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Thepaper deals with the fundamental inequalities for convex functions in the bounded closed interval.Themain inequality includes
convex functions and positive linear functionals extending and refining the functional form of Jensen’s inequality. This inequality
implies the Jensen, Fejér, and, thus, Hermite-Hadamard inequality, as well as their refinements.

1. Introduction

In our research, we apply the theory of positive linear
functionals to convex analysis. Let us remember the initial
notions related to positive linear functionals on the space of
real functions.

Let 𝑆 be a nonempty set, and let F = F(𝑆) be a subspace of
the linear space of all real functions on domain 𝑆. We assume
that space F contains unit function 𝑢 defined by 𝑢(𝑠) = 1 for
every 𝑠 ∈ 𝑆. Such space F contains every real constant 𝜅within
the meaning of 𝜅 = 𝜅𝑢 and every composite function 𝑓(𝑔) of
a function 𝑔 ∈ F and an affine function 𝑓 : R → R. Actually,
if 𝑓(𝑥) = 𝜅1𝑥 + 𝜅2, then the composition𝑓 (𝑔) = 𝜅1𝑔 + 𝜅2𝑢 (1)
belongs to F .

Let L = L(F) be the space of all linear functionals on
space F . Functional 𝐿 ∈ L is said to be unital (normalized)
if 𝐿(𝑢) = 1. Such functional has property 𝐿(𝜅𝑢) = 𝜅 for every
real constant 𝜅. If 𝑔 ∈ F is a function and if 𝐿 ∈ L is a unital
functional, then affine function 𝑓 : R → R satisfies equality𝑓 (𝐿 (𝑔)) = 𝐿 (𝑓 (𝑔)) . (2)
Functional 𝐿 ∈ L is said to be positive (nonnegative) if
inequality 𝐿(𝑔) ≥ 0 holds for every nonnegative function𝑔 ∈ F . If a pair of functions 𝑔1, 𝑔2 ∈ F satisfies inequality𝑔1(𝑠) ≤ 𝑔2(𝑠) for every 𝑠 ∈ 𝑆, then it follows that𝐿 (𝑔1) ≤ 𝐿 (𝑔2) . (3)

If 𝑔 ∈ F is a function with the image in interval [𝑎, 𝑏] (i.e.,𝑎𝑢 ≤ 𝑔 ≤ 𝑏𝑢), then every positive unital functional 𝐿 ∈ L

meets inclusion 𝐿(𝑔) ∈ [𝑎, 𝑏] (i.e., 𝑎 ≤ 𝐿(𝑔) ≤ 𝑏). The same is
true for each closed interval 𝐼 ⊆ R.

Introducing a continuous convex function, we can expose
the functional form of Jensen’s inequality.

Theorem A. Let 𝑔 ∈ F be a function with the image in closed
interval 𝐼 ⊆ R, and let 𝐿 ∈ L be a positive unital functional.

Then each continuous convex function𝑓 : 𝐼 → R such that𝑓(𝑔) ∈ F satisfies inequality

𝑓 (𝐿 (𝑔)) ≤ 𝐿 (𝑓 (𝑔)) . (4)

We will consider convex functions in bounded closed
interval [𝑎, 𝑏]with endpoints 𝑎 < 𝑏. Each point 𝑥 ∈ [𝑎, 𝑏] can
be represented by the unique binomial convex combination

𝑥 = 𝛼𝑥𝑎 + 𝛽𝑥𝑏, (5)

where

𝛼𝑥 = 𝑏 − 𝑥𝑏 − 𝑎 ,
𝛽𝑥 = 𝑥 − 𝑎𝑏 − 𝑎 .

(6)
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Convex function 𝑓 : [𝑎, 𝑏] → R is bounded by two lines.
The secant line of function 𝑓 passes through graph points𝐴(𝑎, 𝑓(𝑎)) and 𝐵(𝑏, 𝑓(𝑏)), and its equation is

𝑓sec
𝑎𝑏

(𝑥) = 𝑏 − 𝑥𝑏 − 𝑎𝑓 (𝑎) + 𝑥 − 𝑎𝑏 − 𝑎𝑓 (𝑏) . (7)

Let 𝑐 ∈ (𝑎, 𝑏) be an interior point. The support lines of
function𝑓 pass through graph point𝐶(𝑐, 𝑓(𝑐)). Each support
line is specified by slope coefficient 𝜅 ∈ [𝑓(𝑐−), 𝑓(𝑐+)], and
its equation is

𝑓sup
𝑐

(𝑥) = 𝜅 (𝑥 − 𝑐) + 𝑓 (𝑐) . (8)

