solution mapping to a parametric weak
Minty VVI is also discussed.

Additionally, as we know, error bounds for VVIs and
VEPs have played important roles in stability analysis. Using
error bounds, one can obtain an upper estimate of the
distance between an arbitrary feasible point and the solution
set of VVIs or VEPs. Gap functions have turned out to
be very useful in deriving the error bounds (cf. [18, 20–
22]). About error bounds for VVIs and VEPs, there are
also two phenomena that should be noticed. On the one
hand, most of the error bound results were devoted to
scalar variational inequalities, while there still have been
only few investigations for VVIs and VEPs. On the other
hand, nearly all error bound results for VVIs and VEPs
are obtained under strong monotonicity assumptions (see
[20–22]). Whence, we would further deduce error bounds
for weak VVIs in terms of the known regularized gap
functions. Ourmodels are discussed within the framework of
strong pseudomonotonicity assumptions, which are properly
weaker than strong monotonicity ones used in most papers.
Thus, the conclusions obtained improve main results of [20–
22].

The rest of the paper is organized as follows. In Section 2,
we introduce the weak vector variational inequality (WVVI),
the parametric VVI problem (PVVI), and the parametric
weak Minty VVI problem (PWMVVI) and recall some
necessary concepts and properties. In particular, the concepts
of 𝜉-pseudomonotonicity, strict 𝜉-pseudomonotonicity, and
strong 𝜉-pseudomonotonicity are presented. In Section 3, we
discuss sufficient conditions that guarantee the continuity of
solution mappings 𝑆(⋅) for (PVVI) and 𝑆𝑤

𝑀
(⋅) for (PWMVVI)

by using scalarization approaches, under strict pseudomono-
tonicity assumptions. In Section 4, we deduce error bounds
for (WVVI) in terms of regularized gap functions 𝜙

𝛼
and

𝑔
𝛼
, under strong pseudomonotonicity assumptions. The last

section gives some concluding remarks.

2. Preliminaries

Let 𝐾 ⊂ R𝑛 be a nonempty, closed, and convex set. Let
𝐹
𝑖
: R𝑛 → R𝑛 (𝑖 = 1, . . . , 𝑝) be vector-valued functions.

For abbreviation we write 𝐹 fl (𝐹
1
, . . . , 𝐹

𝑝
) and 𝐹(𝑥)(V) fl

(⟨𝐹
1
(𝑥), V⟩, . . . , ⟨𝐹

𝑝
(𝑥), V⟩) for every 𝑥 ∈ 𝐾 and V ∈ R𝑛. The

scalar product and the Euclidean norm in an Euclidean space
are denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖, respectively. For a set 𝐴 in
an Euclidean space, int𝐴 and cl𝐴 denote the interior and
the closure of 𝐴, respectively. 𝐶 fl R

𝑝

+
is the nonnegative

orthant ofR𝑝. LetΛ andΩ be nonempty subsets of Euclidean

spaces, and set Δ fl {𝜉 = (𝜉
1
, . . . , 𝜉

𝑝
) ∈ R

𝑝

+
: ‖𝜉‖ = 1} and

Δ+ fl {𝜉 ∈ intR𝑝
+
: ‖𝜉‖ = 1}.

Consider the vector variational inequality (VVI) (resp.,
the weak vector variational inequality (WVVI)), which con-
sists in finding 𝑥 ∈ 𝐾 such that

𝐹 (𝑥) (𝑥 − 𝑥) ∉ −𝐶 \ {0R𝑝}

(resp., 𝐹 (𝑥) (𝑥 − 𝑥) ∉ − int𝐶) ,

∀𝑥 ∈ 𝐾.

(1)

The solution sets of (VVI) and (WVVI) are denoted by
sol(VVI) and sol(WVVI), respectively. The elements of the
first set (resp., the second set) are called the Pareto/efficient
solutions (resp., the weak Pareto/efficient solutions) of (VVI).

When the mapping 𝐹 is perturbed by the parameter
𝜇 ∈ Ω, we can consider the following parametric vector
variational inequality (PVVI) (resp., parametric weak vector
variational inequality (PWVVI)) of finding 𝑥 ∈ 𝐾 such that

𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ −𝐶 \ {0R𝑝}

(resp., 𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ − int𝐶) ,

∀𝑥 ∈ 𝐾,

(2)

where 𝐹
𝑖
: 𝐾 × Ω → R𝑛 (𝑖 = 1, . . . , 𝑝) are vector-valued

functions.
For each 𝜇 ∈ Ω, we denote the solution mappings of

(PVVI) and (PWVVI) by 𝑆(𝜇) and 𝑆𝑤(𝜇), respectively; that
is,

𝑆 (𝜇)

fl {𝑥 ∈ 𝐾 : 𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ −𝐶 \ {0R𝑝} , ∀𝑥 ∈ 𝐾} ,

𝑆
𝑤

(𝜇)

fl {𝑥 ∈ 𝐾 : 𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ − int𝐶, ∀𝑥 ∈ 𝐾} .

(3)

For every 𝜉 ∈ 𝐶 \ {0R𝑝}, we consider the variational
inequality (VI)

𝜉
of finding 𝑥 ∈ 𝐾 such that

⟨𝑓
𝜉
(𝑥) , 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾, (4)

where𝑓
𝜉
(𝑥) fl ∑

𝑝

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥), with the corresponding paramet-

ric variational inequality (PVI)
𝜉
of finding 𝑥 ∈ 𝐾 such that

⟨𝑓
𝜉
(𝑥, 𝜇) , 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾, (5)

where 𝑓
𝜉
(𝑥, 𝜇) fl ∑

𝑝

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥, 𝜇).

Denote the solution set of (VI)
𝜉
by sol(VI)

𝜉
and the

solution mapping of (PVI)
𝜉
by 𝑆
𝜉
(𝜇): that is,

𝑆
𝜉
(𝜇) fl {𝑥 ∈ 𝐾 : ⟨𝑓

𝜉
(𝑥, 𝜇) , 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾} . (6)

For 𝑖 = 1, . . . , 𝑝, we denote the variational inequality
associated with 𝐹

𝑖
as (VI)

𝑖
, that is, to find 𝑥 ∈ 𝐾 such that

⟨𝐹
𝑖
(𝑥) , 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (7)

The solution set of (VI)
𝑖
(𝑖 = 1, . . . , 𝑝) is denoted by sol(VI)

𝑖
.
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Lemma 1 (see [19, 23, 24]). It holds that

⋃
𝜉∈Δ
+

sol (VI)
𝜉
⊆ sol (VVI) ⊆ sol (WVVI)

= ⋃
𝜉∈Δ

sol (VI)
𝜉
.

(8)

And, sol(WVVI) is a closed set provided that 𝐹 is a continuous
mapping. If 𝐾 is a polyhedral convex set, that is, 𝐾 is the
intersection of finitely many closed half-spaces of R𝑛, then the
first inclusion in the above formula holds as equality.

Remark 2. Let Σ fl {𝜉 = (𝜉
1
, . . . , 𝜉

𝑝
) ∈ R

𝑝

+
: ∑

p
𝑖=1

𝜉
𝑖
= 1} be

the unit simplex in𝐶.The relative interior ofΣ is described by
the formula Σ+ fl {𝜉 ∈ intR𝑝

+
: ∑
𝑝

𝑖=1
𝜉
𝑖
= 1}. If we replace “Δ”

by “Σ” in Lemma 1, then the corresponding result still holds
(cf. [19, Theorem 2.1]).

Lemma 3 (see [24, 25]). Suppose that there exist 𝛼 > 0 such
that

⟨𝐹
𝑖
(𝑥


) − 𝐹
𝑖
(𝑥) , 𝑥



− 𝑥⟩ ≥ 𝛼
𝑥


− 𝑥

2

,

∀𝑥, 𝑥


∈ 𝐾, ∀𝑖 ∈ {1, . . . , 𝑝} ,

(9)

and 𝑙 > 0 such that
𝐹𝑖 (𝑥



) − 𝐹
𝑖
(𝑥)

 ≤ 𝑙
𝑥


− 𝑥
 ,

∀𝑥, 𝑥


∈ 𝐾, ∀𝑖 ∈ {1, . . . , 𝑝} .

(10)

Then the solution sets sol(VVI) and sol(WVVI) are nonempty
bounded and compact, respectively, and

⋃
𝜉∈Δ
+

sol (VI)
𝜉
⊆ sol (VVI) ⊆ sol (WVVI)

= ⋃
𝜉∈Δ

sol (VI)
𝜉
= cl⋃
𝜉∈Δ
+

sol (VI)
𝜉
.

(11)

Moreover, for every 𝜉 ∈ Δ, the variational inequality (VI)
𝜉
has

a unique solution in 𝐾.

Recalling from [26], we say that the function 𝐻 : R𝑛 →
R𝑛 is pseudomonotone on 𝐾 ⊂ R𝑛 iff

⟨𝐻 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐻 (𝑦) , 𝑦 − 𝑥⟩ ≥ 0,

∀𝑥, 𝑦 ∈ 𝐾.
(12)

It is called strictly pseudomonotone on 𝐾 iff

⟨𝐻 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐻 (𝑦) , 𝑦 − 𝑥⟩ > 0,

∀𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦.
(13)

It is called strongly pseudomonotone on 𝐾 iff there exists a
constant 𝑐 > 0 such that

⟨𝐻 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐻 (𝑦) , 𝑦 − 𝑥⟩ ≥ 𝑐
𝑥 − 𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐾.
(14)

Definition 4. The mapping 𝐹 fl (𝐹
1
, . . . , 𝐹

𝑝
) is said to be

𝜉-pseudomonotone (resp., strictly 𝜉-pseudomonotone and
strongly 𝜉-pseudomonotone) on 𝐾 iff ∀𝜉 = (𝜉

1
, . . . , 𝜉

𝑝
) ∈ Δ,

𝑓
𝜉
is pseudomonotone (resp., strictly pseudomonotone and

strongly pseudomonotone) on 𝐾.

