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We investigate the approximation properties of a special class of twice continuously differentiable functions by solutions of the
Cauchy-Euler equation.

1. Introduction

Throughout this paper, let 𝑛 be a positive integer, let 𝐼 be a
nondegenerate interval of R, and let K denote either R or C.
Wewill consider the (linear) differential equation of 𝑛th order

F (𝑦
(𝑛)
, 𝑦
(𝑛−1)

, . . . , 𝑦
󸀠
, 𝑦, 𝑥) = 0 (1)

defined on 𝐼, where 𝑦 : 𝐼 → K is an 𝑛 times continuously
differentiable function.

For arbitrary 𝜀 > 0, assume that an 𝑛 times continuously
differentiable function 𝑦 : 𝐼 → K satisfies the differential
inequality
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󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀 (2)

for all 𝑥 ∈ 𝐼. If for each function 𝑦 : 𝐼 → K satisfying
inequality (2) there exists a solution 𝑦0 : 𝐼 → K of the
differential equation (1) such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦0 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝐾 (𝜀) (3)

for any 𝑥 ∈ 𝐼, where 𝐾(𝜀) depends on 𝜀 only and satisfies
lim𝜀→0𝐾(𝜀) = 0, then we say that the differential equation (1)
satisfies (or has) the Hyers-Ulam stability (or the local Hyers-
Ulam stability if the domain 𝐼 is not the whole space R). If
the above statement also holds when we replace 𝜀 and 𝐾(𝜀)
with some appropriate 𝜑(𝑥) and Φ(𝑥), respectively, then we
say that the differential equation (1) satisfies the generalized
Hyers-Ulam stability (or the Hyers-Ulam-Rassias stability).

We may apply these terminologies for other differential
equations. For more detailed definition of the Hyers-Ulam
stability and recent papers on this subject, refer to [1–4].

Obłoza seems to be the first author who investigated
the Hyers-Ulam stability of linear differential equations (see
[5, 6]). Let 𝑔, 𝑟 : (𝑎, 𝑏) → R be continuous functions with
∫

𝑏

𝑎
|𝑔(𝑥)|𝑑𝑥 < ∞, where 𝑎 and 𝑏 are real constants. Assume

that 𝜀 > 0 is an arbitrary real number. Obłoza proved that if a
differentiable function 𝑦 : (𝑎, 𝑏) → R satisfies the inequality
|𝑦
󸀠
(𝑥)+𝑔(𝑥)𝑦(𝑥)−𝑟(𝑥)| ≤ 𝜀 for all 𝑥 ∈ (𝑎, 𝑏) and if a function

𝑦0 : (𝑎, 𝑏) → R satisfies 𝑦󸀠0(𝑥) + 𝑔(𝑥)𝑦0(𝑥) = 𝑟(𝑥) for all
𝑥 ∈ (𝑎, 𝑏) and 𝑦(𝜏) = 𝑦0(𝜏) for some 𝜏 ∈ (𝑎, 𝑏), then there
exists a constant 𝛿 > 0 such that |𝑦(𝑥) − 𝑦0(𝑥)| ≤ 𝛿 for all
𝑥 ∈ (𝑎, 𝑏).

Thereafter, Alsina and Ger [7] proved that if a differ-
entiable function 𝑓 : (𝑎, 𝑏) → R satisfies the differential
inequality |𝑦󸀠(𝑥) − 𝑦(𝑥)| ≤ 𝜀, then there exists a solution 𝑓0 :
(𝑎, 𝑏) → R of the differential equation 𝑦󸀠(𝑥) = 𝑦(𝑥) such that
|𝑓(𝑥)−𝑓0(𝑥)| ≤ 3𝜀 for any 𝑥 ∈ (𝑎, 𝑏).This result of Alsina and
Ger was generalized by Takahasi et al.They proved in [8] that
the Hyers-Ulam stability holds for the Banach space valued
differential equation 𝑦󸀠(𝑥) = 𝜆𝑦(𝑥) (see also [9–13]). For a
recent result on the Hyers-Ulam stability for second-order
linear differential equations, we refer to [14, 15].

In this paper, we consider the (inhomogeneous) Cauchy-
Euler equation

𝑥
2
𝑦
󸀠󸀠
(𝑥) + 𝛼𝑥𝑦

󸀠
(𝑥) + 𝛽𝑦 (𝑥) = 𝑟 (𝑥) , (4)
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where 𝛼 and 𝛽 are real-valued constants and 𝑟 : R → R is
a continuous function, and we investigate the approximation
properties of twice continuously differentiable functions by
solutions of the Cauchy-Euler equation

𝑥
2
𝑦
󸀠󸀠
(𝑥) + 𝛼𝑥𝑦

󸀠
(𝑥) + 𝛽𝑦 (𝑥) = 0, (5)

which is associated with (4).