The support-secant line inequality

𝑓sup
𝑐

(𝑥) ≤ 𝑓 (𝑥) ≤ 𝑓sec
𝑎𝑏

(𝑥) (9)

holds for every 𝑥 ∈ [𝑎, 𝑏].
In 1931, Jessen (see [1, 2]) stated the functional form of

Jensen’s inequality for convex functions in interval 𝐼 ⊆ R.
In 1988, I. Rasa and I. Raşa (see [3]) pointed out that 𝐼 must
be closed otherwise it could happen that 𝐿(𝑔) ∉ 𝐼 and that𝑓 must be continuous otherwise it could happen that the
inequality in formula (4) does not apply. In Theorem A, we
have taken into account I. Rasa and I. Raşa’s remarks. Some
generalizations of the functional form of Jensen’s inequality
can be found in [4].

A concise book on functional analysis, which contains
an essential overview of operator theory and indicates the
importance of positive linear functionals, is certainly the
book in [5].

2. Main Results

We firstly present the extension of the inequality in formula
(4) concerning interval [𝑎, 𝑏].
Lemma 1. Let 𝑔 ∈ F be a function with the image in [𝑎, 𝑏],
and let 𝐿 ∈ L be a positive unital functional.

Then each continuous convex function 𝑓 : [𝑎, 𝑏] → R such
that 𝑓(𝑔) ∈ F satisfies double inequality

𝑓 (𝐿 (𝑔)) ≤ 𝐿 (𝑓 (𝑔)) ≤ 𝑓𝑠𝑒𝑐
𝑎𝑏

(𝐿 (𝑔)) . (10)

Proof. The point 𝑙 = 𝐿(𝑔) is in interval [𝑎, 𝑏]. We sketch the
proof in two steps depending on the position of 𝑙.

If 𝑙 ∈ (𝑎, 𝑏), we take support line𝑓sup
𝑙

of𝑓 at 𝑙. By applying
positive functional 𝐿 to the support-secant inequality in
formula (9) with 𝑥 = 𝑔(𝑠), where 𝑠 ∈ 𝑆, we get

𝐿 (𝑓sup
𝑙

(𝑔)) ≤ 𝐿 (𝑓 (𝑔)) ≤ 𝐿 (𝑓sec
𝑎𝑏

(𝑔)) . (11)

By utilizing the affinity of functions 𝑓sup
𝑙

and 𝑓sec
𝑎𝑏

via formula
(2), the above inequality takes the form

𝑓sup
𝑙

(𝐿 (𝑔)) ≤ 𝐿 (𝑓 (𝑔)) ≤ 𝑓sec
𝑎𝑏

(𝐿 (𝑔)) , (12)

where the first term

𝑓sup
𝑙

(𝐿 (𝑔)) = 𝑓 (𝐿 (𝑔)) . (13)

If 𝑙 ∈ {𝑎, 𝑏}, we rely on the continuity of 𝑓 using a support
line at a point of open interval (𝑎, 𝑏) that is close enough to 𝑙.
Given 𝜀 > 0, we can find 𝑐 ∈ (𝑎, 𝑏) so that

𝑓 (𝑙) − 𝜀 < 𝑓sup
𝑐

(𝑙) . (14)

By combining the above inequality and the inequality in
formula (12) with the support line at 𝑐, we obtain

𝑓 (𝑙) − 𝜀 < 𝑓sup
𝑐

(𝑙) ≤ 𝐿 (𝑓 (𝑔)) ≤ 𝑓sec
𝑎𝑏

(𝑙) = 𝑓 (𝑙) . (15)

Letting 𝜀 approach zero, we reach the conclusion 𝐿(𝑓(𝑔)) =𝑓(𝑙). In this case, trivial inequality 𝑓(𝑙) ≤ 𝑓(𝑙) ≤ 𝑓(𝑙)
represents formula (10).

Formula (10) can be expressed in the formwhich includes
the convex combination of interval endpoints 𝑎 and 𝑏. The
respective form of Lemma 1 is as follows.

Corollary 2. Let 𝑔 ∈ F be a function with the image in [𝑎, 𝑏],
and let 𝐿 ∈ L be a positive unital functional. Let

𝑙 = 𝐿 (𝑔) = 𝛼𝑙𝑎 + 𝛽𝑙𝑏. (16)

Then each continuous convex function 𝑓 : [𝑎, 𝑏] → R such
that 𝑓(𝑔) ∈ F satisfies double inequality

𝑓 (𝛼𝑙𝑎 + 𝛽𝑙𝑏) ≤ 𝐿 (𝑓 (𝑔)) ≤ 𝛼𝑙𝑓 (𝑎) + 𝛽𝑙𝑓 (𝑏) . (17)

Proof. As regards to the last terms of formulae (10) and (17),
we have

𝑓sec
𝑎𝑏

(𝐿 (𝑔)) = 𝛼𝑙𝑓sec
𝑎𝑏

(𝑎) + 𝛽𝑙𝑓sec
𝑎𝑏

(𝑏)
= 𝛼𝑙𝑓 (𝑎) + 𝛽𝑙𝑓 (𝑏) (18)

because of the affinity of 𝑓sec
𝑎𝑏

and its coincidence with 𝑓 at
endpoints.