Clearly, the strong 𝜉-pseudomonotonicity implies the
strict 𝜉-pseudomonotonicity, which, in turn, implies the
𝜉-pseudomonotonicity. Definition 4 is motivated by [10,
Definition 2.3] and [25, Definitions 1 and 2]. Similar to
[25], the vector variational inequality (VVI) is said to
be pseudomonotone (resp., strictly pseudomonotone and
strongly pseudomonotone) iff 𝐹 is 𝜉-pseudomonotone (resp.,
strictly 𝜉-pseudomonotone, strongly 𝜉-pseudomonotone) on
𝐾. Next, we give an example to illustrate Definition 4.

Example 5. Let 𝐾 = R2. Define 𝐹
1
, 𝐹
2

: 𝐾 → R2 as
𝐹
1
(𝑥) = (𝑥

1
− 1, 𝑥

2
) and 𝐹

2
(𝑥) = ((1/2)𝑥

1
, 𝑥
2
+ 1) for every

𝑥 = (𝑥
1
, 𝑥
2
) ∈ R2, respectively. For every 𝜉 = (𝜉

1
, 𝜉
2
) ∈ Δ and

𝑥 ∈ 𝐾,

𝑓
𝜉
(𝑥) =

2

∑
𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥)

= ((𝜉
1
+
𝜉
2

2
) 𝑥
1
− 𝜉
1
, (𝜉
1
+ 𝜉
2
) 𝑥
2
+ 𝜉
2
) .

(15)

Thus, we have that ∀𝑥 = (𝑥
1
, 𝑥
2
), 𝑥 = (𝑥

1
, 𝑥
2
) ∈ 𝐾,

⟨𝑓
𝜉
(𝑥


) − 𝑓
𝜉
(𝑥) , 𝑥



− 𝑥⟩

= (𝜉
1
+
𝜉
2

2
) (𝑥


1
− 𝑥
1
)
2

+ (𝜉
1
+ 𝜉
2
) (𝑥


2
− 𝑥
2
)
2

≥
𝜉
1
+ 𝜉
2

2
[(𝑥


1
− 𝑥
1
)
2

+ (𝑥


2
− 𝑥
2
)
2

]

=
𝜉
1
+ 𝜉
2

2

𝑥


− 𝑥

2

≥
𝜉2
1
+ 𝜉2
2

2

𝑥


− 𝑥

2

=
1

2

𝑥


− 𝑥

2

.

(16)

Hence, 𝐹 fl (𝐹
1
, 𝐹
2
) is strongly 𝜉-monotone on 𝐾

with modulus 𝑐 = 1/2. Clearly, a strongly 𝜉-monotone
mapping is strongly 𝜉-pseudomonotone. So, 𝐹 is strongly
𝜉-pseudomonotone on 𝐾, of course, it is strictly 𝜉-
pseudomonotone and 𝜉-pseudomonotone.

Remark 6. If 𝐹 is 𝜉-pseudomonotone (resp., strictly 𝜉-
pseudomonotone and strongly 𝜉-pseudomonotone) on 𝐾,
then it is obvious that, for every 𝑖 = 1, . . . , 𝑝, 𝐹

𝑖
is pseu-

domonotone (resp., strictly pseudomonotone and strongly
pseudomonotone) on 𝐾. However, the following examples
show the converses are not true.

Example 7. Let 𝐾 = [1, +∞[. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = −𝑥 and 𝐹

2
(𝑥) = 1, respectively. Clearly, 𝐹

1
, 𝐹
2
are

pseudomonotone on 𝐾. However, we can show that 𝐹 fl
(𝐹
1
, 𝐹
2
) is not 𝜉-pseudomonotone on 𝐾. For 𝜉 = (𝜉

1
, 𝜉
2
) ∈ Δ,
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𝑓
𝜉
(𝑥) = ∑

2

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥) = −𝜉

1
𝑥 + 𝜉

2
, ∀𝑥 ∈ 𝐾. Take 𝜉 =

(1/2, √3/2) ∈ Δ and 𝑥
1
= 1, 𝑥

2
= 2 in 𝐾. Then ⟨𝑓

𝜉
(𝑥
1
), 𝑥
2
−

𝑥
1
⟩ = (−1/2 + √3/2) ⋅ 1 = (√3 − 1)/2 > 0, but ⟨𝑓

𝜉
(𝑥
2
), 𝑥
2
−

𝑥
1
⟩ = (−1 +√3/2) ⋅ 1 = (√3 − 2)/2 < 0, which implies that 𝐹

is not 𝜉-pseudomonotone on𝐾.

Example 8. Let 𝐾 = [−1, 1]. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = |𝑥| + 1 and 𝐹

2
(𝑥) = −1, respectively. Clearly, 𝐹

1
, 𝐹
2

are strictly pseudomonotone on 𝐾. However, we can show
that 𝐹 fl (𝐹

1
, 𝐹
2
) is not strictly 𝜉-pseudomonotone on𝐾. For

𝜉 = (𝜉
1
, 𝜉
2
) ∈ Δ, 𝑓

𝜉
(𝑥) = 𝜉

1
|𝑥| + 𝜉

1
− 𝜉
2
, ∀𝑥 ∈ 𝐾. Take 𝜉 =

(√2/2, √2/2) ∈ Δ and distinct points 𝑥
1
= −1, 𝑥

2
= 0 in 𝐾.

Then ⟨𝑓
𝜉
(𝑥
1
), 𝑥
2
−𝑥
1
⟩ = √2/2 > 0, but ⟨𝑓

𝜉
(𝑥
2
), 𝑥
2
−𝑥
1
⟩ = 0,

which implies that 𝐹 is not strictly 𝜉-pseudomonotone on𝐾.

Example 9. Let 𝐾 = [1, 2]. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = 𝑥 and 𝐹

2
(𝑥) = −𝑥, respectively. It is easy to see that

𝐹
1
, 𝐹
2
are strongly pseudomonotone on 𝐾 with constants 1,

respectively. Taking 𝐹
1
, for example, ∀𝑥, 𝑦 ∈ 𝐾, if ⟨𝐹

1
(𝑥), 𝑦 −

𝑥⟩ = 𝑥(𝑦 − 𝑥) ≥ 0, we have 𝑦 − 𝑥 ≥ 0. Noting that |𝑥 − 𝑦| ≤ 1
for all 𝑥, 𝑦 ∈ 𝐾, then, we deduce that ⟨𝐹

1
(𝑦), 𝑦 − 𝑥⟩ =

𝑦(𝑦 − 𝑥) ≥ 𝑦 − 𝑥 = |𝑥 − 𝑦| ≥ |𝑥 − 𝑦|2. For 𝜉 = (𝜉
1
, 𝜉
2
) ∈ Δ,

𝑓
𝜉
(𝑥) = (𝜉

1
− 𝜉
2
)𝑥, ∀𝑥 ∈ 𝐾. Take 𝜉 = (√2/2,√2/2) ∈ Δ

and distinct points 𝑥
1
, 𝑥
2
in 𝐾. Then ⟨𝑓

𝜉
(𝑥
1
), 𝑥
2
− 𝑥
1
⟩ = 0,

but ⟨𝑓
𝜉
(𝑥
2
), 𝑥
2
− 𝑥
1
⟩ = 0 < 𝑐|𝑥

1
− 𝑥
2
|2 for any 𝑐 > 0, which

implies that 𝐹 is not strongly 𝜉-pseudomonotone on𝐾.

Remark 10. If we use “Σ” to replace “Δ” in Definition 4,
then analogous concepts can be introduced, and similar
discussions hold as above.

Associated with (WVVI), we consider the following weak
Minty vector variational inequality (WMVVI) of finding 𝑥 ∈
𝐾 such that

𝐹 (𝑥) (𝑥 − 𝑥) ∉ int𝐶, ∀𝑥 ∈ 𝐾. (17)

When 𝐹 is perturbed by the parameter 𝜇 ∈ Ω, we consider
the parametric weak Minty vector variational inequality
(PWMVVI) of finding 𝑥 ∈ 𝐾 such that

𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ int C, ∀𝑥 ∈ 𝐾. (18)

The solution set of (WMVVI) is denoted as sol(WMVVI),
and the solution mapping of (PWMVVI) is denoted by
𝑆𝑤
𝑀
(𝜇): that is,

𝑆
𝑤

𝑀
(𝜇)

fl {𝑥 ∈ 𝐾 : 𝐹 (𝑥, 𝜇) (𝑥 − 𝑥) ∉ int𝐶, ∀𝑥 ∈ 𝐾} .
(19)

The following result is a direct corollary deduced from
[27, Theorem 4.2] and Lemma 1.

Lemma 11. If each 𝐹
𝑖
: 𝐾 → R𝑛 (𝑖 = 1, . . . , 𝑝) is continuous

and pseudomonotone, then

sol (WMVVI) = sol (WVVI) = ⋃
𝜉∈Δ

sol (VI)
𝜉
. (20)

Inwhat follows, the notation𝐵(𝜆, 𝛿) denotes the open ball
with center 𝜆 ∈ Λ and radius 𝛿 > 0.