2. Preliminaries

Recently, Choi and Jung [16, Corollary 4.2] proved theHyers-
Ulam stability of the Cauchy-Euler equation (4) for the case
of (𝛼 − 1)2 − 4𝛽 > 0.

Theorem 1. Assume that the real-valued constants 𝛼, 𝛽 are
given with (𝛼−1)2−4𝛽 > 0 and 𝜀 is an arbitrarily given positive

constant. Let 𝑐 be a positive real-valued constant and let𝑚1,𝑚2
be given as

𝑚1 =

− (𝛼 − 1) − √(𝛼 − 1)
2
− 4𝛽

2

,

𝑚2 =

− (𝛼 − 1) + √(𝛼 − 1)
2
− 4𝛽

2

.

(6)

If 𝑟 : (0,∞) → R is a differentiable function and 𝑦 : (0,∞) →
R is a twice continuously differentiable function such that the
inequality
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󵄨
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𝑥
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𝑦
󸀠󸀠
(𝑥) + 𝛼𝑥𝑦
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(𝑥) + 𝛽𝑦 (𝑥) − 𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀 (7)

holds for any 𝑥 ∈ (0,∞), then there exists a solution 𝑦𝑐 :
(0,∞) → R of the inhomogeneous Cauchy-Euler equation (4)
such that
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󵄨
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󵄨
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≤
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{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝜀

𝑚1𝑚2

+

𝜀

𝑚2 − 𝑚1

(

1

𝑚2

(

𝑥

𝑐

)

𝑚
2

−

1

𝑚1

(

𝑥

𝑐

)

𝑚
1

) (𝑓𝑜𝑟 𝑚1 ̸= 0 ̸= 𝑚2) ,

𝜀

𝑚
2
2

((

𝑥

𝑐

)

𝑚
2

− 1) −

𝜀

𝑚2

ln 𝑥
𝑐

(𝑓𝑜𝑟 𝑚1 = 0) ,

𝜀

𝑚
2
1

((

𝑥

𝑐

)

𝑚
1

− 1) −

𝜀

𝑚1

ln 𝑥
𝑐

(𝑓𝑜𝑟 𝑚2 = 0)

(8)

for all 𝑥 ∈ (0,∞).

For the case of (𝛼−1)2 −4𝛽 = 0, the Hyers-Ulam stability
of the inhomogeneousCauchy-Euler equation (4)was proved
in [16, Corollary 4.4].

Theorem2. Assume that the real-valued constants𝛼 and𝛽 are
given with 𝛼 ̸= 1, 𝛽 = (𝛼 − 1)2/4 and 𝜀 is an arbitrarily given
positive constant. Let 𝑐 be a positive real-valued constant and
let 𝜆 = −(𝛼−1)/2. If 𝑟 : (0,∞) → R is a differentiable function
and 𝑦 : (0,∞) → R is a twice continuously differentiable fun-
ction such that the inequality
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󵄨
󵄨
󵄨

𝑥
2
𝑦
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(𝛼 − 1)
2

4

𝑦 (𝑥) − 𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀 (9)

holds for all 𝑥 ∈ (0,∞), then there exists a solution 𝑦𝑐 :
(0,∞) → R of the inhomogeneous Cauchy-Euler equation (4)
with 𝛽 = (𝛼 − 1)2/4 such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝜀

𝜆
2
+

𝜀

𝜆

(

𝑥

𝑐

)

𝜆

(ln 𝑥
𝑐

−

1

𝜆

) (10)

for all 𝑥 ∈ (0,∞).

Finally, the Hyers-Ulam stability of the Cauchy-Euler
equation (4) was also proven in [16,Theorem 4.5] for the case
of (𝛼 − 1)2 − 4𝛽 < 0.

Theorem3. Assume that the real-valued constants𝛼 and𝛽 are
given with (𝛼−1)2−4𝛽 < 0 and 𝜀 is an arbitrarily given positive
constant. Let 𝑐 > 0 be a given real-valued constant and let

𝜆 = −

𝛼 − 1

2

,

𝜇 =

1

2

√4𝛽 − (𝛼 − 1)
2
.