In order to refine the inequality in formula (10), we will
combine the secant lines of convex function 𝑓 with positive
unital functionals.

Lemma 3. Let 𝑐 ∈ (𝑎, 𝑏) be a point.
Then each convex function 𝑓 : [𝑎, 𝑏] → R satisfies the

secant lines inequality

min {𝑓𝑠𝑒𝑐
𝑎𝑐

(𝑥) , 𝑓𝑠𝑒𝑐
𝑐𝑏

(𝑥)} ≤ 𝑓 (𝑥)
≤ max {𝑓𝑠𝑒𝑐

𝑎𝑐
(𝑥) , 𝑓𝑠𝑒𝑐

𝑐𝑏
(𝑥)} (19)

for every 𝑥 ∈ [𝑎, 𝑏].
Proof. Cases 𝑥 ∈ [𝑎, 𝑐] and 𝑥 ∈ [𝑐, 𝑏] should be considered.

Suppose that function 𝑔 ∈ F has the image in [𝑎, 𝑏]
and is not identically equal to 𝑎 or 𝑏. Such function satisfies
inequality 𝑔(𝑠1) ≤ 𝑐 ≤ 𝑔(𝑠2) for some number 𝑐 ∈ (𝑎, 𝑏) and
some pair of points 𝑠1, 𝑠2 ∈ 𝑆. In that case, we can find a pair
of functionals 𝐿1, 𝐿2 ∈ Lmeeting related inequality

𝐿1 (𝑔) ≤ 𝑐 ≤ 𝐿2 (𝑔) . (20)
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For example, we can take the point evaluations at 𝑠1 and 𝑠2,
that is, the functionals defined by 𝐿1(𝑞) = 𝑞(𝑠1) and 𝐿2(𝑞) =𝑞(𝑠2) for every function 𝑞 ∈ F .

In the main theorem, we use functionals 𝐿1 and 𝐿2
satisfying the inequality in formula (20).

Theorem 4. Let 𝑐 ∈ (𝑎, 𝑏) be a point. Let 𝑔 ∈ F be a function
with the image in [𝑎, 𝑏], and let 𝐿1, 𝐿2 ∈ L be positive unital
functionals such that 𝐿1(𝑔) ∈ [𝑎, 𝑐] and 𝐿2(𝑔) ∈ [𝑐, 𝑏]. Let𝐿 = 𝜆1𝐿1 + 𝜆2𝐿2 be a convex combination of 𝐿1 and 𝐿2.

Then each continuous convex function 𝑓 : [𝑎, 𝑏] → R such
that 𝑓(𝑔) ∈ F satisfies the series of inequalities

𝑓 (𝐿 (𝑔)) ≤ 𝜆1𝑓 (𝐿1 (𝑔)) + 𝜆2𝑓 (𝐿2 (𝑔)) ≤ 𝐿 (𝑓 (𝑔))
≤ 𝜆1𝑓𝑠𝑒𝑐𝑎𝑐 (𝐿1 (𝑔)) + 𝜆2𝑓𝑠𝑒𝑐𝑐𝑏 (𝐿2 (𝑔))
≤ 𝑓𝑠𝑒𝑐
𝑎𝑏

(𝐿 (𝑔)) .
(21)

Proof. By applying the convexity of 𝑓 to convex combination𝐿(𝑔) = 𝜆1𝐿1(𝑔) + 𝜆2𝐿2(𝑔), we get
𝑓 (𝐿 (𝑔)) ≤ 𝜆1𝑓 (𝐿1 (𝑔)) + 𝜆2𝑓 (𝐿2 (𝑔)) . (22)

By applying the left-hand side of formula (10) to 𝐿1 and𝐿2, we obtain
𝜆1𝑓 (𝐿1 (𝑔)) + 𝜆2𝑓 (𝐿2 (𝑔))

≤ 𝜆1𝐿1 (𝑓 (𝑔)) + 𝜆2𝐿2 (𝑓 (𝑔)) = 𝐿 (𝑓 (𝑔)) . (23)

