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We prove a new approach for some common fixed point results in complete 𝐺𝑝-metric spaces for weakly increasing self-mappings
satisfying (𝜓, 𝜑)-contractions via the concept of 𝐶-class functions. An example is also provided.

1. Introduction and Mathematical
Preliminaries

In 1922, Banach [1] proved his classical theoremwhich asserts
suitable conditions ensuring the existence and uniqueness of
fixed point of the underlying mapping. Over the last several
decades, this theorem has been generalized and improved in
various spaces (e.g., [2–6]). In 1994, Matthews [7] introduced
the notion of a partial metric space and established the
Banach contraction theorem in the class of partial metric
spaces. Notably, in partial metric spaces, the distance from
a point to itself need not be zero. In recent years, several
authors proved variant (common) fixed point theorems in
partial metric spaces. For more details, see [8–17].

For the sake of completeness, we recall the definition of a
partial metric space (in short PMS) which runs as follows.

Definition 1 (see [7]). A partial metric on a nonempty set 𝑋
is a function 𝑝 : 𝑋 × 𝑋 → 𝑅+, 𝑅+ := [0,∞), such that for all𝑥, 𝑦, 𝑧 ∈ 𝑋

(𝑝1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦),
(𝑝2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),

(𝑝3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),
(𝑝4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

On the other hand, the notation of generalized metric
spaces (in short 𝐺-metric spaces) was introduced by Mustafa
and Sims [18] who presented and improved the Banach
contraction principle in the class of 𝐺-metric spaces. The
definition of a 𝐺-metric space is introduced as follows.

Definition 2 (see [18]). Let𝑋 be a nonempty set. Suppose that𝐺 : 𝑋 × 𝑋 × 𝑋 → 𝑅+ satisfies
(a) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧,
(b) 𝐺(𝑥, 𝑦, 𝑧) > 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑥 ̸= 𝑦,
(c) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑦 ̸= 𝑧,
(d) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetry

in all three variables),
(e) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Then 𝐺 is called a 𝐺-metric on 𝑋 and (𝑋, 𝐺) is called a 𝐺-
metric space.
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Recently, as a unification between partial metric spaces
and 𝐺-metric spaces, Zand and Nezhad [19] defined the
concept of a 𝐺𝑝-metric space in the following way.

Definition 3 (see [19]). Let𝑋 be a nonempty set. Suppose that𝐺𝑝 : 𝑋 × 𝑋 × 𝑋 → 𝑅+ satisfies
(a) 𝑥 = 𝑦 = 𝑧 if 𝐺𝑝(𝑥, 𝑥, 𝑥) = 𝐺𝑝(𝑦, 𝑦, 𝑦) = 𝐺𝑝(𝑧, 𝑧,𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋;
(b) 𝐺𝑝(𝑥, 𝑥, 𝑥) ≤ 𝐺𝑝(𝑥, 𝑥, 𝑦) ≤ 𝐺𝑝(𝑥, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋;
(c) 𝐺𝑝(𝑥, 𝑦, 𝑧) = 𝐺𝑝(𝑥, 𝑧, 𝑦) = 𝐺𝑝(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (sym-

metry in all three variables);
(d) 𝐺𝑝(𝑥, 𝑦, 𝑧) ≤ 𝐺𝑝(𝑥, 𝑎, 𝑎) + 𝐺𝑝(𝑎, 𝑦, 𝑧) − 𝐺𝑝(𝑎, 𝑎, 𝑎),∀𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Then 𝐺𝑝 is called a 𝐺𝑝-metric on 𝑋 and (𝑋, 𝐺𝑝) is called a𝐺𝑝-metric space.

Example 4 (see [19]). Let𝑋 = [0,∞) and define𝐺𝑝(𝑥, 𝑦, 𝑧) =
max{𝑥, 𝑦, 𝑧} for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then (𝑋, 𝐺𝑝) is a 𝐺𝑝-metric
space. Note that (𝑋, 𝐺𝑝) is not a 𝐺-metric space.

