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Let (2,d, u) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure
conditions. In this paper, the authors prove that, under the assumption that the kernel of 9" satisfies a certain Hormander-type
condition, MM is bounded from Lebesgue spaces L?(u) to Lebesgue spaces L?(u) for p > 2 and is bounded from L'(y) into
L5 (u). As a corollary, I is bounded on LP(y) for 1 < p < 2. In addition, the authors also obtain that 9t** is bounded from
the atomic Hardy space H' () into the Lebesgue space L' ().

1. Introduction

In 1958, Stein in [1] firstly introduced the Littlewood-Paley
operators of the higher-dimensional case; meanwhile, the
author also obtained the boundedness of the Marcinkiewicz
integrals and area integrals. In 1970, Fefferman in [2] proved
that the Littlewood-Paley g function is weak type (p, p) for
p € (1,2) and ¥ = 2/p. With further research about Little-
wood-Paley operators, some authors turn their attentions to
study the parameter Littlewood-Paley operators. For exam-
ple, in 1999, Sakamoto and Yabuta in [3] considered the
parameter g function. Since then, many papers focus on the
behaviours of the operators; among them we refer readers to
see [4-6].

In the past ten years or so, most authors mainly study the
classical theory of harmonic analysis on R” under nondou-
bling measures which only satisfy the polynomial growth
condition; see [7-12]. Exactly, we assume that y which is a
positive Radon measure on R" satisfies the following growth
conditions; namely, for all x € R"” and r € (0, c0), there exist
constant C and 0 < d < n such that

p(B(x,1)) < cr?, (1)

where B(x,r) = {y € R" : |x — y| < r}. The analysis
associated with nondoubling measures g as in (1) has
important applications in solving long-standing open Pain-
levé’s problem and Vitushkins conjecture (see [13, 14]).
Besides, Coifman and Weiss have showed that the measure y
is a key assumption in harmonic analysis on homogeneous-
type spaces (see [15, 16]).

However, Hytonen in [17] pointed that the measure y as in
(1) may not contain the doubling measure as special cases. To
solve the problem, in 2010, Hytonen in [17] introduced a new
class of metric measure spaces satisfying the so-called upper
doubling conditions and the geometrically doubling (resp.,
see Definitions 1 and 2 below), which are now claimed non-
homogeneous metric measure spaces. Therefore, if we replace
the underlying spaces with nonhomogeneous metric measure
spaces, many known-consequences have been proved still
true; for example, see [18-22].

In this paper, we always assume that (2, d, ) is a non-
homogeneous metric measure space. In this setting, we will
establish the boundedness of the parameter Littlewood-Paley
g, functions on (X, d, u).

In order to state our main results, we firstly recall some
necessary notions and notation. Hytonen in [17] gave out the
definition of upper doubling metric spaces as follows.



Definition 1 (see [17]). A metric measure space (X, d, u) is
said to be upper doubling, if y is Borel measure on 2" and
there exist a dominating function A : & x (0,00) — (0, c0)
and a positive constant C, such that for each x € &, r —
A(x, r) is nondecreasing and, for all x € 2 and r € (0, 00),

"
p(B(x, 1) <A(x,1) SCA/\(’C’§>- 2)

Htyonen et al. in [18] proved that there exists another
dominating function A such that 1 < A, C; < C, and

A(x,y) <CiA(y,1), 3)

where x, y € 2 and d(x, y) < r. Based on this, from now on,
let the dominating function in (2) also satisfy (3).

Now we recall the notion of geometrically doubling con-
ditions given in [17].

Definition 2 (see [17]). A metric space (X, d) is said to be
geometrically doubling, if there exists some N, € N such
that, for any ball B(x,r) ¢ X, there exists a finite ball cover-
ing {B(x;,7/2)}; of B(x,r) such that the cardinality of this
covering is at most N,,.

Remark 3 (see [17]). Let (2, d) be a metric space. Hytonen in
[17] showed that the following statements are mutually equiv-
alent:

(1) (7, d) is geometrically doubling.

(2) For any € € (0,1) and ball B(x,r) ¢ X, there exists a
finite ball covering {B(x;, er)}; of B(x, r) such that the
cardinality of this covering is at most Nye . Here and
in what follows, N, is as Definition 2 and n = log, N,,.

(3) For every € € (0, 1), any ball B(x,r) ¢  can contain
at most Nye " centers of disjoint balls {B(x;, er)};.