As the right-hand side of formula (19) with 𝑥 = 𝑔(𝑠), the
inequality

𝑓 (𝑔 (𝑠)) ≤ max {𝑓sec
𝑎𝑐

(𝑔 (𝑠)) , 𝑓sec
𝑐𝑏

(𝑔 (𝑠))} (24)

holds for every 𝑠 ∈ 𝑆. By actingwith𝐿1 in the above inequality
and using assumption 𝐿1(𝑔) ∈ [𝑎, 𝑐], we find

𝐿1 (𝑓 (𝑔)) ≤ 𝐿1 (𝑓sec
𝑎𝑐

(𝑔)) = 𝑓sec
𝑎𝑐

(𝐿1 (𝑔)) , (25)

and similarly, by acting with 𝐿2 and using the assumption𝐿2(𝑔) ∈ [𝑐, 𝑏], we find
𝐿2 (𝑓 (𝑔)) ≤ 𝐿2 (𝑓sec

𝑐𝑏
(𝑔)) = 𝑓sec

𝑐𝑏
(𝐿2 (𝑔)) . (26)

Multiplication by 𝜆1 and 𝜆2 and then summation yield

𝜆1𝐿1 (𝑓 (𝑔)) + 𝜆2𝐿2 (𝑓 (𝑔))
≤ 𝜆1𝑓sec

𝑎𝑐
(𝐿1 (𝑔)) + 𝜆2𝑓sec

𝑐𝑏
(𝐿2 (𝑔)) . (27)

Using main secant 𝑓sec
𝑎𝑏

, we reach conclusion

𝜆1𝑓sec
𝑎𝑐

(𝐿1 (𝑔)) + 𝜆2𝑓sec
𝑐𝑏

(𝐿2 (𝑔))
≤ 𝜆1𝑓sec

𝑎𝑏
(𝐿1 (𝑔)) + 𝜆2𝑓sec

𝑎𝑏
(𝐿2 (𝑔))

= 𝑓sec
𝑎𝑏

(𝐿 (𝑔)) .
(28)

Putting together the inequalities in formulae (22), (23),
(27), and (28) into a series, we achieve the inequality in
formula (21).

y = f(x)

a L1(g) L(g) c bL2(g)

Figure 1: Geometric presentation of the inequality in formula (21).

The geometric presentation of the series of inequalities in
formula (21) is created in Figure 1. The inequality terms are
represented by five black dots above point 𝐿(𝑔).

To emphasize interval endpoints 𝑎 and 𝑏, we present the
following version of Theorem 4.

Corollary 5. Let 𝑐 ∈ (𝑎, 𝑏) be a point. Let 𝑔 ∈ F be a function
with the image in [𝑎, 𝑏], and let 𝐿1, 𝐿2 ∈ L be positive unital
functionals such that 𝐿1(𝑔) ∈ [𝑎, 𝑐] and 𝐿2(𝑔) ∈ [𝑐, 𝑏]. Let𝐿 = 𝜆1𝐿1 + 𝜆2𝐿2 be a convex combination of 𝐿1 and 𝐿2, and
let 𝑙 = 𝐿(𝑔) = 𝛼𝑙𝑎 + 𝛽𝑙𝑏.

Then each continuous convex function 𝑓 : [𝑎, 𝑏] → R such
that 𝑓(𝑔) ∈ F satisfies the series of inequalities

𝑓 (𝛼𝑙𝑎 + 𝛽𝑙𝑏) ≤ 𝜆1𝑓 (𝐿1 (𝑔)) + 𝜆2𝑓 (𝐿2 (𝑔))
≤ 𝐿 (𝑓 (𝑔)) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) + 𝛾𝑓 (𝑐)
≤ 𝛼𝑙𝑓 (𝑎) + 𝛽𝑙𝑓 (𝑏) ,

(29)

where

𝛼 = 𝜆1 𝑐 − 𝐿1 (𝑔)𝑐 − 𝑎 ,
𝛽 = 𝜆2 𝐿2 (𝑔) − 𝑐𝑏 − 𝑐 ,
𝛾 = 𝜆1 𝐿1 (𝑔) − 𝑎𝑐 − 𝑎 + 𝜆2 𝑏 − 𝐿2 (𝑔)𝑏 − 𝑐 .