(11)

If a differentiable function 𝑟 : (0,∞) → R and a twice continu-
ously differentiable function 𝑦 : (0,∞) → R satisfy inequality
(7) for all 𝑥 ∈ (0,∞), then there exists a solution 𝑦𝑐 : (0,∞) →
R of the inhomogeneous Cauchy-Euler equation (4) such
that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝜀

𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥

𝑐

𝑥
𝜆

𝜁
𝜆+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln 𝑥
𝜁

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(12)

for all 𝑥 ∈ (0,∞).

Remark 4. Cı̂mpean and Popa [14] proved the Hyers-Ulam
stability of the linear differential equations of 𝑛th order with
constant coefficients. Indeed, they proved a general theorem
for the Hyers-Ulam stability which includes Theorems 1, 2,
and 3 as its corollaries with the inequality
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󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

{
{
{

{
{
{

{

𝜀

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(for either 𝛼2 − 4𝛽 > 0, 𝛽 ̸= 0 or 𝛼2 − 4𝛽 = 0, 𝛼 ̸= 0) ,

4𝜀

𝛼
2

(for 𝛼2 − 4𝛽 < 0, 𝛼 ̸= 0) .

(13)

However, Theorems 1, 2, and 3 have the advantage of more
exact local approximation over the result of Cı̂mpean and
Popa as we see inTheorems 5, 6, and 7.

3. Approximation Properties

We denote byB(𝛼; 𝛽) the set of all twice continuously differ-
entiable functions 𝑦 : (0,∞) → R for which there exists a
constant 𝜀 > 0 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
2
𝑦
󸀠󸀠
(𝑥) + 𝛼𝑥𝑦

󸀠
(𝑥) + 𝛽𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀 (14)

for all 𝑥 ∈ (0,∞), where 𝛼 and 𝛽 are real-valued constants.
If we define

(𝑦1 + 𝑦2) (𝑥) fl 𝑦1 (𝑥) + 𝑦2 (𝑥) ,

(𝛾𝑦1) (𝑥) fl 𝛾𝑦1 (𝑥)
(15)

for all 𝑦1, 𝑦2 ∈ B(𝛼; 𝛽) and 𝛾 ∈ R, then B(𝛼; 𝛽) is a vector
space over R. This fact implies that the set B(𝛼; 𝛽) is large
enough to be a vector space.

In the following theorems, we investigate approximation
properties of functions ofB(𝛼; 𝛽) by solutions of theCauchy-
Euler equation (5).

Theorem 5. Let 𝑐 > 0 be a given real number and let 𝛼, 𝛽 ∈ R
be given with (𝛼−1)2−4𝛽 > 0. If 𝑦 ∈B(𝛼; 𝛽), then there exists
a solution 𝑦𝑐 : (0,∞) → R of the Cauchy-Euler equation (5)
such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
= 𝑜 (|𝑥 − 𝑐|) (16)

as 𝑥 → 𝑐.

Proof. We define 𝑚1 and 𝑚2 by the formulas given in Theo-
rem 1; that is,𝑚1 and𝑚2 are the distinct roots of the indicial
equation𝑚2+(𝛼−1)𝑚+𝛽 = 0. Since (𝛼−1)2−4𝛽 > 0, we have
𝑚1 < 𝑚2. Since𝑦 ∈B(𝛼; 𝛽), there exists a constant 𝜀 > 0 such
that inequality (14) holds for all 𝑥 ∈ (0,∞).

According to Theorem 1 with 𝑟(𝑥) ≡ 0, there exists a
solution 𝑦𝑐 : (0,∞) → R of the Cauchy-Euler equation (5)
such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝜀

𝑚1𝑚2

+

𝜀

𝑚2 − 𝑚1

(

1

𝑚2

(

𝑥

𝑐

)

𝑚
2

−

1

𝑚1

(

𝑥

𝑐

)

𝑚
1

) (for 𝑚1 ̸= 0 ̸= 𝑚2) ,

𝜀

𝑚
2
2

((

𝑥

𝑐

)

𝑚
2

− 1) −

𝜀

𝑚2

ln 𝑥
𝑐

(for 𝑚1 = 0) ,

𝜀

𝑚
2
1

((

𝑥

𝑐

)

𝑚
1

− 1) −

𝜀

𝑚1

ln 𝑥
𝑐

(for 𝑚2 = 0)

(17)

for any 𝑥 ∈ (0,∞).
We will only estimate the following limit for the case of

𝑚1 = 0 by applying L’Hospital’s rule:

lim
𝑥→𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 (𝑥) − 𝑦𝑐 (𝑥)

𝑥 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐

(𝜀/𝑚
2
2) ((𝑥/𝑐)

𝑚
2
− 1) − (𝜀/𝑚2) ln (𝑥/𝑐)
𝑥 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐
(

𝜀

𝑚2𝑐
(

𝑥

𝑐

)

𝑚
2
−1

−

𝜀

𝑚2

1

𝑥

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0,

(18)

which implies the validity of this theorem.