Definition 12 (see [28]). Let 𝐺 : Λ  R𝑛 be a set-valued
mapping and let 𝜆 ∈ Λ be given.

(i) 𝐺 is called lower semicontinuous (l.s.c) at 𝜆 iff for any
open set 𝑉 satisfying 𝑉 ∩ 𝐺(𝜆) ̸= 0, there exists 𝛿 > 0

such that, for every 𝜆 ∈ 𝐵(𝜆, 𝛿), 𝑉 ∩ 𝐺(𝜆) ̸= 0.
(ii) 𝐺 is called upper semicontinuous (u.s.c) at 𝜆 iff for

any open set𝑉 satisfying 𝐺(𝜆) ⊆ 𝑉, there exists 𝛿 > 0

such that, for every 𝜆 ∈ 𝐵(𝜆, 𝛿), 𝐺(𝜆) ⊆ 𝑉.
We say 𝐺 is l.s.c (resp., u.s.c) on Λ, iff it is l.s.c (resp., u.s.c) at
each 𝜆 ∈ Λ. 𝐺 is said to be continuous on Λ iff it is both l.s.c
and u.s.c on Λ.

Remark that 𝐺 is l.s.c at 𝜆 iff for any sequence {𝜆
𝑛
} ⊂ Λ

with 𝜆
𝑛
→ 𝜆 and any 𝑥 ∈ 𝐺(𝜆), there exists a sequence 𝑥

𝑛
∈

𝐺(𝜆
𝑛
) such that 𝑥

𝑛
→ 𝑥.

If𝐺has compact values (i.e.,𝐺(𝜆) is a compact set for each
𝜆 ∈ Λ), then𝐺 is u.s.c at 𝜆 iff for any sequences {𝜆

𝑛
} ⊂ Λwith

𝜆
𝑛
→ 𝜆 and {𝑥

𝑛
} with 𝑥

𝑛
∈ 𝐺(𝜆

𝑛
), there exist 𝑥 ∈ 𝐺(𝜆) and

a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
}, such that 𝑥

𝑛𝑘
→ 𝑥.

The following lemma plays an important role in the proof
of the lower semicontinuity of the solutionmappings 𝑆(⋅) and
𝑆𝑤
𝑀
(⋅).

Lemma 13 (see [28, page 114]). The union Γ = ⋃
𝑖∈𝐼

Γ
𝑖
of a

family of l.s.c set-valued mappings Γ
𝑖
from a topological space

𝑋 into a topological space 𝑌 is also an l.s.c set-valued mapping
from𝑋 into 𝑌, where 𝐼 is an index set.

3. Continuity Results

Throughout this section, we make the following assumption
(A): ∀𝜇 ∈ Ω, 𝑆(𝜇) is nonempty and bounded; {𝜉 ∈ Δ+ :
𝑆
𝜉
(𝜇) ̸= 0} = Δ+: that is, ∀𝜉 ∈ Δ+, 𝑆

𝜉
(𝜇) ̸= 0.

For example, based on Lemma 3, assumption (A) is
fulfilled if there exist constants 𝛼 > 0 and 𝑙 > 0 such that
∀𝜇, 𝜇 ∈ Ω,

⟨𝐹
𝑖
(𝑥


, 𝜇) − 𝐹
𝑖
(𝑥, 𝜇) , 𝑥



− 𝑥⟩ ≥ 𝛼
𝑥


− 𝑥

2

,

∀𝑥, 𝑥


∈ 𝐾, ∀𝑖 ∈ {1, . . . , 𝑝} ,

𝐹𝑖 (𝑥


, 𝜇


) − 𝐹
𝑖
(𝑥, 𝜇)

 ≤ 𝑙 (
𝑥


− 𝑥
 +

𝜇


− 𝜇
) ,

∀𝑥, 𝑥


∈ 𝐾, ∀𝑖 ∈ {1, . . . , 𝑝} .

(21)

Assumption (A) is also fulfilled if 𝐾 is a compact convex set
and for any 𝜇 ∈ Ω, 𝐹

𝑖
(⋅, 𝜇), 𝑖 = 1, . . . , 𝑝, are continuous on 𝐾

(see [24, Theorem 2.2]).
Now we study the lower semicontinuity of 𝑆(⋅) with

a strictly 𝜉-pseudomonotone mapping 𝐹, but not strictly
monotone functions𝐹

𝑖
, 𝑖 = 1, . . . , 𝑝.The latterwas considered

in our previous work [12].
If 𝐹
𝑖
: 𝐾 → R𝑛, 𝑖 = 1, . . . , 𝑝, are strictly monotone on

𝐾, that is, ⟨𝐹
𝑖
(𝑥) − 𝐹

𝑖
(𝑥), 𝑥 − 𝑥⟩ > 0, ∀𝑥, 𝑥 ∈ 𝐾, 𝑥 ̸= 𝑥,



Journal of Function Spaces 5

𝑖 = 1, . . . , 𝑝, then it is clear that ∀𝜉 = (𝜉
1
, . . . , 𝜉

𝑝
) ∈ Δ, 𝐹 fl

(𝐹
1
, . . . , 𝐹

𝑝
) is strictly 𝜉-monotone on 𝐾; that is,

⟨𝑓
𝜉
(𝑥


) − 𝑓
𝜉
(𝑥) , 𝑥



− 𝑥⟩

=

𝑝

∑
𝑖=1

𝜉
𝑖
⟨𝐹
𝑖
(𝑥


) − 𝐹
𝑖
(𝑥) , 𝑥



− 𝑥⟩ > 0,

∀𝑥, 𝑥


∈ 𝐾, 𝑥 ̸= 𝑥


.

(22)

Obviously, it implies that 𝐹 is strictly 𝜉-pseudomonotone on
𝐾. However, the following example shows that the converse
is not true. That is, the strict 𝜉-pseudomonotonicity of 𝐹
is properly weaker than the strict monotonicity of 𝐹

𝑖
(𝑖 ∈

{1, . . . , 𝑝}).

Example 14. Let 𝐾 = [1, +∞[. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = 𝑥 and 𝐹

2
(𝑥) = 1, respectively. For 𝜉 = (𝜉

1
, 𝜉
2
) ∈ Δ,

𝑓
𝜉
(𝑥) = ∑

2

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥) = 𝜉

1
𝑥 + 𝜉

2
, ∀𝑥 ∈ 𝐾. We show that

𝐹 fl (𝐹
1
, 𝐹
2
) is strictly 𝜉-pseudomonotone on 𝐾. For any

𝜉 = (𝜉
1
, 𝜉
2
) ∈ Δ and 𝑥

1
, 𝑥
2
∈ 𝐾, 𝑥

1
̸= 𝑥
2
, suppose that

⟨𝑓
𝜉
(𝑥
1
), 𝑥
2
− 𝑥
1
⟩ = (𝜉

1
𝑥
1
+ 𝜉
2
)(𝑥
2
− 𝑥
1
) ≥ 0. As 𝜉

1
𝑥
1
+ 𝜉
2
> 0

and 𝑥
1

̸= 𝑥
2
, we have 𝑥

2
− 𝑥
1
> 0. Thus, ⟨𝑓

𝜉
(𝑥
2
), 𝑥
2
− 𝑥
1
⟩ =

(𝜉
1
𝑥
2
+ 𝜉
2
)(𝑥
2
− 𝑥
1
) > 0, because 𝜉

1
𝑥
2
+ 𝜉
2
> 0. Hence,

𝐹 is strictly 𝜉-pseudomonotone on 𝐾. However, 𝐹
1
, 𝐹
2
are

not both strictly monotone on 𝐾. It is clear that 𝐹
2
is not

strictly monotone on𝐾, since ⟨𝐹
2
(𝑥
2
) − 𝐹
2
(𝑥
1
), 𝑥
2
− 𝑥
1
⟩ = 0,

∀𝑥
1
, 𝑥
2
∈ 𝐾, 𝑥

1
̸= 𝑥
2
. Moreover, 𝐹 is also not strictly 𝜉-

monotone on 𝐾. In fact, taking 𝜉 = (0, 1) ∈ Δ and 𝑥
1

̸= 𝑥
2
in

𝐾, we get ⟨𝑓
𝜉
(𝑥
2
) − 𝑓
𝜉
(𝑥
1
), 𝑥
2
− 𝑥
1
⟩ = 𝜉
1
(𝑥
2
− 𝑥
1
)2 = 0.

Lemma 15. Let 𝜉 ∈ Δ+. Suppose that assumption (𝐴) holds
and the following conditions are satisfied:

(i) 𝐹
𝑖
(⋅, ⋅), 𝑖 = 1, . . . , 𝑝, are continuous on 𝐾 × Ω, where

𝐾 ⊂ R𝑛 is a nonempty, closed, and convex set.

(ii) For any 𝜇 ∈ Ω, 𝐹(⋅, 𝜇) is strictly 𝜉-pseudomonotone on
𝐾: that is,

⟨𝑓
𝜉
(𝑥, 𝜇) , 𝑥



− 𝑥⟩ ≥ 0 ⇒ ⟨𝑓
𝜉
(𝑥


, 𝜇) , 𝑥


− 𝑥⟩ > 0,

∀𝑥, 𝑥


∈ 𝐾, 𝑥 ̸= 𝑥


.

(23)

Then, 𝑆
𝜉
(⋅) is l.s.c onΩ.