(4) There exists M € N such that any ball B(x,r) ¢ &
can contain at most M centers {x;}; of disjoint balls

{B(x;, /41,

Hytonen in [17] introduced the following coefficients K
analogous to Tolsa’s number Kq in [7].
Given any two balls B C S, set

KB,S :1+J

s (dme) F @

where ¢ represents the center of the ball B.

Remark 4. Bui and Duong in [21] firstly introduced the fol-
lowing discrete version K¢ of Ky as in (4) on (2, d, ),
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which is very similar to the number K,  introduced in [7] by
Tolsa. For any two balls B ¢ S, K B is defined by

_ Ngs /4(6iB)
KB’S:1+Zm’ (5)

i=1

where the radii of the balls B and S are denoted by 5 and
rs, respectively, and Ny is the smallest integer satisfying
6557y > r,. It is easy to obtain K Bs < CKpg. Bui and Duong
in [21] also pointed out that it is incorrect that K g ~ K.

Now we recall the following notion of («, )-doubling
property (see [17]).

Definition 5 (see [17]). Let &, B € (1,00). Aball B ¢ X is
claimed to be («, 5)-doubling if u(aB) < Bu(B).

It was stated in [17] that, there exist many balls which
have the above («, f3)-doubling property. In the latter part of
the paper, if « and 3, are not specified, («, 3,)-doubling ball
always stands for (6, ¢)-doubling ball with a fixed number
B > max{Cilog26,6”}, where n = log, N, is considered as
a geometric dimension of the space. Moreover, the smallest
(6, B)-doubling ball of the form 6/B with j € N is denoted

by EG, and sometimes B can be simply denoted by B.
Now we give the definition of the parameter Littlewood-
Paley g, functions on (2, d, ).

Definition 6 (see [22]). Let K(x, y) be a locally integrable
function on (X' x L) \ {(x, y) : x = y}. Assume that there
exists a positive constant C such that, for all x, y € X with
xX#Y,

d(x, y)
K (xy)| s C 222 (6)
S Yew o)
and, for all x, y,y' e,
[ K ) K (x))
d(x,y)=2d(y,y") @

K (7,%) - K (5 x)]] mdu () <C.

The parameter Marcinkiewicz integral .4 associated
with the above K(x, y) which satisfies (6) and (7) is defined
by

M (f) (x) = (L"" tip
2 1/2
Kxy) dt (8)
. Jd(x,y)St Wf (y)du(y) 7) )
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where p € (0, 00). The parameter g, function I * is defined
by

M (f) (x) = { 1 (—t . dt(x, 5 )
au(y) dt}“
At |

where x € &, X x(0,00) = {(y,t) : y e X, t >0}, p>0
and x € (1, 00).

1
t

9)
K (y,2)

-LW T f(z)du(z)

Remark 7. (1) When p = 1, the operator 4" as in (8) is just
the Marcinkiewicz integral on (2, d, u) (see [22]).

(2) If we take (2, d, u) = (R", ||, u) and A(y, t) == t", then
the parameter g, function 9 as in (9) is just a parameter
Littlewood-Paley operator with nondoubling measures in [8].

The following definition of the atomic Hardy space was
introduced by Htyonen et al. (see [18]).

Definition 8 (see [18]). Let { € (1,00) and p € (1,00]. A
function b € L} (p) is called a (p, 1),-atomic block if

loc

(a) there exists a ball B such that supp b C B,

o0

sup Y i J
r>9 o1 J6r<d(x,y)<6™tr
d(y.y)<r

Notice this condition is slightly stronger than (7).
Now let us state the main theorems which generalize and
improve the corresponding results in [8].

Theorem 9. Let K(x, y) satisfy (6) and (7), and let M P be as
in (9) with p € (0, 00) and k € (1,00). Then M’ is bounded
on L¥(u) for any p € [2,00).

Theorem 10. Let K(x, y) satisfy (6) and (11), and let IN* be
as in (9) with p € (1/2,00) and x € (1,00). Then M7 is
bounded from L'(u) into weak L' (u); namely, there exists a
positive constant C such that, for any T > 0 and f € L' (u),

p(lx e 2 M (F)(x) > 1)) < c%. (12)

Theorem 11. Let K(x, y) satisfy (6) and (11), and let I be
asin (9) with p > 1/2 andx > 1. Suppose that I is bounded
on L*(u). Then, I is bounded from H' () into L' ().

Applying the Marcinkiewicz interpolation theorem and
Theorems 9 and 10, it is easy to get the following result.