Proposition 5 (see [19]). Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space.
Then for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑎 ∈ 𝑋, one has

(i) 𝐺𝑝(𝑥, 𝑦, 𝑧) ≤ 𝐺𝑝(𝑥, 𝑥, 𝑦) + 𝐺𝑝(𝑥, 𝑥, 𝑧) − 𝐺𝑝(𝑥, 𝑥, 𝑥);
(ii) 𝐺𝑝(𝑥, 𝑦, 𝑦) ≤ 2𝐺𝑝(𝑥, 𝑥, 𝑦) − 𝐺𝑝(𝑥, 𝑥, 𝑥);
(iii) 𝐺𝑝(𝑥, 𝑦, 𝑧) ≤ 𝐺𝑝(𝑥, 𝑎, 𝑎) + 𝐺𝑝(𝑦, 𝑎, 𝑎) + 𝐺𝑝(𝑧, 𝑎, 𝑎) −2𝐺𝑝(𝑎, 𝑎, 𝑎);
(iv) 𝐺𝑝(𝑥, 𝑦, 𝑧) ≤ 𝐺𝑝(𝑥, 𝑎, 𝑧) + 𝐺𝑝(𝑎, 𝑦, 𝑧) − 𝐺𝑝(𝑎, 𝑎, 𝑎).

Proposition 6 (see [19]). Every 𝐺𝑝-metric space (𝑋, 𝐺𝑝)
defines a metric space (𝑋,𝐷𝐺𝑝), where
𝐷𝐺𝑝 (𝑥, 𝑦) = 𝐺𝑝 (𝑥, 𝑦, 𝑦) + 𝐺𝑝 (𝑦, 𝑥, 𝑥) − 𝐺𝑝 (𝑥, 𝑥, 𝑥)

− 𝐺𝑝 (𝑦, 𝑦, 𝑦) , (1)

for all 𝑥, 𝑦 ∈ 𝑋.
Definition 7 (see [19]). Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space.
A sequence {𝑥𝑛} is𝐺𝑝-convergent to 𝑥 ∈ 𝑋 if lim𝑛,𝑚→∞ 𝐺𝑝(𝑥,𝑥𝑚, 𝑥𝑛) = 𝐺𝑝(𝑥, 𝑥, 𝑥).

We may write the above as 𝑥𝑛 → 𝑥.
Thus if 𝑥𝑛 → 𝑥 in a 𝐺𝑝-metric space (𝑋, 𝐺𝑝), then for

any 𝜖 > 0, there exists 𝑙 ∈ N such that |𝐺𝑝(𝑥, 𝑥𝑛, 𝑥𝑚) −𝐺𝑝(𝑥, 𝑥, 𝑥)| < 𝜖 for all 𝑛,𝑚 > 𝑙.
Proposition 8 (see [19]). Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space.
Take a sequence {𝑥𝑛} in 𝑋 and a point 𝑥 ∈ 𝑋. The following
are equivalent:

(i) {𝑥𝑛} is 𝐺𝑝-convergent to 𝑥;
(ii) 𝐺𝑝(𝑥𝑛, 𝑥𝑛, 𝑥) → 𝐺𝑝(𝑥, 𝑥, 𝑥) as 𝑛 → ∞;
(iii) 𝐺𝑝(𝑥𝑛, 𝑥, 𝑥) → 𝐺𝑝(𝑥, 𝑥, 𝑥) as 𝑛 → ∞.

Definition 9 (see [19]). Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space.

(i) A sequence {𝑥𝑛} is called a 𝐺𝑝-Cauchy if and only if
lim𝑚,𝑛→∞ 𝐺𝑝(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) exists (and is finite).

(ii) A 𝐺𝑝-metric space (𝑋, 𝐺𝑝) is said to be 𝐺𝑝-complete
if and only if every 𝐺𝑝-Cauchy sequence in 𝑋 is𝐺𝑝-convergent to 𝑥 ∈ 𝑋; that is, 𝐺𝑝(𝑥, 𝑥, 𝑥) =
lim𝑚,𝑛→∞ 𝐺𝑝(𝑥𝑛, 𝑥𝑚, 𝑥𝑚).

Take Ψ = {𝜓 : [0,∞) → [0,∞) is continuous, non-
decreasing, and 𝜓−1({0}) = {0}}, and Φ = {𝜑 : 𝜑 : [0,∞) → [0,∞) is lower semicontinuous, nondecreasing, and𝜑−1({0}) = {0}}.
Definition 10 (see [20]). Let (𝑋, ⪯) be a partially ordered set.
Two maps 𝑓, 𝑔 : 𝑋 → 𝑋 are said to be weakly increasing if𝑓𝑥 ⪯ 𝑔𝑓𝑥 and 𝑔𝑥 ⪯ 𝑓𝑔𝑥 for all 𝑥 ∈ 𝑋.
Definition 11. Let (𝑋, 𝐺𝑝) be a𝐺𝑝-metric space endowed with
a partial order ⪯. Let {𝑥𝑛} and 𝑧 be in 𝑋. (𝑋, 𝐺𝑝, ⪯) is said to
be regular if 𝑥𝑛 → 𝑧 and {𝑥𝑛} is nondecreasing; then 𝑥𝑛 ⪯ 𝑧
for all 𝑛 ∈ N.