(30)

Proof. To calculate coefficients 𝛼, 𝛽, and 𝛾, we include convex
combinations 𝐿1(𝑔) = 𝛼1𝑎 + 𝛾1𝑐 and 𝐿2(𝑔) = 𝛾2𝑐 + 𝛽2𝑏. Then
the fourth term of formula (21) takes the form

𝜆1𝑓sec
𝑎𝑐

(𝐿1 (𝑔)) + 𝜆2𝑓sec
𝑐𝑏

(𝐿2 (𝑔))
= 𝜆1𝛼1𝑓 (𝑎) + 𝜆2𝛽2𝑓 (𝑏) + (𝜆1𝛾1 + 𝜆2𝛾2) 𝑓 (𝑐) . (31)
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Taking the coefficient of 𝑓(𝑎) and using formula (6), we
calculate

𝛼 = 𝜆1𝛼1 = 𝜆1 𝑐 − 𝐿1 (𝑔)𝑐 − 𝑎 . (32)

Similarly we determine 𝛽 and 𝛾.
Let us finish the section by presenting the generalization

of Theorem 4 that uses several secant lines.

Corollary 6. Let 𝑎 = 𝑐0 < 𝑐1 < ⋅ ⋅ ⋅ < 𝑐𝑛−1 < 𝑐𝑛 = 𝑏 be
points. Let 𝑔 ∈ F be a function with the image in [𝑎, 𝑏], and let𝐿 𝑖 ∈ L be positive unital functionals such that 𝐿 𝑖(𝑔) ∈ [𝑐𝑖−1, 𝑐𝑖]
for 𝑖 = 1, . . . , 𝑛. Let 𝐿 = ∑𝑛

𝑖=1
𝜆𝑖𝐿 𝑖 be a convex combination of

functionals 𝐿 𝑖.
Then each continuous convex function 𝑓 : [𝑎, 𝑏] → R such

that 𝑓(𝑔) ∈ F satisfies the series of inequalities

𝑓 (𝐿 (𝑔)) ≤ 𝑛∑
𝑖=1

𝜆𝑖𝑓 (𝐿 𝑖 (𝑔)) ≤ 𝐿 (𝑓 (𝑔))
≤ 𝑛∑
𝑖=1

𝜆𝑖𝑓𝑠𝑒𝑐𝑐𝑖−1𝑐𝑖 (𝐿 𝑖 (𝑔)) ≤ 𝑓𝑠𝑒𝑐
𝑎𝑏

(𝐿 (𝑔)) .
(33)

3. Applications to Integral and
Discrete Inequalities

We firstly utilize Lemma 1 to obtain a very general integral
inequality.

Corollary 7. Let 𝑔 : [𝑎, 𝑏] → R be an integrable function
with the image in [𝑎, 𝑏], and let ℎ : [𝑎, 𝑏] → R be a positive
integrable function.

Then each convex function 𝑓 : [𝑎, 𝑏] → R satisfies double
inequality

𝑓(∫𝑏
𝑎
𝑔ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 ) ≤ ∫𝑏

𝑎
𝑓 (𝑔) ℎ 𝑑𝑥
∫𝑏
𝑎
ℎ 𝑑𝑥

≤ ∫𝑏
𝑎
(𝑏 − 𝑔) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑎) ℎ 𝑑𝑥 𝑓 (𝑎)

+ ∫𝑏
𝑎
(𝑔 − 𝑎) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑎) ℎ 𝑑𝑥 𝑓 (𝑏) .

(34)

Proof. Let F be the space of all integrable functions over
domain 𝑆 = [𝑎, 𝑏]. Composition 𝑓(𝑔) is bounded in [𝑎, 𝑏]
and continuous almost everywhere in [𝑎, 𝑏]. Therefore 𝑓(𝑔)
is integrable over [𝑎, 𝑏], that is, 𝑓(𝑔) ∈ F .

The integrating linear functional 𝐿 defined by

𝐿 (𝑞) = 𝐿 (𝑞; ℎ) = ∫𝑏
𝑎
𝑞ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 (35)

for every 𝑞 ∈ F is positive and unital. The first term of
formula (34) is equal to 𝑓(𝐿(𝑔)), the second term is equal

to 𝐿(𝑓(𝑔)), and the third term is equal to 𝑓sec
𝑎𝑏
(𝐿(𝑔)). Thus,

formula (34) fits into the frame of formula (10), and it is valid
for a continuous convex function 𝑓.