Corollary 12. Under the assumption of Theorem 10, IN* is
bounded on L () for p € (1,2).

['K (x,y)-K (x,

() [, b(x)du(x) =0,

(c) for any i € {1,2} there exist a function g; supported
on ball B; ¢ B and a number v; € C such that

b =v,a, +v,a,,
pe1 (10)
”“ "LP(y) < [u(¢B;)] KB ,B*

Moreover, let |b|H;[,§(H) = vy | + |0,

We say a function f € L'(u) belongs to the atomic
Hardy space H,; Lp , () if there are atomic blocks {b }oo, such
that f = Y| 1w1th Yo 1|b|H1P(y) < 00. The H-? (1) norm

atb
of f is denoted by ||f||H15(H inf{} ;" |b,-|H1,£(H)}, where the

infimum is taken over all the possible decompositions of f as
above.
It was proved by Htyonen et al. in [18] that the definition

of Hatf (u) is not related to the choice of { and the spaces

atb P(u) and H
Thus, for convenience, we always denote Hatb (u) by H! (w).
Now we give the Hormander-type condition on (', d, p);
that is, there exists a positive C, such that

tb %(u) have the same norms for p € (1,00].

Y+ K G2 =K ()] dd(x,y) = (1)

The organization of this paper is as follows. In Section 2,
we will give some preliminary lemmas. The proofs of the main
theorems will be given in Section 3. Throughout this paper,
C stands for a positive constant which is independent of the
main parameters, but it may be different from line to line. For
any E ¢ 2, we use yj to denote its characteristic function.

2. Preliminary Lemmas

In this section, we make some preliminary lemmas which are
used in the proof of the main results. Firstly, we recall some
properties of Ky g as in (4) (see [17]).

Lemma 13 (see [17]). (1) For all balls B C R C S, it holds true
that Kgp < Kps.

(2) For any & € [1,00), there exists a positive constant Cs
such that, for all balls B ¢ S with rg < &rp, Kp g < Cy.

(3) For any ¢ € (1, 00), there exists a positive constant C,,

depending on g, such that, for all balls B, Kz < C,,.

(4) There exists a positive constant c such that, for all balls
B C R CS, Kgg < Kgp + cKyg. In particular, if B and R are
concentric, then ¢ = 1.

(5) There exists a positive constant € such that, for all balls
B C R C S, Ky < CKyg; moreover, if B and R are concentric,
then Kp g < Kpg.



To state the following lemmas, let us give a known-result
(see [19]). For i € (0, 00), the maximal operator is defined, by

setting that, for all f € L} () and x € &,

loc

My f ()= sup j lf DMldu(y) @3

Q>x, Qdoubling # (WQ)

is bounded on L?(u) provided that p € (1,00) and also

bounded from Ll(pt) into Ll’oo(y).
The following lemma is slightly changed from [8].

Lemma 14. Let K(x, y) satisfy (6) and (7), and n € (0, 00).
Assume that M" is as in (8) and M P is as in (9) with

[ 1927 (1) P (o)

B
- LX J-er(o,oo) <f+dt(x )’))
J r’ 1 K(y.2)

tP L(y z)<t W

IA

d
d(y2)<t [d(

f) M(Z)

— sup

B
60 4
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p € (0,00) and k € (1, 00). Then for any nonnegative function
&, there exists a positive constant C such that, for all f € LP(y)
with p € (1, 00),

[ 190 () @I ) s )

(14)
<C L () @I M, (8) () du ().
Proof. By the definition of I P (f), we have
K(y Z) l (y) dt
— ——=—¢(x)du
(15)

£>0 |:Lr<t+dt(x,y) )13 /\(p(ifi)d# (x)] du(y)

- LZ [ (f) (»)]* sup [L <t+ dt(x,y)>

Thus, to prove Lemma 14, we only need to estimate that

o

supj < ‘ ) p(x)
0 Je \t+d(x,y)) A(y.t) (16)

<CM, (¢)(»).

Forany y € & and t > 0, write

t ) ¢
Jy(t+d(x,y)> A(y,t)d#(x)

. ( t )“ % (%)
B \t+d(x,y)
e

' Jz\s(y,a ( t+ dt(x, y) ) A(y.t)

=D, + D,.

du (x)

dy (x)

For Dy, it is not difficult to obtain that

¢ (x)
Pi= J’B(y,t) A(y.t)

ALV
A(y.t)  u(nB(y.t))

< CM, (¢) (y)-

dy (x)

| @
B(y,t)

A(y:t)

A(y.t) 17)

(18)

x>] au(y).