Lemma 12 (see [21]). Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space. One
has the following.

(i) If 𝐺𝑝(𝑥, 𝑦, 𝑧) = 0, then 𝑥 = 𝑦 = 𝑧.
(ii) If 𝑥 ̸= 𝑦, then 𝐺𝑝(𝑥, 𝑦, 𝑦) > 0.
We rewrite the continuity of mappings in 𝐺𝑝-metric

spaces.

Definition 13. Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space and let 𝑇 :𝑋 → 𝑋 be a given mapping. One says that 𝑇 is continuous
at 𝑢 ∈ 𝑋 if for every sequence {𝑥𝑛} converging to 𝑢 in 𝑋, the
sequence {𝑇𝑥𝑛} converges to 𝑇𝑢 in 𝑋. If 𝑇 is continuous at
each point 𝑢 ∈ 𝑋, then one says that 𝑇 is continuous on𝑋.

Ansari [22] introduced the class of 𝐶-functions which
covers a large class of contractive conditions.

Definition 14 (see [22]). Amapping 𝐹 : [0,∞)2 → R is called
a 𝐶-function if it is continuous and satisfies the following
axioms:

(1) 𝐹(𝑠, 𝑡) ≤ 𝑠 for all 𝑠, 𝑡 ∈ [0,∞);
(2) 𝐹(𝑠, 𝑡) = 𝑠 implies that either 𝑠 = 0 or 𝑡 = 0.
Mention that any 𝐶-function 𝐹 verifies 𝐹(0, 0) = 0. We

denote byC the set of 𝐶-class functions.
Example 15 (see [22]). The following functions𝐹 : [0,∞)2 →
R are elements ofC. For all 𝑠, 𝑡 ∈ [0,∞), consider

(1) 𝐹(𝑠, 𝑡) = 𝑠 − 𝑡;
(2) 𝐹(𝑠, 𝑡) = 𝑚𝑠, where 0 < 𝑚 < 1;
(3) 𝐹(𝑠, 𝑡) = 𝑠/(1 + 𝑡)𝑟, where 𝑟 ∈ (0,∞);
(4) 𝐹(𝑠, 𝑡) = 𝑠𝛽(𝑠), where 𝛽 : [0,∞) → [0, 1) is continu-

ous;
(5) 𝐹(𝑠, 𝑡) = 𝑠 − 𝜑(𝑠), where 𝜑 : [0,∞) → [0,∞) is a

continuous function such that 𝜑(𝑡) = 0 ⇔ 𝑡 = 0.
Abbas et al. [20] proved the following result.
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Theorem 16 (see [20]). Let (𝑋, ⪯) be a partially ordered set
and let 𝑓 and 𝑔 be weakly increasing self-mappings on a
complete 𝐺-metric space 𝑋. Suppose that there exist 𝜓 ∈ Ψ
and 𝜑 ∈ Φ such that

𝜓 (𝐺 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) (2)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where
𝑀(𝑥, 𝑦, 𝑦) = 𝑎1𝐺 (𝑥, 𝑦, 𝑦) + 𝑎2𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥)

+ 𝑎3𝐺 (𝑦, 𝑔𝑦, 𝑔𝑦)
+ 𝑎4 [𝐺 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)] ,

(3)

where 𝑎𝑖 > 0 for 𝑖 = {1, 2, 3, 4} with 𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 ≤ 1.
Assume either 𝑓 or 𝑔 is continuous, or (𝑋, 𝐺𝑝, ⪯) is regular.
Then 𝑓 and 𝑔 have a common fixed point.

Very recently, Barakat and Zidan [13] extended Theo-
rem 16 to the class of 𝐺𝑝-metric spaces where a general
contractive condition is considered.

Theorem 17 (see [13]). Let (𝑋, ⪯) be a partially ordered set.
Let 𝑓 and 𝑔 be weakly increasing self-mappings on a complete𝐺𝑝-metric space 𝑋 satisfying

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
− 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) (4)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ, 𝜑 ∈ Φ, and
𝑀(𝑥, 𝑦, 𝑦) = max {𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) ,
12 [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]} .

(5)

Assume either 𝑓 or 𝑔 is continuous or (𝑋, 𝐺𝑝, ⪯) is regular.
Then 𝑓 and 𝑔 have a common fixed point.

In this paper, we prove a common fixed point result
in complete 𝐺𝑝-metric spaces for weakly increasing self-
mappings satisfying (𝜓, 𝜑)-contractions via the concept of𝐶-class functions. Some corollaries are also presented for
particular cases of the 𝐶-function. For a given 𝐶-function,
Theorem 17 is reached.