Proof. Suppose to the contrary that there exists 𝜇
0
∈ Ω such

that 𝑆
𝜉
(⋅) is not l.s.c at 𝜇

0
. Then there exist {𝜇

𝑛
}with 𝜇

𝑛
→ 𝜇
0

and 𝑥
0
∈ 𝑆
𝜉
(𝜇
0
), such that, for any 𝑥

𝑛
∈ 𝑆
𝜉
(𝜇
𝑛
), 𝑥
𝑛
 𝑥
0
.

Since 𝑥
0
∈ 𝐾 and𝐾 ⊂ R𝑛 is a closed set, there exists 𝑥

𝑛
∈

𝐾 such that 𝑥
𝑛
→ 𝑥
0
. Fix any 𝑦

𝑛
∈ 𝑆
𝜉
(𝜇
𝑛
). From Lemma 1,

𝑆
𝜉
(𝜇
𝑛
) ⊆ 𝑆(𝜇

𝑛
). Hence, the sequence {𝑦

𝑛
} ⊂ 𝐾 is bounded by

the boundedness of 𝑆(𝜇
𝑛
). Without loss of generality, we can

assume that there is a 𝑦
0
∈ R𝑛 such that 𝑦

𝑛
→ 𝑦
0
. As the set

𝐾 is closed, 𝑦
0
∈ 𝐾. It follows from 𝑥

0
∈ 𝑆
𝜉
(𝜇
0
) and 𝑦

0
∈ 𝐾

that

⟨𝑓
𝜉
(𝑥
0
, 𝜇
0
) , 𝑦
0
− 𝑥
0
⟩ ≥ 0. (24)

Moreover, since 𝑦
𝑛

∈ 𝑆
𝜉
(𝜇
𝑛
) and 𝑥

𝑛
∈ 𝐾, we get

⟨𝑓
𝜉
(𝑦
𝑛
, 𝜇
𝑛
), 𝑥
𝑛
−𝑦
𝑛
⟩ ≥ 0. By the continuity of𝐹

𝑖
(𝑖 = 1, . . . , 𝑝),

taking limit on above inequality, we get that

⟨𝑓
𝜉
(𝑦
0
, 𝜇
0
) , 𝑥
0
− 𝑦
0
⟩ ≥ 0. (25)

Assume that 𝑦
0

̸= 𝑥
0
. Then by the strict

𝜉-pseudomonotonicity of 𝐹 and (24), we have
⟨𝑓
𝜉
(𝑦
0
, 𝜇
0
), 𝑥
0
− 𝑦
0
⟩ < 0, which contradicts (25). Therefore,

𝑦
0
= 𝑥
0
. This is impossible by the wrong assumption. The

proof is complete.

Theorem 16. Suppose that all conditions of Lemma 15 are
satisfied and 𝐾 is a polyhedral convex set. Then 𝑆(⋅) is
continuous on Ω.

Proof. “l.s.c”: Since 𝐾 is a polyhedral convex set, by virtue of
Lemma 1, for each 𝜇 ∈ Ω,

𝑆 (𝜇) = ⋃
𝜉∈Δ
+

𝑆
𝜉
(𝜇) . (26)

It follows from Lemma 15 that, for each 𝜉 ∈ Δ+, 𝑆
𝜉
(⋅) is l.s.c

onΩ.Thus, in view of Lemma 13, we immediately obtain that
𝑆(⋅) is l.s.c onΩ.

“u.s.c”:We prove that 𝑆(⋅) is u.s.c onΩ. Suppose that there
exists some 𝜇

0
∈ Ω such that 𝑆(⋅) is not u.s.c at 𝜇

0
. Then there

exist an open set𝑉 satisfying 𝑆(𝜇
0
) ⊆ 𝑉 and sequences 𝜇

𝑛
→

𝜇
0
and 𝑥

𝑛
∈ 𝑆(𝜇
𝑛
), such that 𝑥

𝑛
∉ 𝑉, ∀𝑛.

Notice that because the strict 𝜉-pseudomonotonicity of 𝐹
is imposed, it is easy to verify that, for every 𝜉 ∈ Δ+ and𝜇 ∈ Ω,
𝑆
𝜉
(𝜇) is a singleton; namely, 𝑆

𝜉
(⋅) is single-valued.

By Lemma 1, 𝑥
𝑛
∈ 𝑆(𝜇
𝑛
) = ⋃

𝜉∈Δ
+ 𝑆
𝜉
(𝜇
𝑛
); thus, there exists

𝜉 ∈ Δ+ such that {𝑥
𝑛
} = 𝑆

𝜉
(𝜇
𝑛
). Let {𝑥

0
} = 𝑆

𝜉
(𝜇
0
). Since

𝑆
𝜉
(⋅) is single-valued, so it is continuous at 𝜇

0
by Lemma 15;

thus, 𝑥
𝑛
→ 𝑥
0
. Note that 𝑥

0
∈ ⋃
𝜉∈Δ
+ 𝑆
𝜉
(𝜇
0
) = 𝑆(𝜇

0
) ⊆ 𝑉.

It follows from 𝑥
𝑛
∉ 𝑉 and the openness of 𝑉 that 𝑥

0
∉ 𝑉,

which yields a contradiction.Thus, we have proved the upper
semicontinuity of 𝑆(⋅).

Remark 17. Theorem 16 improves [12,Theorem 3.2], by weak-
ening the strict monotonicity of 𝐹

𝑖
(𝑖 ∈ {1, . . . , 𝑝}) to the strict

𝜉-pseudomonotonicity of 𝐹.

Example 18. Let 𝐾 = Ω = [1, 2]. Define 𝐹
1
, 𝐹
2
: 𝐾 × Ω → R

as 𝐹
1
(𝑥, 𝜇) = 𝜇𝑥 and 𝐹

2
(𝑥, 𝜇) = 𝜇, respectively. Clearly, all

conditions of Theorem 16 are satisfied (cf. Example 14), and
hence it derives the continuity of the solution mapping 𝑆 (in
fact, 𝑆(𝜇) = {1}, ∀𝜇 ∈ Ω). However, Theorem 3.2 of [12] is
not applicable, because the strict monotonicity of 𝐹

2
(⋅, 𝜇) is

violated.

We further give an example to illustrate Theorem 16
when 𝑆 is set-valued. Based on the union property 𝑆(𝜇) =
⋃
𝜉∈Δ
+ 𝑆
𝜉
(𝜇), for any 𝜇 ∈ Ω, 𝑆(𝜇) in Theorem 16 need

not be a singleton in general, although for each 𝜉 ∈ Δ+

the problem (PVI)
𝜉
has a unique solution by the strict 𝜉-

pseudomonotonicity of 𝐹. This is because as we change the
parameter 𝜉 the solution of (PVI)

𝜉
changes as well and all

these solutions are in fact solutions of (PVVI).
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Example 19. Let 𝐾 = [0, 1] and Ω = [1, 2]. Define 𝐹
1
, 𝐹
2
:

𝐾×Ω → R as 𝐹
1
(𝑥, 𝜇) = 𝜇𝑥 and 𝐹

2
(𝑥, 𝜇) = −𝜇, respectively.

For 𝜉 = (𝜉
1
, 𝜉
2
) ∈ Δ+, 𝑓

𝜉
(𝑥, 𝜇) = ∑

2

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥, 𝜇) = (𝜉

1
𝑥 − 𝜉
2
)𝜇,

∀𝑥 ∈ 𝐾, 𝜇 ∈ Ω. It is easy to check that ∀𝜉 ∈ Δ+, 𝑥, 𝑥 ∈

𝐾, 𝑥 ̸= 𝑥, ⟨𝑓
𝜉
(𝑥, 𝜇) − 𝑓

𝜉
(𝑥, 𝜇), 𝑥 − 𝑥⟩ = 𝜉

1
𝜇(𝑥 − 𝑥)2 > 0,

which implies that condition (ii) of Lemma 15 holds.Thus, all
conditions of Theorem 16 are satisfied. Direct computations
show that ∀𝜉 ∈ Δ+, 𝜇 ∈ Ω,

𝑆
𝜉
(𝜇) =

{
{
{

{
𝜉
2

𝜉
1

} , if 𝜉
2
≤ 𝜉
1
,

{1} , if 𝜉
2
> 𝜉
1
,

𝑆 (𝜇) = ]0, 1] .

(27)

Clearly, 𝑆(𝜇) = ⋃
𝜉∈Δ
+ 𝑆
𝜉
(𝜇) and 𝑆(⋅) is continuous onΩ.

In Lemma 15, the strict 𝜉-pseudomonotonicity condition
is strict that the solution set 𝑆

𝜉
(𝜇) is confined to be a

singleton. In this paper, like done in our previous work [12],
we introduce the following assumption (ii) of Lemma 20 to
weaken this condition. In the case, the solution set 𝑆

𝜉
(𝜇)

may be a general set but not a singleton; that is, the solution
mapping 𝑆

𝜉
(⋅) is set-valued in general.

Lemma 20. Let 𝜉 ∈ Δ+. Suppose that assumption (𝐴) holds
and the following conditions are satisfied:

(i) 𝐹
𝑖
(⋅, ⋅), 𝑖 = 1, . . . , 𝑝, are continuous on 𝐾 × Ω, where

𝐾 ⊂ R𝑛 is a nonempty, closed, and convex set.
(ii) There exists a constant 𝛼 > 0 such that for each 𝜇 ∈ Ω

and 𝑥 ∈ 𝐾 \ 𝑆
𝜉
(𝜇), there exists 𝑦 ∈ 𝑆

𝜉
(𝜇) satisfying

⟨𝐹
𝑖
(𝑥, 𝜇), 𝑦 − 𝑥⟩ ≤ −𝛼‖𝑥 − 𝑦‖2, 𝑖 = 1, . . . , 𝑝.