Now we turn to estimate D,, by (2) and (13); we have

0 ¢ B
b5 i
’ k; B(y.65)\B(y.65 1) (t +d(x,y) )

¢ (x) —(k-1)B
du <C)6
PITDR kzl

¢ (x) (k-1)p
Jka A(y,t)d ()<CZ6

u(B(r6t) 1 J

A(yt)  p(B(y,6")) Jo

W™ du(x) (19)

< CZ6 (= DﬁMM,I () (y)<C

Pt Ay1)
.A(y,skt) i g (y,6 t) <
Ay1) Pt Al
WCLIIERIE T
. B < CM,
2o M Z (@) (»)-
Combining the estimates for D, and D,, we obtain (16) and
hence complete the proof of Lemma 14. O

Finally, we recall the Calderén-Zygmund decomposition
theorem (see [21]). Suppose that y, is a fixed positive constant
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3log,6

satisfying that y, > max{C} ,6"}, where C 5 is as in (2)

and » as in Remark 3.

Lemma 15 (see [21]). Let p € [1,00), f € LP(u), andt €
(0,00) (£ > yoll fll oy /(X) when p(Z) < 00). Then

(1) there exists a family of finite overlapping balls {6B;};
such that {B;}; is pairwise disjoint:

)P o
y(6zB J |f | du(x) > " Vi, (20)
1 » tP
- d < —
u(6*7B;) LB,» 7 ) ”(x)<Yo (21)
Vi, V1 € (2,00),
f ) <t
(22)

for u-almost every x € X'\ <U6Bi>;

(2) foreachi, let S; be a (3 x 62, Ci{’ngXGZ)H)—doubling ball

of the family {(3x 6°) B} en» and w; = xep /(X Xen,):
Then there exists a family {¢;}; of functions that, for
each i, supp(¢;) C S;, @; has a constant sign on S; and

[ omanw = rwe@de,
X 6B,

(23)
Z |g; (x)| <yt for p-almost every x € X,
i

where y is some positive constant depending only on (X, w),
and there exists a positive constant C, independent of f, t, and
i, such that if p = 1, then

ol () <C [ If 0w Gldut, @9

and if p € (1, 00),

<L,. lg: ()| du (x)>1/P [ (517"

C
S_
tp-1

(25)
L |f () w; (0)|F dp (x).

3. Proofs of Theorems

Proof of Theorem 9. For the case of p = 2, assume ¢(x) = 1 in
Lemma 14; then it is easy to get that

[ 1 () (0 dis o)
(6)

e[ [ (7)) duco,
X

which, along with L?(u)-boundedness of .Z*, easily yields
that Theorem 9 holds.

For the case of p > 2, let g be the index conjugate to
p/2. By applying Holder inequality and Lemma 14, we can
conclude

|19m? (f)"ip(y)
= s [ ()@ @)
g0 Ja
9l <1
<Cosw | L0 (D] Mg ()0
oligy<1 ‘ (27)
< C |l (f)llzs sup [, (9],
¢l0 <1
<C ||f|l§}’(ﬂ sup ||¢||m<m <C "f“ip(”)’

wmm_

which is desired. Thus, we complete the proof of Theorem 9.
O

Proof of Theorem 10. Without loss of generality, we may
assume that || f{|;:(,) = 1. It is easy to see that the conclusion
of Theorem 10 naturally holds if T < SB4(|l fll 11 W [u(Z)) when
u(Z) < oo. Thus, we only need to discuss the case that
T> ﬁ6(||f||L1(H)/y(5l”)). Applying Lemma 15 to f at the level
and letting w;, ¢;, B;, and S; be the same as in Lemma 15, we see
that f(x) = b(x)+h(x), where b(x) = fXﬁl’\Ui 6B, () +Y; ¢;(x)
and h(x) = Y, [w;(x)f(x) — @i(x)] = Y, hi(x). It is easy
to obtain that IIbIILw(M) < Cr and "b”Ll(M) < C. By LZ(‘u)_
boundedness of M ¥, we have

m*,p b 22
YR P S L
(28)

(L2l
<C Z(M) <Ccr .
T

On the other hand, by (20) with p = 1 and the fact that the
sequence of balls, {B;};, is pairwise disjoint, we see that

2 -1 -1
M<L,-J6 Bi> <Cr Lf |f ()| du(x)<Ct, (29)

and thus the proof of the Theorem 10 can be reduced to prove
that

u({x e X\ J6"Bi - P (1) (x) > T}) <Cr'. (30)