2. Main Results

First, we introduce an auxiliary lemma as follows.

Lemma 18. Let (𝑋, 𝐺𝑝) be a 𝐺𝑝-metric space and let {𝑥𝑛} be a
sequence in𝑋 such that {𝐺𝑝(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1)} is decreasing and

lim
𝑛→∞

𝐺𝑝 (𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1) = 0. (6)

If {𝑥2𝑛} is not a 𝐺𝑝-Cauchy sequence, then there exist an𝜖 > 0 and {𝑚𝑘}, {𝑛𝑘} of positive integers such that the following
sequences {𝐺𝑝(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)}, {𝐺𝑝(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)},{𝐺𝑝(𝑥2𝑚𝑘−1, 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)}, {𝐺𝑝(𝑥2𝑚𝑘−1, 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)}, and{𝐺𝑝(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2)} tend to 𝜖 when 𝑘 → ∞.

Proof. Assume that {𝑥2𝑛} is not a 𝐺𝑝-Cauchy sequence. So
there exist 𝜖 > 0, and {𝑚𝑘} and {𝑛𝑘} of positive integers such
that

𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−2) < 𝜖,
𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘) > 𝜖,

𝑛𝑘 > 𝑚𝑘 > 𝑘
(7)

for all 𝑘 ∈ N. Then

𝜖 ≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)
≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−2)
+ 𝐺𝑝 (𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘−1)
+ 𝐺𝑝 (𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)
− 𝐺𝑝 (𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−2)
− 𝐺𝑝 (𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘−1)

< 𝜖 + 𝐺𝑝 (𝑥2𝑛𝑘−2, 𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘−1)
+ 𝐺𝑝 (𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘) .

(8)

By taking the limit in above inequalities and using (6), we get

lim
𝑘→∞

𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘) = 𝜖. (9)

On the other hand

𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘) ≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
+ 𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)
− 𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)

≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
+ 2𝐺𝑝 (𝑥2𝑛𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
− 2𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)

≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
+ 2𝐺𝑝 (𝑥2𝑛𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
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≤ 𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘 , 𝑥2𝑛𝑘)
+ 𝐺𝑝 (𝑥2𝑛𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
+ 2𝐺𝑝 (𝑥2𝑛𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1) .

(10)

Letting 𝑘 → ∞, again using (6) and (9), we obtain

lim
𝑘→∞

𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1) = 𝜖. (11)

Similarly, we can prove that the remaining sequences tend to𝜖 as 𝑘 → ∞.

Now, we state and prove our main result in the following
way.

Theorem 19. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋. Assume there exist 𝜓, 𝜑 ∈ Ψ and 𝐹 ∈ C such that

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦))
≤ 𝐹 (𝜓 (𝑀(𝑥, 𝑦, 𝑦)) , 𝜑 (𝑀 (𝑥, 𝑦, 𝑦))) (12)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where
𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) ,
[𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 } .

(13)

Suppose that one of the following two cases is satisfied:

(i) 𝑓 or 𝑔 is continuous;
(ii) (𝑋, 𝐺𝑝, ⪯) is regular.

Then the maps 𝑓 and 𝑔 have a common fixed point.

Proof. Assume that 𝑢 is a fixed point of 𝑓. Taking 𝑥 = 𝑦 = 𝑢
in (12), we have

𝜓 (𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)) = 𝜓 (𝐺𝑝 (𝑓𝑢, 𝑔𝑢, 𝑔𝑢))
≤ 𝐹 (𝜓 (𝑀 (𝑢, 𝑢, 𝑢)) , 𝜑 (𝑀 (𝑢, 𝑢, 𝑢))) , (14)

where

𝑀(𝑢, 𝑢, 𝑢) = max{𝐺𝑝 (𝑢, 𝑢, 𝑢) , 𝐺𝑝 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢) , [𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢) + 𝐺𝑝 (𝑢, 𝑓𝑢, 𝑓𝑢)]2 }

= max{𝐺𝑝 (𝑢, 𝑢, 𝑢) , 𝐺𝑝 (𝑢, 𝑢, 𝑢) , 𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢) ,
[𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢) + 𝐺𝑝 (𝑢, 𝑢, 𝑢)]2 }
= max {𝐺𝑝 (𝑢, 𝑢, 𝑢) , 𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)} = 𝐺𝑝 (𝑢, 𝑔𝑢,
𝑔𝑢) .