Then, 𝑆
𝜉
(⋅) is l.s.c onΩ.

Proof. Suppose to the contrary that there exists 𝜇
0
∈ Ω such

that 𝑆
𝜉
(⋅) is not l.s.c at 𝜇

0
. Then there exist {𝜇

𝑛
}with 𝜇

𝑛
→ 𝜇
0

and 𝑥
0
∈ 𝑆
𝜉
(𝜇
0
), such that, for any 𝑥

𝑛
∈ 𝑆
𝜉
(𝜇
𝑛
), 𝑥
𝑛
 𝑥
0
.

Since 𝑥
0
∈ 𝐾 and𝐾 ⊂ R𝑛 is a closed set, there exists 𝑥

𝑛
∈

𝐾 such that 𝑥
𝑛
→ 𝑥
0
. Whence, it is clear that 𝑥

𝑛
∈ 𝐾\𝑆

𝜉
(𝜇
𝑛
).

Thus, by assumption (ii), there exists 𝑦
𝑛
∈ 𝑆
𝜉
(𝜇
𝑛
) such that

⟨𝑓
𝜉
(𝑥
𝑛
, 𝜇
𝑛
) , 𝑦
𝑛
− 𝑥
𝑛
⟩ =

𝑝

∑
𝑖=1

𝜉
𝑖
⟨𝐹
𝑖
(𝑥
𝑛
, 𝜇
𝑛
) , 𝑦
𝑛
− 𝑥
𝑛
⟩

≤ −(

𝑝

∑
𝑖=1

𝜉
𝑖
)𝛼

𝑦𝑛 − 𝑥𝑛

2

≤ −(

𝑝

∑
𝑖=1

𝜉
2

𝑖
)𝛼

𝑦𝑛 − 𝑥𝑛

2

= −𝛼
𝑦𝑛 − 𝑥𝑛


2

.

(28)

Similarly as in the proof of Lemma 15, the sequence {𝑦
𝑛
} is

bounded; thus, without loss of generality, we can assume that
𝑦
𝑛
→ 𝑦
0
. As the set 𝐾 is closed, 𝑦

0
∈ 𝐾. Taking the limit as

𝑛 → ∞ in above inequality, we have

⟨𝑓
𝜉
(𝑥
0
, 𝜇
0
) , 𝑦
0
− 𝑥
0
⟩ ≤ −𝛼

𝑦0 − 𝑥0

2

. (29)

Now we claim that 𝑦
0

= 𝑥
0
. Otherwise, by (29), we

obtain that ⟨𝑓
𝜉
(𝑥
0
, 𝜇
0
), 𝑦
0
− 𝑥
0
⟩ < 0, which contradicts

(24), because 𝑥
0
∈ 𝑆
𝜉
(𝜇
0
) and 𝑦

0
∈ 𝐾. Hence, 𝑦

0
= 𝑥
0
.

However, it is impossible by the wrong assumption.The proof
is complete.

Remark 21. Condition (ii) of Lemma 20 is a modification of
the strong pseudomonotonicity of 𝐹

𝑖
, which may be called

the partially strong pseudomonotonicity of 𝐹
𝑖
, because our

assumption is not imposed on all 𝑥, 𝑦 ∈ 𝐾. In addition, if
“⟨𝐹
𝑖
(𝑥, 𝜇), 𝑦 − 𝑥⟩ ≤ −𝛼‖𝑥 − 𝑦‖2, 𝑖 = 1, . . . , 𝑝” is replaced

by “⟨𝑓
𝜉
(𝑥, 𝜇), 𝑦 − 𝑥⟩ ≤ −𝛼‖𝑥 − 𝑦‖2”, then the conclusion of

Lemma 20 still holds. Whence, condition (ii) of Lemma 20 is
also from amodification of the strong 𝜉-pseudomonotonicity
of 𝐹. We notice that this kind of monotonicity has been
used to deal with solution stability (e.g., Hölder continuity,
error bound) of vector variational inequalities and vector
equilibriumproblems; see, for example, [17,Theorem 3.1] and
[18, Theorem 4.2].

We give the following trivial example to illustrate
Lemma 20, where 𝑆

𝜉
is set-valued.

Example 22. Let𝐾 = {0}×[0, 1] andΩ = [1, 2]. Define𝐹
1
, 𝐹
2
:

𝐾×Ω → R2 as𝐹
1
(𝑥, 𝜇) = (𝜇𝑥

2
, 0) and𝐹

2
(𝑥, 𝜇) = (𝜇𝑥2

2
, 0) for

every 𝑥 = (𝑥
1
, 𝑥
2
) ∈ R2, respectively. For 𝜉 = (𝜉

1
, 𝜉
2
) ∈ Δ+,

𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐾 and 𝜇 ∈ Ω, 𝑓

𝜉
(𝑥, 𝜇) = ∑

2

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥, 𝜇) =

(𝜇𝑥
2
(𝜉
1
+ 𝜉
2
𝑥
2
), 0). By a direct calculation, we obtain that

𝑆
𝜉
(𝜇) = {0} × [0, 1] = 𝐾, ∀𝜉 ∈ Δ+, 𝜇 ∈ Ω. Thus, the partially

strong pseudomonotonicity of 𝐹
𝑖
(𝑖 = 1, 2) holds trivially,

as 𝐾 \ 𝑆
𝜉
(𝜇) = 0. Whence, all conditions of Lemma 20 are

satisfied, and hence it derives the lower semicontinuity of the
set-valued solution mapping 𝑆

𝜉
.

Theorem 23. Suppose that all conditions of Lemma 20 are
satisfied and 𝐾 is a polyhedral convex set. Then 𝑆(⋅) is
continuous on Ω.

Proof. “l.s.c”: By virtue of Lemmas 1, 13, and 20, the lower
semicontinuity is valid.

“u.s.c”:We prove that 𝑆(⋅) is u.s.c onΩ. Suppose that there
exists some 𝜇

0
∈ Ω such that 𝑆(⋅) is not u.s.c at 𝜇

0
. Then there

exist an open set𝑉 satisfying 𝑆(𝜇
0
) ⊆ 𝑉 and sequences 𝜇

𝑛
→

𝜇
0
and 𝑥

𝑛
∈ 𝑆(𝜇
𝑛
), such that 𝑥

𝑛
∉ 𝑉, ∀𝑛.

It is easy to check that, for every 𝜉 ∈ Δ+ and 𝜇 ∈ Ω,
because of the closedness of𝐾 and the continuity of 𝐹

𝑖
, 𝑆
𝜉
(𝜇)

is a closed set in R𝑛. On the other hand, 𝑆
𝜉
(𝜇) ⊆ 𝑆(𝜇)

together with the boundedness of 𝑆(𝜇) yields that 𝑆
𝜉
(𝜇) is also

a bounded set inR𝑛. Thus, for every 𝜉 ∈ Δ+ and 𝜇 ∈ Ω, 𝑆
𝜉
(𝜇)

is a compact set in R𝑛.
By Lemma 1, 𝑥

𝑛
∈ 𝑆(𝜇
𝑛
) = ⋃

𝜉∈Δ
+ 𝑆
𝜉
(𝜇
𝑛
); thus, there exists

𝜉 ∈ Δ+ such that 𝑥
𝑛
∈ 𝑆
𝜉
(𝜇
𝑛
). It follows from [12, Lemma

3.3] that 𝑆
𝜉
(⋅) is u.s.c at 𝜇

0
with compact values. Whence, for

{𝜇
𝑛
} and {𝑥

𝑛
}, there exist 𝑥

0
∈ 𝑆
𝜉
(𝜇
0
) and a subsequence {𝑥

𝑛𝑘
}

of {𝑥
𝑛
} such that 𝑥

𝑛𝑘
→ 𝑥
0
. Note that 𝑥

0
∈ ⋃
𝜉∈Δ
+ 𝑆
𝜉
(𝜇
0
) =

𝑆(𝜇
0
) ⊆ 𝑉. It follows from 𝑥

𝑛𝑘
∉ 𝑉 and the openness of𝑉 that

𝑥
0
∉ 𝑉, which yields a contradiction. Thus, we have proved

the upper semicontinuity of 𝑆(⋅).
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Remark 24. Theorem 23 modifies [12, Theorem 3.5], by
changing the partially strong monotonicity of 𝐹

𝑖
(𝑖 ∈

{1, . . . , 𝑝}) to the partially strong pseudomonotonicity of 𝐹
𝑖
.

Example 25. Consider Example 18. To illustrate that
Theorem 23 is valid, we only need to verify condition (ii)
of Lemma 20. It is clear that 𝑆

𝜉
(𝜇) = {1}, ∀𝜉 ∈ Δ+, 𝜇 ∈ Ω.