For each fixed i, denote the center of B; by x;, and let N,
be the positive integer satisfying S; = (3 x 62)™' B,. We have

u({x e 2\ J6’B, : M* () (x) > T})
<T IZJ

MoP (hy) (x) du (x)
Z\J; 6*B;



o (1) (x) dp (x)

P (hy) (x) dp (x)

31

Firstly, let us estimate E, and write it as

x| M (fe)@du)
65;\6°B;
(32)
" .[ M7 (¢;) (x) dp (%) = Eyy + Ey,
65;\6%B;

K/2
6S;\62B; X'x(0,00)

t
t+d(x,y)

1
tP

J’d(yz )<t

t

K(y,2)
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where h; = w; f — ¢;. By Holder inequality, (24), and L*(u)-
boundedness of MM, we have

Ey < J m
6S;

2 12 1/2
(LW@WWWM@@O u(68)"

2P (¢7) (x) dpt ()

<
(33)

<

1/2
([ wPam) us)”
< CLX |f(x)wi (x)| du (x).

For E,,, by Minkowski inequality and (6), write

1/2
} dy (x)

du(y)d
Ay t)t

>/ (2)w; (2)dp(z )‘

[d(5.2)]"”

[d(y.2)]"  du(y)dt

t+d(x,y)

el ir@mal|fl,..(

t

)i

1/2
A(y,d(y)z))]zk(y’t) t1+2p] d[’t(z) dM (x)

[d(y.2)]"  du(y)dt

|f (2)] j

6.

:de(y,Z)St ( t+d(xy) )K (A

t

(%,

S;\62B;

1/2
d d
Uﬂu@ﬁluﬂww] #(x) dp(2)

(34)

<[,
CLgﬂzj _ (

6 d(y,z)<t

2d(y,z)>d(x.2) t+d (X, )’)

S;\62B;

t

)“ [d(y.2)]"  du(y)dt
[

1/2
A(yd(y2)] A()ut)t“ap] dy (x) dp (2)

1/2

[d(y.2)]"  du(y)dt

(

d(y,z)<t,d(x,y)<t

2d(y,z)<d(x,z) t+d (x’

te LB 'f @) | Ls,.\szs,. ”

t

wyu

(y,d (,2))] A (3, t) 1142 | du (x) du (2)
[d(9,2)]"  du(y)dt 1

(

d(y,z)<t,d(x,y)>t

2d(y,z)<d(x,z) t+d (x’

© LB,- |f (Z)| Ls,-\szB,. ”

=F +F, +F,.

To this end, let B; be as in Lemma 15 with ¢z and r_being,

respectively, its center and radius. For any x € 68; \ 6°B; and
z € 6B;, by (2) and (3), we have

(9]

F, <

ﬂyM

[d(5.2)]”

dp (x) du (z)

(rd (r.2)] At 72

du (y)dt

L J;d(y,z)>d(x,z)

¢ LB,. il Ls,.\623,. L(y,z) (A (y,d(

[d(5.2)]”

12
d d
PR tl+2p:| p(x) dp (2)

1 dt

IN

© LB,. |f (Z)| LS,-\GZB |

<C LB,. f @) Ls,-\ézB

Ld(y 2)>d(x,z) [

1

J;d(yz)>d X,2) [ (

(y,d (,2))]> A (,d (3,2))

»,.d(y,2))]

tl+2p

12
>M4 du (x) dp (2)

(L

1/2
3M4 dy (x) du (2)
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J 1 du (v)
6568, | J2d(y2>d(x2) [A(,d (x,2))] [A(y,(1/2)d (x,2))

1/2
c| lIfe ]z] 4yt (x) du (2)

6B,
cl,
|f (2)]

<
<
(o]
o J
6B; 68:\6?B; | j= JB(z.257d(x,2)\B(2,2"2d(x,2)) A(y.d(y.2))
<
<

[ 1 du (y) ]1/2
—_— d d
e 6s\eB; | [A(z,(1/2)d (x,2))]” Ld(y,z»d(x,z) A(y,d(y,2)) #ix) G l2)

du (x) du (2)

du(y) 1" 1
Az, d(x,2))

cf o

M oo 1/2
> | ) (9 du (@)
6s7\6B; | [ Bz 1d(xa) A (3,282 (x, 2)) A (CB,-’d

(.cs))

c| lIfe ) du@ <C [ |f @lduta),
6B 6B,

65\6?B; A (CBi’ d (x, CB,-))
(35)

where we use the fact that Next we estimate F,. For any x € 6S; \ 6°B, y € X,
and z € 6B; satistying d(y,x) < t, 2d(y,z) < d(x,z), and