Let us verify that the inequality in formula (34) applies to
a convex function which is not continuous at endpoints. We
observe the position of point

𝑙 = 𝐿 (𝑔) = ∫𝑏
𝑎
𝑔ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 . (36)

If 𝑙 ∈ (𝑎, 𝑏), then we may utilize continuous extension �̃�
of𝑓/(𝑎, 𝑏) to [𝑎, 𝑏] in formula (34).The first two terms are the
same as we use 𝑓, and the last terms satisfy inequality

𝛼𝑙�̃� (𝑎) + 𝛽𝑙�̃� (𝑏) = �̃�sec
𝑎𝑏
(𝑙) < 𝑓sec

𝑎𝑏
(𝑙)

= 𝛼𝑙𝑓 (𝑎) + 𝛽𝑙𝑓 (𝑏) . (37)

So, formula (34) applies to 𝑓 in this case.
If 𝑙 ∈ {𝑎, 𝑏}, then either𝑔(𝑥)−𝑙 ≥ 0 or𝑔(𝑥)−𝑙 ≤ 0 for every𝑥 ∈ [𝑎, 𝑏]. We rearrange formula (36) to be integral equation

∫𝑏
𝑎

(𝑔 − 𝑙) ℎ 𝑑𝑥 = 0, (38)

fromwhich it follows that𝑔(𝑥) = 𝑙 for almost every𝑥 ∈ [𝑎, 𝑏].
Thus we have that 𝑓(𝑔(𝑥)) = 𝑓(𝑙) for almost every 𝑥 ∈ [𝑎, 𝑏],
and inequality 𝑓(𝑙) ≤ 𝑓(𝑙) ≤ 𝑓(𝑙) represents formula (34).

Respecting all considerations, we may conclude that the
inequality in formula (34) applies to any convex function 𝑓.

The inequality in formula (34) is the extended version of
Jensen’s inequality for the ratio of integrals in interval [𝑎, 𝑏],
as well as the generalized form of the Fejér and Hermite-
Hadamard inequality.

Let us demonstrate the simplifications of the inequality
in formula (34) relating to the identity, unit, and symmetric
function.

Using ℎ(𝑥) = 1, we get the extension of the classical
integral form of Jensen’s inequality (see [6])

𝑓(∫𝑏
𝑎
𝑔𝑑𝑥𝑏 − 𝑎 ) ≤ ∫𝑏

𝑎
𝑓 (𝑔) 𝑑𝑥𝑏 − 𝑎

≤ ∫𝑏
𝑎
(𝑏 − 𝑔) 𝑑𝑥
(𝑏 − 𝑎)2 𝑓 (𝑎)

+ ∫𝑏
𝑎
(𝑔 − 𝑎) 𝑑𝑥
(𝑏 − 𝑎)2 𝑓 (𝑏) .

(39)

Using identity function 𝑔(𝑥) = 𝑥 and function ℎ(𝑥),
satisfying equation ℎ(𝑥) = ℎ(𝑎 + 𝑏 − 𝑥), which represents the
symmetry with a center at midpoint (𝑎 + 𝑏)/2, we have the
classical form of Fejér inequality (see [7])

𝑓(𝑎 + 𝑏2 ) ≤ ∫𝑏
𝑎
𝑓ℎ𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 ≤ 𝑓 (𝑎) + 𝑓 (𝑏)2 . (40)
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Namely, as a consequence of the symmetry we have

∫𝑏
𝑎
𝑥ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 = ∫𝑏

𝑎
(𝑥 − (𝑎 + 𝑏) /2) ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥

+ ∫𝑏
𝑎
((𝑎 + 𝑏) /2) ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 = 𝑎 + 𝑏2

(41)

because

∫𝑏
𝑎

(𝑥 − 𝑎 + 𝑏2 ) ℎ 𝑑𝑥 = 0. (42)

Following formula (41), we can conclude that the Fejér
inequality is valid for function ℎ satisfying weaker condition∫𝑏
𝑎
𝑥ℎ 𝑑𝑥/ ∫𝑏

𝑎
ℎ 𝑑𝑥 = (𝑎 + 𝑏)/2.

Using ℎ(𝑥) = 1 in Fejér’s inequality in formula (40), we
obtain the classical form of Hermite-Hadamard inequality
(see [8, 9])

𝑓(𝑎 + 𝑏2 ) ≤ ∫𝑏
𝑎
𝑓𝑑𝑥𝑏 − 𝑎 ≤ 𝑓 (𝑎) + 𝑓 (𝑏)2 . (43)

To obtain refinements of the inequality in formula (34),
we use point 𝑐 ∈ (𝑎, 𝑏) and apply Theorem 4.

Corollary 8. Let 𝑐 ∈ (𝑎, 𝑏) be a point. Let 𝑔 : [𝑎, 𝑏] → R be
an integrable function such that 𝑔(𝑥) ∈ [𝑎, 𝑐] for 𝑥 ∈ [𝑎, 𝑐] and𝑔(𝑥) ∈ [𝑐, 𝑏] for 𝑥 ∈ [𝑐, 𝑏], and let ℎ : [𝑎, 𝑏] → R be a positive
integrable function.