Choose 𝛼 = 1. For any 𝜇 ∈ Ω = [1, 2] and 𝑥 ∈ 𝐾 \ 𝑆
𝜉
(𝜇) =

]1, 2], taking 𝑦 = 1 ∈ 𝑆
𝜉
(𝜇), we get that

⟨𝐹
1
(𝑥, 𝜇) , 𝑦 − 𝑥⟩ + 𝛼

𝑥 − 𝑦

2

= 𝜇𝑥 (1 − 𝑥) + |𝑥 − 1|
2

= − (𝑥 − 1) [(𝜇 − 1) 𝑥 + 1]

< 0,

⟨𝐹
2
(𝑥, 𝜇) , 𝑦 − 𝑥⟩ + 𝛼

𝑥 − 𝑦

2

= 𝜇 (1 − 𝑥) + |𝑥 − 1|
2

= − (𝑥 − 1) (𝜇 + 1 − 𝑥) ≤ 0.

(30)

That is, condition (ii) of Lemma 20 holds. Hence, all condi-
tions of Theorem 23 hold and it is valid. However, Theorem
3.5 of [12] is not applicable, because the partially strong
monotonicity of 𝐹

2
(⋅, 𝜇) is violated. In fact, for every 𝛼 > 0

and 𝜇 ∈ Ω, 𝑥 ∈ 𝐾\𝑆
𝜉
(𝜇) = ]1, 2], taking any 𝑦 ∈ 𝑆

𝜉
(𝜇) = {1},

we have ⟨𝐹
2
(𝑦, 𝜇)−𝐹

2
(𝑥, 𝜇), 𝑦−𝑥⟩ = 0(𝑦−𝑥) = 0 < 𝛼|𝑦−𝑥|2.

In the sequel, we will show an application to the para-
metric weakMinty vector variational inequality (PWMVVI).
Similarly, we make the following assumption (A): ∀𝜇 ∈ Ω,
𝑆𝑤
𝑀
(𝜇) is nonempty and bounded; {𝜉 ∈ Δ : 𝑆

𝜉
(𝜇) ̸= 0} = Δ;

that is, ∀𝜉 ∈ Δ, 𝑆
𝜉
(𝜇) ̸= 0.

Theorem 26. Suppose that assumption (𝐴) holds and the
following conditions are satisfied:

(i) 𝐹
𝑖
(⋅, ⋅), 𝑖 = 1, . . . , 𝑝, are continuous on 𝐾 × Ω, where

𝐾 ⊂ R𝑛 is a nonempty, closed, and convex set.
(ii) For any 𝜇 ∈ Ω, 𝐹(⋅, 𝜇) is strictly 𝜉-pseudomonotone on

𝐾; that is, ∀𝜉 ∈ Δ,

⟨𝑓
𝜉
(𝑥, 𝜇) , 𝑥



− 𝑥⟩ ≥ 0 ⇒ ⟨𝑓
𝜉
(𝑥


, 𝜇) , 𝑥


− 𝑥⟩ > 0,

∀𝑥, 𝑥


∈ 𝐾, 𝑥 ̸= 𝑥


.

(31)

Then, 𝑆𝑤
𝑀
(⋅) is continuous on Ω.

Proof. “l.s.c”: Since for any 𝜇 ∈ Ω, 𝐹(⋅, 𝜇) is strictly 𝜉-
pseudomonotone on 𝐾, it is clear that 𝐹

𝑖
(⋅, 𝜇), 𝑖 = 1, . . . , 𝑝,

are strictly pseudomonotone on𝐾, thus pseudomonotone on
𝐾. By virtue of Lemma 11, for each 𝜇 ∈ Ω,

𝑆
𝑤

𝑀
(𝜇) = ⋃

𝜉∈Δ

𝑆
𝜉
(𝜇) . (32)

Similar to the proof of Lemma 15 we know, for each 𝜉 ∈ Δ,
𝑆
𝜉
(⋅) is l.s.c onΩ. Thus, in view of Lemma 13, we immediately

obtain that 𝑆𝑤
𝑀
(⋅) is l.s.c onΩ.

“u.s.c”: The proof is similar to that of Theorem 16.

The following result can be deduced by the similar proof
of Theorem 23.

Theorem 27. Suppose that assumption (𝐴) holds and the
following conditions are satisfied:

(i) 𝐹
𝑖
(⋅, ⋅), 𝑖 = 1, . . . , 𝑝, are continuous on𝐾×Ω, where𝐾 ⊂

R𝑛 is a nonempty, closed, and convex set, and 𝐹
𝑖
(⋅, 𝜇),

𝑖 = 1, . . . , 𝑝, are pseudomonotone on 𝐾 for any 𝜇 ∈ Ω.
(ii) For any 𝜉 ∈ Δ, there exists a constant 𝛼 > 0 such that,

for each 𝜇 ∈ Ω and 𝑥 ∈ 𝐾\𝑆
𝜉
(𝜇), there exists 𝑦 ∈ 𝑆

𝜉
(𝜇)

satisfying ⟨𝐹
𝑖
(𝑥, 𝜇), 𝑦 − 𝑥⟩ ≤ −𝛼‖𝑥−𝑦‖2, 𝑖 = 1, . . . , 𝑝.

Then, 𝑆𝑤
𝑀
(⋅) is continuous on Ω.

4. Gap Functions and Error Bounds

Throughout this section, assume that sol(VI)
𝜉

̸= 0 for all
𝜉 ∈ Σ. The existence, for instance, can be guaranteed by the
compactness and convexity of𝐾, and the continuity of𝐹 (e.g.,
[24, Theorem 2.2]).

We will now introduce a regularized gap function for
(WVVI). This gap function was studied by Charitha and
Dutta [20].

For 𝛼 > 0, we define the function 𝜙
𝛼
as

𝜙
𝛼
(𝑥)

fl min
𝜉∈Σ

max
𝑦∈𝐾

{⟨

𝑝

∑
𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝛼

2

𝑦 − 𝑥

2

} .
(33)

For fixed 𝑥 ∈ R𝑛 and 𝜉 ∈ 𝐶 \ {0R𝑝} consider the following
problem:

𝑓
𝛼
(𝑥, 𝜉)

fl max
𝑦∈𝐾

{⟨

𝑝

∑
𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝛼

2

𝑦 − 𝑥

2

} ,
(34)

which is equivalently written as

𝑓
𝛼
(𝑥, 𝜉)

= −min
𝑦∈𝐾

{⟨

𝑝

∑
𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑦 − 𝑥⟩ +

𝛼

2

𝑦 − 𝑥

2

} .
(35)

Lemma 28 (see [20, Lemma 2.4]). For any 𝑥 ∈ R𝑛 and any
𝜉 ∈ 𝐶 \ {0R𝑝}, let 𝜙𝛼(𝑥) and 𝑓𝛼(𝑥, 𝜉) be defined by (33) and
(34), respectively. Then, 𝑓

𝛼
(𝑥, 𝜉) is continuous on R𝑛 × Σ and

𝜙
𝛼
is well-defined.

Note that 𝜙
𝛼
is finite without the assumption that 𝐾 is

compact (cf. [20, Remark 2.5]).

Lemma 29 (see [20, Theorem 2.7]). Let 𝜙
𝛼
(𝑥) be defined by

(33). Then 𝜙
𝛼
(𝑥) ≥ 0 for all 𝑥 ∈ 𝐾. Furthermore, 𝜙

𝛼
(𝑥∗) = 0,

𝑥∗ ∈ 𝐾 if and only if 𝑥∗ solves (WVVI). That is, 𝜙
𝛼
is a gap

function for (WVVI).
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We will now present an error bound for (WVVI) with
a strongly 𝜉-pseudomonotone mapping 𝐹, but not strongly
monotone functions 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝) done in [20–22]. In our

settingwewill devise error bounds in terms of the regularized
gap function 𝜙

𝛼
(𝑥). In what follows by the notation dist(𝑥, 𝐴)

we mean the distance between the point 𝑥 and the set 𝐴.
If𝐹
𝑖
: 𝐾 → R𝑛, 𝑖 = 1, . . . , 𝑝, are stronglymonotonewith

𝜇
𝑖
> 0 on𝐾, that is, ⟨𝐹

𝑖
(𝑦)−𝐹

𝑖
(𝑥), 𝑦−𝑥⟩ ≥ 𝜇

𝑖
‖𝑦−𝑥‖2, ∀𝑥, 𝑦 ∈

𝐾, 𝑖 = 1, . . . , 𝑝, and set 𝜇 fl min
1≤𝑖≤𝑝

𝜇
𝑖
, then it is clear that

∀𝜉 = (𝜉
1
, . . . , 𝜉

𝑝
) ∈ Σ, 𝐹 is strongly 𝜉-monotone on 𝐾 with

𝜇 > 0: that is,

⟨𝑓
𝜉
(𝑦) − 𝑓

𝜉
(𝑥) , 𝑦 − 𝑥⟩

=

𝑝

∑
𝑖=1

𝜉
𝑖
⟨𝐹
𝑖
(𝑦) − 𝐹

𝑖
(𝑥) , 𝑦 − 𝑥⟩ ≥

𝑝

∑
𝑖=1

𝜉
𝑖
𝜇
𝑖

𝑦 − 𝑥

2

≥ 𝜇
𝑦 − 𝑥


2

, ∀𝑥, 𝑦 ∈ 𝐾.

(36)

Obviously, it implies that 𝐹 is strongly 𝜉-pseudomonotone
on 𝐾. However, the following example shows the converse
is not true. That is, the strong 𝜉-pseudomonotonicity of 𝐹
is properly weaker than the strong monotonicity of 𝐹

𝑖
(𝑖 =

1, . . . , 𝑝).