T (e ) < CKp (1/2)d(x, z) < t, we have
Ls,.\ﬁzB,- Mep,d (x.c5)) “ B, (36)

F <CJ If(z)|J “ ro [d(»2)]" _du(y)dt
27 7 Jep, 65\6'B, | J2d(y2)zd(en) Jarpdea) (A (y,d (y,2))]> A (s t) £1720

1/2
] du (x) du (z)

1 du (»)
<C
= LB,- @l Ls,—\szB,- [Ld(y,z)<d(x,z> A (3 d (x,2))]) #(B(y.d(x,2)))

1/2
] dp (x) du (2) (37)

1

<C J6Bi |f (Z)l ,LSi\GZBi mdﬂ (x) dM (z)<C LB,- |f (Z)l dl’l (2).

Finally, for any x € 6S;\ 6°B;, y € &, and z € 6B; sat-
isfying 2d(y,z) < d(x,z), 2d(y,z) > d(x,z), and d(x, y) <
(3/2)d(x, z), by applying (2), we have

2
[d(y.2)]"  du(y)dt
ss\os, | 1 ATESE N (3, d (1,2))]" A () 12

1/2
] du (x) du (2)

1 1
<C d
: LBi If @) LS,-\GZB,- h~|-2d(y,z)sd(x,z) [A(y,d (x, z))]2 Ay, d(x,2)) #

172
(y)] dy (x) du ()
(38)

1 p(B(z,(1/2)d (x,z)))
=C J.ss,. f @ J'es,.\szs,. | (A (z,d (x,2))]? A(z,d (x,2))

172
] dp (x) du (z)

) du@ <C | |f@lduce).

IN
@)
o >
=
=
O
b~

6S;\6”B; m



Combining the estimates for F,, F,, and F;, we obtain that
E, <C B | f(2)|du(z), where, together with the fact that

E,, <C 6B | f(z)|du(z), we have

E,<C L |f ()] dpt (). (39)

i

1
tP

I
S
s

€\Q

<
2\68,;

t
t+d(x,y)

1

)
ih

Jd(y,z)st [

g
Z\6S;

t
t+d(x,y)

1
tP

L(y 2)<t [

g
Z\6S;

+E;, + E5.

For each fixed i, decompose E; as

P
S W ()

For any x € I\ 6S;, y € 2§; with d(y,x) < t, and
z €85, d(x,cBi) - 2rg < d(x,y) < tand d(y,z) < 3rg,»
together with Minkowski inequality and (6), we can conclude

t

A<t \ ¢+ d(x, y)

ye2S;

t

dxy<t \ ¢ 1+ d(x, y)

ye\2S;

g
d(y,z)<t [d

[d(5.2)]*

I K (y.2)
d(y,2)<t [d
d(y2)]""

K(y.z)

1
LW“ [d(y.2)]""

K(y,

(5.2)]"*
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Now we turn to estimate for E,. Let Q; = B(cBi, rsi), and
write

" du(y)dt
Ay, t)t

1/2
] dp (x)

1/2

( mmmm%

K(y,z)

».2)]
*du(y)dt |
Ay, t)t

h; (2) du () du (x)

(40)
q1/2

" du(y)dt
Ay t)t

h; (z) du (z) du (x) = Ey

d(y2)]"

K(y,2)

h; (z) du ()

1/2
} du (x)

1/2
] du (x) =1, + .

‘ du(y)d
A(yt)t

(41)

z) du(y)dt

A(y.t)t

Shi (2) du ()‘

du(y)dt

d(x,y)<t,d(y,z)<t
ye2Ss;

(o]

G
(3.2)]°

[d(7.2)]”

([

-Ll (7,2)<3rg, A (y,

[A(yd (3,2)) A1) £12

1/2
] dp (2) d (x)

1/2
dtt1+2p ) d” (y)] d['l (X) d[/l (Z)

d(x,c5,)-2rs; A(y t)

1 1 (42)

L(yz)<3rs A(y,d(y,2))]

1

u(B(nd(x.c5))) [d(xcq) - 2rs |

1/2
du (y)} du (x) du (2)

Lyz)<3rs A (y.d(y.2)]