Then each convex function 𝑓 : [𝑎, 𝑏] → R satisfies the
series of inequalities

𝑓(∫𝑏
𝑎
𝑔ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 )

≤ ∫𝑐
𝑎
ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥𝑓(

∫𝑐
𝑎
𝑔ℎ 𝑑𝑥

∫𝑐
𝑎
ℎ 𝑑𝑥 )

+ ∫𝑏
𝑐
ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥𝑓(

∫𝑏
𝑐
𝑔ℎ 𝑑𝑥

∫𝑏
𝑐
ℎ 𝑑𝑥 ) ≤ ∫𝑏

𝑎
𝑓 (𝑔) ℎ 𝑑𝑥
∫𝑏
𝑎
ℎ 𝑑𝑥

≤ ∫𝑐
𝑎
(𝑐 − 𝑔) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑐 − 𝑎) ℎ 𝑑𝑥𝑓 (𝑎) +

∫𝑏
𝑐
(𝑔 − 𝑐) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑐) ℎ 𝑑𝑥 𝑓 (𝑏)

+ (∫𝑐
𝑎
(𝑔 − 𝑎) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑐 − 𝑎) ℎ 𝑑𝑥 + ∫𝑏

𝑐
(𝑏 − 𝑔) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑐) ℎ 𝑑𝑥 )𝑓 (𝑐)

≤ ∫𝑏
𝑎
(𝑏 − 𝑔) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑎) ℎ 𝑑𝑥 𝑓 (𝑎) +

∫𝑏
𝑎
(𝑔 − 𝑎) ℎ 𝑑𝑥

∫𝑏
𝑎
(𝑏 − 𝑎) ℎ 𝑑𝑥 𝑓 (𝑏) .

(44)

Proof. Just as in Corollary 7, we use F as the space of
all integrable functions in interval [𝑎, 𝑏]. In order to apply
Theorem 4, we define integrating linear functionals

𝐿1 (𝑞) = 𝐿1 (𝑞; ℎ) = ∫𝑐
𝑎
𝑞ℎ 𝑑𝑥

∫𝑐
𝑎
ℎ 𝑑𝑥 ,

𝐿2 (𝑞) = 𝐿2 (𝑞; ℎ) = ∫𝑏
𝑐
𝑞ℎ 𝑑𝑥

∫𝑏
𝑐
ℎ 𝑑𝑥

(45)

for every 𝑞 ∈ F . Functionals 𝐿1 and 𝐿2 are positive and unital.
Since 𝑔(𝑥) ∈ [𝑎, 𝑐] for 𝑥 ∈ [𝑎, 𝑐], point 𝐿1(𝑔) falls

into [𝑎, 𝑐], and similarly point 𝐿2(𝑔) falls into [𝑐, 𝑏]. Using
coefficients

𝜆1 = ∫𝑐
𝑎
ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 ,

𝜆2 = ∫𝑏
𝑐
ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥

(46)

and functional convex combination 𝐿 = 𝜆1𝐿1 + 𝜆2𝐿2, we get
𝐿 (𝑔) = 𝜆1𝐿1 (𝑔) + 𝜆2𝐿2 (𝑔) = ∫𝑏

𝑎
𝑔ℎ 𝑑𝑥

∫𝑏
𝑎
ℎ 𝑑𝑥 ,

𝐿 (𝑓 (𝑔)) = ∫𝑏
𝑎
𝑓 (𝑔) ℎ 𝑑𝑥
∫𝑏
𝑎
ℎ 𝑑𝑥 .

(47)

By further calculating the functional terms according to for-
mula (21), we obtain the integral terms of formula (44).

The series of inequalities in formula (44) with 𝑔(𝑥) = 𝑥
and ℎ(𝑥) = 1 gives the refinement of the Hermite-Hadamard
inequality in formula (43) as follows:

𝑓(𝑎 + 𝑏2 ) ≤ 𝑐 − 𝑎𝑏 − 𝑎𝑓(𝑎 + 𝑐2 ) + 𝑏 − 𝑐𝑏 − 𝑎𝑓(𝑏 + 𝑐2 )
≤ ∫𝑏
𝑎
𝑓𝑑𝑥𝑏 − 𝑎

≤ 𝑐 − 𝑎2 (𝑏 − 𝑎)𝑓 (𝑎) + 𝑏 − 𝑐2 (𝑏 − 𝑎)𝑓 (𝑏)
+ 12𝑓 (𝑐) ≤ 𝑓 (𝑎) + 𝑓 (𝑏)2 .

(48)

The above refinement holds for each 𝑐 ∈ (𝑎, 𝑏). The version of
the above refinement was obtained in [10] by using the Jensen
type inequality for convex combinations with the common
center. That inequality was used to refine some important
means.