Example 30. Let 𝐾 = [1, 2]. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = 𝑥 and 𝐹

2
(𝑥) = 1, respectively. For 𝜉 = (𝜉

1
, 𝜉
2
) ∈ Σ,

𝑓
𝜉
(𝑥) = ∑

2

𝑖=1
𝜉
𝑖
𝐹
𝑖
(𝑥) = 𝜉

1
𝑥 + 𝜉

2
, ∀𝑥 ∈ 𝐾. We show that

𝐹 fl (𝐹
1
, 𝐹
2
) is strongly 𝜉-pseudomonotone on 𝐾. For any

𝜉 = (𝜉
1
, 𝜉
2
) ∈ Σ and 𝑥

1
, 𝑥
2
∈ 𝐾, suppose that ⟨𝑓

𝜉
(𝑥
1
), 𝑥
2
−

𝑥
1
⟩ = (𝜉

1
𝑥
1
+ 𝜉
2
)(𝑥
2
− 𝑥
1
) ≥ 0. As 𝜉

1
𝑥
1
+ 𝜉
2
> 0, we have

𝑥
2
− 𝑥
1
≥ 0. Thus, ⟨𝑓

𝜉
(𝑥
2
), 𝑥
2
− 𝑥
1
⟩ = (𝜉

1
𝑥
2
+ 𝜉
2
)(𝑥
2
−

𝑥
1
) ≥ 𝑥

2
− 𝑥
1
≥ (𝑥
2
− 𝑥
1
)2, because 𝜉

1
+ 𝜉
2
= 1; then

𝜉
1
𝑥
2
+ 𝜉
2
= 1 + 𝜉

1
(𝑥
2
− 1) ≥ 1, and 𝑥

2
− 𝑥
1
∈ [0, 1]. Hence,

𝐹 is strongly 𝜉-pseudomonotone on 𝐾 with the modulus
of strong pseudomonotonicity 𝜇 = 1. However, 𝐹

1
, 𝐹
2
are

not both strongly monotone on 𝐾. It is clear that 𝐹
2
is not

strongly monotone on𝐾, since ⟨𝐹
2
(𝑥
2
)−𝐹
2
(𝑥
1
), 𝑥
2
−𝑥
1
⟩ = 0,

∀𝑥
1
, 𝑥
2
∈ 𝐾. Moreover, 𝐹 is also not strongly 𝜉-monotone

on 𝐾. In fact, taking 𝜉 = (0, 1) ∈ Σ and 𝑥
1
, 𝑥
2
in 𝐾, we get

⟨𝑓
𝜉
(𝑥
2
) − 𝑓
𝜉
(𝑥
1
), 𝑥
2
− 𝑥
1
⟩ = 𝜉
1
(𝑥
2
− 𝑥
1
)2 = 0.

Theorem 31. Let 𝜉 ∈ Σ. Suppose that 𝐹 is strongly 𝜉-
pseudomonotone on 𝐾 with the modulus of strong pseu-
domonotonicity 𝜇 > 0, and let 𝛼 > 0 be chosen so that 𝛼 < 2𝜇.
Then for any 𝑥 ∈ 𝐾 we have

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝜙
𝛼
(𝑥). (37)

Proof. We can write the function 𝜙
𝛼
(𝑥) in the way: 𝜙

𝛼
(𝑥) =

min
𝜉∈Σ

𝑓
𝛼
(𝑥, 𝜉). From Lemma 28 we know that 𝑓

𝛼
is contin-

uous on R𝑛 × Σ, so the function 𝑓
𝛼
(𝑥, ⋅) is continuous on

Σ. Noting that Σ is compact, hence there exists 𝜉∗ ∈ Σ (𝜉∗
will depend on the chosen 𝑥) such that 𝜙

𝛼
(𝑥) = 𝑓

𝛼
(𝑥, 𝜉∗).

Whence, using the definition of 𝑓
𝛼
(𝑥, 𝜉∗) we have, for all

𝑦 ∈ 𝐾,

𝜙
𝛼
(𝑥) ≥ ⟨

𝑝

∑
𝑖=1

𝜉
∗

𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝛼

2

𝑦 − 𝑥

2

. (38)

Since sol(VI)
𝜉
∗ ̸= 0, letting 𝑥∗ ∈ sol(VI)

𝜉
∗ , further from

Remark 2 and Lemma 1 we know that 𝑥∗ also solves (WVVI).
We set 𝑦 = 𝑥∗ in (38):

𝜙
𝛼
(𝑥) ≥ ⟨

𝑝

∑
𝑖=1

𝜉
∗

𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑥

∗

⟩−
𝛼

2

𝑥 − 𝑥
∗
2

. (39)

Since 𝑥∗ solves (VI)
𝜉
∗ , we have ⟨∑𝑝

𝑖=1
𝜉∗
𝑖
𝐹
𝑖
(𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0.

Then by the strong 𝜉-pseudomonotonicity of 𝐹 with 𝜇 > 0,
we get

⟨

𝑝

∑
𝑖=1

𝜉
∗

𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑥

∗

⟩ ≥ 𝜇
𝑥 − 𝑥

∗
2

. (40)

Thus, combining with (39), we obtain 𝜙
𝛼
(𝑥) ≥ (𝜇 − 𝛼/2)‖𝑥 −

𝑥∗‖2. We have noted that 𝛼 < 2𝜇; hence ‖𝑥 − 𝑥∗‖ ≤

(1/√𝜇 − 𝛼/2)√𝜙
𝛼
(𝑥), which implies

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝜙
𝛼
(𝑥), ∀𝑥 ∈ 𝐾. (41)

The proof is complete.

Remark 32. (a) Based on the union property sol(WVVI) =
⋃
𝜉∈Σ

sol(VI)
𝜉
, sol(WVVI) in Theorem 31 need not be a

singleton in general, although for each 𝜉 ∈ Σ the scalar
variational inequality (VI)

𝜉
admits a unique solution by the

strong 𝜉-pseudomonotonicity of 𝐹. This is because as we
change the parameter 𝜉 the solution set sol(VI)

𝜉
changes as

well and all these solutions are in fact solutions of (WVVI).
(b) Theorem 31 improves [20, Theorem 2.9], since we

use the strong 𝜉-pseudomonotonicity of 𝐹 but not strong
monotonicity of 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝).

We give the following example to illustrate Theorem 31.

Example 33. Let 𝐾 = [1, 2]. Define 𝐹
1
, 𝐹
2
: 𝐾 → R as

𝐹
1
(𝑥) = 𝑥 and 𝐹

2
(𝑥) = 1, respectively. For 𝜉 = (𝜉

1
, 𝜉
2
) ∈

Σ, 𝜉
1
𝐹
1
(𝑥) + 𝜉

2
𝐹
2
(𝑥) = 𝜉

1
𝑥 + 𝜉

2
, ∀𝑥 ∈ 𝐾. By virtue of

Example 30, 𝐹 is strongly 𝜉-pseudomonotone on 𝐾 with 𝜇 =
1, and we let 𝛼 = 1. Moreover, sol(WVVI) = sol(VI)

𝜉
=

{1}, ∀𝜉 ∈ Σ. Thus, all conditions of Theorem 31 are satisfied.
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Direct computations show that the regularized gap function
for (WVVI) has the following representation:

𝜙
𝛼
(𝑥) = min

𝜉∈Σ

max
𝑦∈𝐾

{(𝜉
1
𝑥 + 𝜉
2
) (𝑥 − 𝑦) −

1

2

𝑦 − 𝑥

2

}

= min
𝜉∈Σ

{(𝜉
1
𝑥 + 𝜉
2
) (𝑥 − 1) −

1

2
(𝑥 − 1)

2

}

= min
𝜉∈Σ

{(𝜉
1
(𝑥 − 1) + 1) (𝑥 − 1) −

1

2
(𝑥 − 1)

2

}

= 𝑥 − 1 −
1

2
(𝑥 − 1)

2

=
1

2
(𝑥 − 1) (3 − 𝑥) ,

∀𝑥 ∈ 𝐾.

(42)

Hence, (1/√𝜇 − 𝛼/2)√𝜙
𝛼
(𝑥) = √(𝑥 − 1)(3 − 𝑥). Clearly,

dist(𝑥, sol(WVVI)) = |𝑥−1| ≤ (1/√𝜇 − 𝛼/2)√𝜙
𝛼
(𝑥),∀𝑥 ∈ 𝐾.

However, Theorem 2.9 of [20] is not applicable, because the
strong monotonicity of 𝐹

2
is violated.

By Remarks 10 and 6 we know the strong pseudomono-
tonicity of 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝) is properly weaker than the strong

𝜉-pseudomonotonicity of 𝐹. Next, wemake some discussions
on the error bounds of (WVVI) when 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝) are

strongly pseudomonotone on 𝐾.
It is clear that ⋂𝑝

𝑖=1
sol(VI)

𝑖
⊆ sol(VI)

𝜉
, ∀𝜉 ∈ Σ and

we assume that sol(VI)
𝜉

̸= 0 for all 𝜉 ∈ Σ, but it is
possible that ⋂𝑝

𝑖=1
sol(VI)

𝑖
= 0. Now we make the following

assumption (Ã):⋂𝑝
𝑖=1

sol(VI)
𝑖

̸= 0.

Theorem 34. Let 𝜉 ∈ Σ. Suppose that assumption (�̃�) holds
and 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝) are strongly pseudomonotone with the

modulus of strong pseudomonotonicity 𝜇
𝑖
> 0 on𝐾. Moreover,

let 𝜇 = min
1≤𝑖≤𝑝

𝜇
𝑖
and let 𝛼 > 0 be chosen so that 𝛼 < 2𝜇.