1
< h, _
<) MO, TaaEa)

u(B(r.d (%

du(x)du(z) <C ”hi"L‘(m

1/2
)))du (y)} dy (x) dp (2)
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For I, write

1/2
o\ K (y.2) " du(y)dt
I < Lr\@- l” A(x,y)<t,ye\2S; (m) w L(y’z)st Whi (z)du (2)1 ( 0t ] du (x)

tsd(y,ch, )+rsi

¢ K
+ Jj{\65,~ |:J] d(x,y)<t,ye\2S; (t +d (x’ y)>

t>d(J’)CB,-)+rs,-

1 J K(y.2)
# Jayrst [d (,2)]

dut () de l/zd (43)
Ao |

()d()‘

=L, + I,

For I,,, by Minkowski inequality and (6), we deduce

<c[ | mell] 4021 : (Id(y’%i)ﬂs’ & )d () " (2) dp ()
P s I  Dyeras R (d ()P A (pd (g ) 75) Jaga 1520 ST ] S

i i

1/2
1 1
<C h, 4 i »
) L”\“ Ll ’(Z)|[L€9f\25f A (nd ()] A (3d (125) +75) M(y)] HE e

1

< h;
<C Lf s @) Lr\ss A (CB od (x Cp, )) Z_: [Lk“ssi\zkssi A (y,d (y, CB,-) + rS,-)

1/2
du (J’)] du(x)du(z) <C "hi”Ll(p)'

Now we estimate I,,. Applying Minkowski inequality and the
vanishing moment, we have

) 1/2
du(y)dt
o) du (x)

m<c[ ||
22 268, |: d(x,y)<t,ye\2S;

t>d(y.cp )+,

K(rnz) _ K(re) )h
fE— = i (z)du(z
L(y,z)<t([d(y,z)] " ld(ne)]” B

J‘ ( K(y,z) B K(}/»Z) + K(}’)Z) _ K(y’CBx) )h.(z)d‘u(z)z
d(y2)st [d(%z)]lip [d()”CB,-)]lip [d(%csf)]lip [d(y’CBf)]lip 1

12
du(y)dt
Ay, t) 142 du ()

<Ll
268, d(x,y)<t,ye\2S;

t>d(y,cB[ )+r5[

(45)

Ay, t)erze

2 1/2
d
m} o

K (y.2) K(y,2)
— - = ; (2) dp (2)
e, wa ( A" [d(ne)]' ">

2
K(32) K (¢
C o - h.(z)d
" Lf\ﬁs, [”d(wmyd\z& L(%Z>S‘<[d (y,as,v)]lip l4 (y)CB,)]PP e

<Ll
268, d(x,y)<t,ye\2S;

du (y)dt
A (y) t) t1+2p

t>d(yscp, )+,

1/2
:| du(x) =], +J,.

With a way similar to that used in the proof of I;, we have
Ji < CllAll (- Thus, we only need to estimate J,; by Mink-
owski inequality and (11), it follows that

]2 =¢ JI\GS- JS lhl (Z)l
1/2
2 1 1 o dr
' 2) =B — ]d du(z)d
st st oty ([, ]| aons
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1/2
zdu (y)] dp (%) du (2)

1 2
<C J;i |h; (2)] J'g\és,. A (CB," d (x, CB,-)) |:Jz\23i |K (r.2)-K ()’» CB,-)'

<C L Ih, (2)]

[d V> Cp,

1/2
du (y)] dy (x) du (2)

0 2 1
.J;x\ﬁs /\(CB,d(x c, ))k; I:Lkrs <d(y,cp, <25, |K(}/,Z) —K(y’CB,')' [ ( )]2

Y Cp,

1
<C Li |h; () L{\“i mdld (x)du(z) < C “hi"Ll(p.) .

(46)

Combining the estimates for J;, J,, I;;, and I, we obtain that Next we estimate E,,. For any y € B;, x € 2 \ 6S;, and
z € §;, we have d(x, y) = (1/2)d(x,cBi), d(y,z) < 2rg, and
d(x,y) ~ d(x,cg), and together with this fact, Minkowski