We now consider the case of (𝛼 − 1)2 − 4𝛽 = 0 and use
Theorem 2 to prove the following theorem.

Theorem 6. Let 𝑐 > 0 and 𝛼 ̸= 1 be real numbers and let
𝜆 = −(𝛼 − 1)/2. If 𝑦 ∈ B(𝛼; 𝜆2), then there exists a solution
𝑦𝑐 : (0,∞) → R of the Cauchy-Euler equation (5) with 𝛽 = 𝜆2
such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
= 𝑜 (|𝑥 − 𝑐|) (19)

as 𝑥 → 𝑐.

Proof. Since 𝑦 ∈ B(𝛼; 𝜆2), there exists a constant 𝜀 > 0 such
that inequality (14) holds for all 𝑥 ∈ (0,∞). According to
Theorem2with 𝑟(𝑥) ≡ 0, there exists a solution𝑦𝑐 : (0,∞) →
R of the Cauchy-Euler equation (5) with 𝛽 = 𝜆2 such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝜀

𝜆
2
+

𝜀

𝜆

(

𝑥

𝑐

)

𝜆

(ln 𝑥
𝑐

−

1

𝜆

) (20)

for all 𝑥 ∈ (0,∞).
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Therefore, we estimate the limit by applying L’Hospital’s
rule:

lim
𝑥→𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 (𝑥) − 𝑦𝑐 (𝑥)

𝑥 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐

(𝜀/𝜆
2
) + (𝜀/𝜆) (𝑥/𝑐)

𝜆
(ln (𝑥/𝑐) − 1/𝜆)

𝑥 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐
𝜀

𝑥
𝜆−1

𝑐
𝜆

ln 𝑥
𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0,

(21)

which implies the validity of this theorem.

Finally, we investigate the approximation property of each
function ofB(𝛼; 𝛽) by a solution of the differential equation
(5) when (𝛼 − 1)2 − 4𝛽 < 0.

Theorem 7. Let 𝑐 > 0 be a given real number and let 𝛼, 𝛽 ∈ R
be given with (𝛼−1)2−4𝛽 < 0. If 𝑦 ∈B(𝛼; 𝛽), then there exists
a solution 𝑦𝑐 : (0,∞) → R of the Cauchy-Euler equation (5)
such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
= 𝑜 (|𝑥 − 𝑐|) (22)

as 𝑥 → 𝑐.

Proof. Let us define

𝜆 = −

𝛼 − 1

2

,

𝜇 =

1

2

√4𝛽 − (𝛼 − 1)
2
.

(23)

Since 𝑦 ∈ B(𝛼; 𝛽), there exists a constant 𝜀 > 0 such
that inequality (14) holds for all 𝑥 ∈ (0,∞). According to
Theorem 3with 𝑟(𝑥) ≡ 0, there exists a solution𝑦𝑐 : (0,∞) →
R of the Cauchy-Euler equation (5) such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥) − 𝑦𝑐 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝜀

𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥

𝑐

𝑥
𝜆

𝜁
𝜆+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln 𝑥
𝜁

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(24)

for all 𝑥 ∈ (0,∞).
If we substitute 𝜂 = 𝑐𝑥/𝜁, then we have

∫

𝑥

𝑐

𝑥
𝜆

𝜁
𝜆+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln 𝑥
𝜁

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜁

=

1

𝑐
𝜆
∫

𝑥

𝑐

𝜂
𝜆−1
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln
𝜂

𝑐

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜂.

(25)

Hence, we further apply L’Hospital’s rule to obtain

lim
𝑥→𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 (𝑥) − 𝑦𝑐 (𝑥)

𝑥 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝜀

𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐

1

𝑥 − 𝑐

∫

𝑥

𝑐

𝑥
𝜆

𝜁
𝜆+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln 𝑥
𝜁

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝜀

𝜇𝑐
𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐

1

𝑥 − 𝑐

∫

𝑥

𝑐

𝜂
𝜆−1
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln
𝜂

𝑐

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜂

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝜀

𝜇𝑐
𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝑥→𝑐
𝑥
𝜆−1
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin(𝜇 ln 𝑥
𝑐

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0,

(26)

which implies the validity of this theorem.
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