Then for any 𝑥 ∈ 𝐾 we have

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝜙
𝛼
(𝑥). (43)

Proof. Similar to the proof of Theorem 31, there exists 𝜉∗ ∈ Σ
such that (38) holds.

Since assumption (Ã) holds, we let 𝑥∗ ∈ ⋂
𝑝

𝑖=1
sol(VI)

𝑖
.

Obviously 𝑥∗ ∈ sol(WVVI). As 𝑥∗ solves (VI)
𝑖
(𝑖 = 1, . . . , 𝑝),

we have ⟨𝐹
𝑖
(𝑥∗), 𝑥−𝑥∗⟩ ≥ 0, 𝑖 = 1, . . . , 𝑝. Then by the strong

pseudomonotonicity of 𝐹
𝑖
(𝑖 = 1, . . . , 𝑝), we get ⟨𝐹

𝑖
(𝑥), 𝑥 −

𝑥∗⟩ ≥ 𝜇
𝑖
‖𝑥 − 𝑥∗‖2. Because 𝜉∗ ∈ Σ, we obtain

⟨

𝑝

∑
𝑖=1

𝜉
∗

𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑥

∗

⟩ ≥

𝑝

∑
𝑖=1

𝜉
∗

𝑖
𝜇
𝑖

𝑥 − 𝑥
∗
2

≥ 𝜇
𝑥 − 𝑥

∗
2

.

(44)

Thus, combining with (38) by setting 𝑦 = 𝑥∗, we obtain

𝜙
𝛼
(𝑥) ≥ (𝜇 −

𝛼

2
)
𝑥 − 𝑥

∗
2

. (45)

Noting that 𝛼 < 2𝜇, we have ‖𝑥−𝑥∗‖ ≤ (1/√𝜇 − 𝛼/2)√𝜙
𝛼
(𝑥),

which implies

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝜙
𝛼
(𝑥), ∀𝑥 ∈ 𝐾. (46)

The proof is complete.

Remark 35. The assumption (Ã) in Theorem 34 has been
used to deal with error bounds of (WVVI); for example, see
[21, Theorem 4.3] and [22, Theorem 3.3]. In fact, by using
the scalar regularized gap function mentioned in [21, 22], we
can also obtain a similar error bound for (WVVI) under the
assumptions inTheorem 34 (see Theorem 38).

However, under the strong pseudomonotonicity of 𝐹
𝑖
and

assumption (Ã), we see that, for every 𝑖 = 1, . . . , 𝑝, sol(VI)
𝑖
is

a singleton and all (VI)
𝑖
(𝑖 = 1, . . . , 𝑝) must have the same

solution, and thus sol(WVVI) should be a singleton.

Example 36. Consider Example 33. Direct computations
show that

sol (WVVI) = sol (VI)
𝜉
= sol (VI)

1
= sol (VI)

2

= {1} , ∀𝜉 ∈ Σ.
(47)

Clearly, all conditions of Theorem 34 are satisfied with 𝜇
1
=

𝜇
2
= 1 and 𝛼 = 1, and hence it derives the error bound of

(WVVI) in terms of 𝜙
𝛼
.

Besides the scalar regularized gap function 𝜙
𝛼
(𝑥) men-

tioned above, Charitha et al. [21] and Sun and Chai [22]
also have constructed another scalar regularized gap function
𝑔
𝛼
(𝑥) for (WVVI), which is independent with the scalariza-

tion parameter 𝜉.
For 𝛼 > 0, we define the function 𝑔

𝛼
as

𝑔
𝛼
(𝑥) fl sup

𝑦∈𝐾

{min
1≤𝑖≤𝑝

⟨𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝛼

2

𝑦 − 𝑥

2

} . (48)

Charitha et al. [21] and Sun and Chai [22] have explained
that 𝑔

𝛼
(𝑥) is finite for every 𝑥 and thus is well-defined.

Lemma 37 (see [21, Theorem 4.2] and [22, Corollary 3.2]).
The function 𝑔

𝛼
is a gap function for (WVVI).

Nowwe use the regularized gap function𝑔
𝛼
(𝑥) to develop

an error bound for (WVVI) under assumption (Ã) and
strongly pseudomonotone component functions 𝐹

𝑖
(𝑖 =

1, . . . , 𝑝).

Theorem 38. Suppose that assumption (�̃�) holds and 𝐹
𝑖
(𝑖 =

1, . . . , 𝑝) are strongly pseudomonotone with the modulus of
strong pseudomonotonicity 𝜇

𝑖
> 0 on 𝐾. Moreover, let 𝜇 =

min
1≤𝑖≤𝑝

𝜇
𝑖
and 𝛼 > 0 be chosen so that 𝛼 < 2𝜇. Then for any

𝑥 ∈ 𝐾 we have

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝑔
𝛼
(𝑥). (49)
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Proof. From our notations and the presentation of 𝑔
𝛼
(𝑥), we

have, for all 𝑦 ∈ 𝐾,

𝑔
𝛼
(𝑥) ≥ min

1≤𝑖≤𝑝

⟨𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝛼

2

𝑦 − 𝑥

2

. (50)

As assumption (Ã) holds, we let 𝑥∗ ∈ ⋂
𝑝

𝑖=1
sol(VI)

𝑖
.

Obviously 𝑥∗ ∈ sol(WVVI). We set 𝑦 = 𝑥∗ in (50):

𝑔
𝛼
(𝑥) ≥ min

1≤𝑖≤𝑝

⟨𝐹
𝑖
(𝑥) , 𝑥 − 𝑥

∗

⟩ −
𝛼

2

𝑥
∗

− 𝑥

2

. (51)

Without loss of generality, we assume that

⟨𝐹
1
(𝑥) , 𝑥 − 𝑥

∗

⟩ = min
1≤𝑖≤𝑝

⟨𝐹
𝑖
(𝑥) , 𝑥 − 𝑥

∗

⟩ . (52)

Since 𝑥∗ ∈ ⋂𝑝
𝑖=1

sol(VI)
𝑖
, 𝑥∗ solves (VI)

1
; that is, ⟨𝐹

1
(𝑥∗), 𝑥 −

𝑥∗⟩ ≥ 0. Then, by the strong pseudomonotonicity of 𝐹
1
, we

have ⟨𝐹
1
(𝑥), 𝑥 − 𝑥∗⟩ ≥ 𝜇

1
‖𝑥 − 𝑥∗‖2 ≥ 𝜇‖𝑥 − 𝑥∗‖2. Thus,

combining with (51) and (52), we obtain

𝑔
𝛼
(𝑥) ≥ (𝜇 −

𝛼

2
)
𝑥 − 𝑥

∗
2

. (53)

Noting that 𝛼 < 2𝜇, we have ‖𝑥−𝑥∗‖ ≤ (1/√𝜇 − 𝛼/2)√𝑔
𝛼
(𝑥),

which implies

dist (𝑥, sol (WVVI)) ≤ 1

√𝜇 − 𝛼/2
√𝑔
𝛼
(𝑥), ∀𝑥 ∈ 𝐾. (54)

The proof is complete.

Remark 39. Theorem 38 improves [21,Theorem 4.3] and [22,
Corollary 3.3], since we use the strong pseudomonotonicity
of 𝐹
𝑖
but not strong monotonicity of 𝐹

𝑖
(𝑖 = 1, . . . , 𝑝).

Example 40. Consider Example 36. All conditions of
Theorem 38 are satisfied with 𝜇

1
= 𝜇
2
= 1 and 𝛼 = 1, and

hence it derives the error bound of (WVVI) in terms of 𝑔
𝛼
.

Actually, we can verify that

𝑔
𝛼
(𝑥) = sup

𝑦∈𝐾

{min {𝑥 (𝑥 − 𝑦) , 𝑥 − 𝑦} − 1

2

𝑦 − 𝑥

2

}

=

{{{
{{{
{

sup
𝑦∈𝐾

{𝑥 − 𝑦 −
1

2
(𝑥 − 𝑦)

2

} , if 𝑥 − 𝑦 > 0

sup
𝑦∈𝐾

{𝑥 (𝑥 − 𝑦) −
1

2
(𝑥 − 𝑦)

2

} , if 𝑥 − 𝑦 ≤ 0

= sup
𝑦∈𝐾

{
{
{

1

2
(𝑥 − 1) (3 − 𝑥) , if 1 ≤ 𝑦 < 𝑥

0, if 𝑥 ≤ 𝑦 ≤ 2

=
1

2
(𝑥 − 1) (3 − 𝑥) , ∀𝑥 ∈ 𝐾.

(55)

However,Theorem 4.3 of [21] (or Corollary 3.3 of [22]) is not
applicable, because the strong monotonicity of 𝐹

2
is violated.

5. Conclusions

In the paper, firstly, sufficient conditions for the continuity
(both lower and upper semicontinuities) of solution map-
pings 𝑆(⋅) to (PVVI) and 𝑆𝑤

𝑀
(⋅) to (PWMVVI) have been estab-

lished, when the mappings on models are strictly 𝜉-pseudo-
monotone and partially strong pseudomonotone, respec-
tively. Secondly, error bounds for (WVVI) in terms of reg-
ularized gap functions 𝜙

𝛼
and 𝑔

𝛼
have been obtained, when

themappings onmodels are strongly 𝜉-pseudomonotone and
strongly pseudomonotone, respectively. All discussions have
been carried out via scalarization approaches. The results
obtained improve or modify corresponding ones in [12] and
[20–22], respectively. Moreover, numerous examples have
been provided to illustrate main conclusions.
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