The inequality in formula (44) with identity function𝑔(𝑥) = 𝑥 and a symmetric function satisfying equation
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ℎ(𝑥) = ℎ(𝑎 + 𝑏 − 𝑥) provides the refinements of the Fejér
inequality in formula (40).

At the end, let us present the discrete version of Corol-
lary 8. Point evaluations 𝑔(𝑥𝑖) and ℎ(𝑥𝑖) will be shortened by𝑔𝑖 and ℎ𝑖, respectively.
Corollary 9. Let 𝑐 ∈ (𝑎, 𝑏) be a point. Let 𝑔 : [𝑎, 𝑏] → R be a
function such that 𝑔(𝑥) ∈ [𝑎, 𝑐] for 𝑥 ∈ [𝑎, 𝑐] and 𝑔(𝑥) ∈ [𝑐, 𝑏]
for 𝑥 ∈ [𝑐, 𝑏], and let ℎ : [𝑎, 𝑏] → R be a positive function. Let𝑥1, . . . , 𝑥𝑘 ∈ [𝑎, 𝑐] and 𝑥𝑘+1, . . . , 𝑥𝑛 ∈ [𝑐, 𝑏] be points.

Then each convex function 𝑓 : [𝑎, 𝑏] → R satisfies the
series of inequalities

𝑓(∑𝑛𝑖=1 𝑔𝑖ℎ𝑖∑𝑛
𝑖=1

ℎ𝑖 )
≤ ∑𝑘
𝑖=1

ℎ𝑖∑𝑛
𝑖=1

ℎ𝑖𝑓(
∑𝑘
𝑖=1

𝑔𝑖ℎ𝑖∑𝑘
𝑖=1

ℎ𝑖 )
+ ∑𝑛
𝑖=𝑘+1

ℎ𝑖∑𝑛
𝑖=1

ℎ𝑖 𝑓(
∑𝑛
𝑖=𝑘+1

𝑔𝑖ℎ𝑖∑𝑛
𝑖=𝑘+1

ℎ𝑖 ) ≤ ∑𝑛
𝑖=1

𝑓 (𝑔𝑖) ℎ𝑖∑𝑛
𝑖=1

ℎ𝑖
≤ ∑𝑘
𝑖=1

(𝑐 − 𝑔𝑖) ℎ𝑖∑𝑛
𝑖=1

(𝑐 − 𝑎) ℎ𝑖 𝑓 (𝑎) +
∑𝑛
𝑖=𝑘+1

(𝑔𝑖 − 𝑐) ℎ𝑖∑𝑛
𝑖=1

(𝑏 − 𝑐) ℎ𝑖 𝑓 (𝑏)
+ (∑𝑘

𝑖=1
(𝑔𝑖 − 𝑎) ℎ𝑖∑𝑛
𝑖=1

(𝑐 − 𝑎) ℎ𝑖 +
∑𝑛
𝑖=𝑘+1

(𝑏 − 𝑔𝑖) ℎ𝑖∑𝑛
𝑖=1

(𝑏 − 𝑐) ℎ𝑖 )𝑓 (𝑐)
≤ ∑𝑛
𝑖=1

(𝑏 − 𝑔𝑖) ℎ𝑖∑𝑛
𝑖=1

(𝑏 − 𝑎) ℎ𝑖 𝑓 (𝑎) + ∑𝑛
𝑖=1

(𝑔𝑖 − 𝑎) ℎ𝑖∑𝑛
𝑖=1

(𝑏 − 𝑎) ℎ𝑖 𝑓 (𝑏) .

(49)

Proof. Let F be the space of all real functions on domain 𝑆 =[𝑎, 𝑏]. We can apply the proof of Corollary 8 to summarizing
linear functionals

𝐿1 (𝑞) = 𝐿1 (𝑞; ℎ) = ∑𝑘
𝑖=1

𝑞𝑖ℎ𝑖∑𝑘
𝑖=1

ℎ𝑖 ,
𝐿2 (𝑞) = 𝐿2 (𝑞; ℎ) = ∑𝑛

𝑖=𝑘+1
𝑞𝑖ℎ𝑖∑𝑛

𝑖=𝑘+1
ℎ𝑖

(50)

acting to every 𝑞 ∈ F , and coefficients

𝜆1 = ∑𝑘
𝑖=1

ℎ𝑖∑𝑛
𝑖=1

ℎ𝑖 ,
𝜆2 = ∑𝑛

𝑖=𝑘+1
ℎ𝑖∑𝑛

𝑖=1
ℎ𝑖 .

(51)

Functionals 𝐿1 and 𝐿2 are certainly positive and unital.

The inequality in formula (49) is the extension and
refinement of the famous discrete form of Jensen’s inequality
(see [11]).
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