E,<C ”hi"L‘(H) . (47) inequality, and (6), we get

1/2
[d(y,2)]"  du(y)dt
Basc |, f @l [ D Od o) Mmoo | W@

yeQ;
1/2
[d(5.2)]” 1 A9 gy
scj j h (2) J J N auG)| du@du)
2\65; | | d(y.2)z2rs, [A (y,d(y,z))]2A(y,d(x,cBi)) diyz) P k) e (48)
1/2
sc| | mall] ——— dy(y)] 4 (2) dpe ()
2s, s, [ Jaazarg (M (3,d (7,2))]" A(92d (x.5,))
1
_CJ hi(z)J ——— - du(x)du(z) < C |||
S¢| | 2\6s, /\(CB,Jd(x’CBi)) H H ” "L (@)
It remains to estimate E,5;. Applying Minkowski inequality
and (6), we have
Al aua]”
t Yz ply)at
Eu<Cl | el | [[ o ( ) du (2) du (x)
85C )1 Iy ety L\t d () ) (A (pd (32)] An0)t
(49)

1/2
t O\ _[dp2)])” du(y)de
+C J:‘I\GS,- JS,' |h1 (x)l I: JJ d(y,z)<t<d(x,y),yeX\Q; ( t+d (X, y) > [/\ (y’ d (y’ Z))]2 A (y, t) ¢ d[" (Z) dl’t (X)

d(x,cp,)>2d(yscp,)

=U, +U,.
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Now we estimate U,. For any y € £\ Q;, z € §;, and d(y,
z) <t <d(x,z),itiseasytoseed(y,z) ~ d(y, cBi). So we have

[d(5.2)]”

U SCJ J h; (z
! 2\65; s;~| @) YT\

1

|~ d(xcp)<2d(y,c,) [/\ (J” d (J” Z))]2 A (,‘V, d (x, ,‘V))

¢ ,[s,. el J'sr\ss,.

yel\Q

yel\Q

<C Li Q] Jz\ssi m |:J

1
< h; —_—
=¢ Li s @) Lx\ss,- Mg d (x.c5))

On the other hand, by a method similar to that used in
the proof of U,, we have

U,<C ”hi"Ll(y) . (51)

Combining the estimates U;, U,, E,;, E;,, and the fact that
IIh,-IILl(H) <C fGB_ | f(x)|du(x), we conclude that

E <C LB‘ |f ()] dps (x), (52)

which, together with E,, implies (30) and the proof of
Theorem 10 is finished. O

Proof of Theorem 11. Without loss of generality, we assume { =
2. By a standard argument, it suffices to show that, for any
(00, 1)-atomic block b,

1967 )11y < C1blizzeogy - (53)

Assume that suppb ¢ Rand b = Zf;l v;a;, where, for
i € {1,2}, g; is a function supported in B; C R such that

IIa,-IILoo(M) < [y(4Bi)]_1K§iR and [v;| + |v,| ~ |b|Hj{§°(H)' Write
[, e ® (0 dux)

_ J M (b) (x) dpt (x) (54)
2R

+ J IMP (D) (x) dpt (x) =V, + V.
Z\2R

2
| dteds)<2dine) [ (14 (1, 2))] A(y>d(xy

d(x,cBi )SZd(y,cB,_ )

du(x)du(z) <C ”hi"L‘(y)'

1
d(x,y) 1/2
1 ) de
(L<y,z> t1+_2f>)d# (J’)] du (z) du (x)
1/2
e (y)] dp (<) dp (2)
(50)
o 1"
du(y
7y | du)du(z)
A(rd(re)) ]
For V,, we see that
2
is ; vl LBi M (a;) (x) dpe ()
) (55)

+ ) o M (a.) (x) du (x
Dlul [, M (@) 0 du
=V + V.

Applying the Holder inequality, L*(¢)-boundedness of 90,
and the fact that "ai”L”O(y) < C[‘u(4Bi)]71K§i1’R fori € {1,2},
we have

2 5 1/2 2
. M*F (a, .
<3 ol [, 12 @ P ) miam)

2
S CZ |“i| ”ai"LZ(H) H (231')1/2

i=1

< Clbliigo -

Now we estimate V,,, with a method similar to that used in
the proof of F; and [la;l () < C[y(4Bi)]’1K§iR, and we see
that

V12

2
<CY ol |,
i=1

1
.|
R\2B; /\(CB,-’d(x’ CB,-)) p(x) (57)

2
< CY vl Kp,r 1] oo ¢ (B) < Clblggiengyy -

i=1

Therefore, V; < CIblHj;;"’(u)'
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On the other hand, based on the proof of E;, and
Definition 8, it is easy to obtain that

V, <Clblpy <C |b|H:€§°(H) . (58)

Combining the estimates for V; and V,, (53) holds. Thus,
Theorem 11 is completed. O
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