(15)

Hence we get

𝜓 (𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)) = 𝜓 (𝐺𝑝 (𝑓𝑢, 𝑔𝑢, 𝑔𝑢))
≤ 𝐹 (𝜓 (𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)) , 𝜑 (𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)))
≤ 𝜓 (𝐺𝑝 (𝑢, 𝑔𝑢, 𝑔𝑢)) .

(16)

We deduce 𝐹(𝜓(𝐺𝑝(𝑢, 𝑔𝑢, 𝑔𝑢))), 𝜑(𝐺𝑝(𝑢, 𝑔𝑢, 𝑔𝑢)) ≤ 𝜓(𝐺𝑝(𝑢,𝑔𝑢, 𝑔𝑢)). By a property of the 𝐶-class 𝐹, we get𝜓(𝐺𝑝(𝑢, 𝑔𝑢, 𝑔𝑢)) = 0 or 𝜑(𝐺𝑝(𝑢, 𝑔𝑢, 𝑔𝑢)) = 0. The
functions 𝜓 and 𝜑 are in Ψ, so 𝐺𝑝(𝑢, 𝑔𝑢, 𝑔𝑢) = 0; that is,𝑢 = 𝑔𝑢; that is, 𝑢 is a common fixed point of 𝑓 and 𝑔. Now,
if 𝑢 is a fixed point of 𝑔, similarly we get that 𝑢 is also fixed
point of 𝑓. Let 𝑥0 be an arbitrary point of 𝑋. The pair (𝑓, 𝑔)
is weakly increasing, so we construct a sequence {𝑥𝑛} in𝑋 as
follows:

𝑥1 = 𝑓𝑥0 ⪯ 𝑔𝑓𝑥0 = 𝑔𝑥1 = 𝑥2,
𝑥2 = 𝑔𝑥1 ⪯ 𝑓𝑔𝑥1 = 𝑓𝑥2 = 𝑥3,

...
𝑥2𝑛+1 = 𝑓𝑥2𝑛 ⪯ 𝑥2𝑛+2 = 𝑔𝑥2𝑛+1.

(17)

We have 𝑥𝑛 ⪯ 𝑥𝑛+1 for all 𝑛 ≥ 0.
Now, suppose that 𝐺𝑝(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) = 0 for some 𝑛 ≥0. Then 𝑥2𝑛 = 𝑥2𝑛+1 = 𝑓𝑥2𝑛; that is, 𝑥2𝑛 is a fixed point of 𝑓.

Proceeding similarly, we get that 𝑥2𝑛 is a fixed point of 𝑔.
From now on, we suppose that 𝐺𝑝(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) > 0

for every 𝑛 ∈ N. Since 𝑥2𝑛 and 𝑥2𝑛+1 are comparable, by (12),

𝜓 (𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))
= 𝜓 (𝐺𝑝 (𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1, 𝑔𝑥2𝑛+1))
≤ 𝐹 (𝜓 (𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1)) ,
𝜑 (𝑀 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1))) ,

(18)

where



Journal of Function Spaces 5

𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) = max{𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛, 𝑓𝑥2𝑛, 𝑓𝑥2𝑛) , 𝐺𝑝 (𝑥2𝑛+1, 𝑔𝑥2𝑛+1, 𝑔𝑥2𝑛+1) ,
[𝐺𝑝 (𝑥2𝑛, 𝑔𝑥2𝑛+1, 𝑔𝑥2𝑛+1) + 𝐺𝑝 (𝑥2𝑛+1, 𝑓𝑥2𝑛, 𝑓𝑥2𝑛)]2 } = max{𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛+1,

𝑥2𝑛+2, 𝑥2𝑛+2) , [𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+2, 𝑥2𝑛+2) + 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+1)]2 } ≤ max{𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2,

𝑥2𝑛+2) , [𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) + 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) − 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+1) + 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+1)]2 }
≤ max {𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) , 12 [𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) + 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)]}
= max {𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) , 𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)} .

(19)

If𝐺𝑝(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) ≥ 𝐺𝑝(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) for some 𝑛 ≥0, then 𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) = 𝐺𝑝(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2). Using
(18), we have

𝜓 (𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))
≤ 𝐹 (𝜓 (𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) ,
𝜑 (𝐺𝑝 (𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))) .

(20)

By a property of𝐹, this implies that𝜓(𝐺𝑝(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))
or 𝜑(𝐺𝑝(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) = 0, which is a contradiction.
Therefore, for all 𝑛 ≥ 0, 𝐺𝑝(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) < 𝐺𝑝(𝑥2𝑛,𝑥2𝑛+1, 𝑥2𝑛+1). Similarly, we may show that 𝐺𝑝(𝑥2𝑛, 𝑥2𝑛+1,𝑥2𝑛+1) < 𝐺𝑝(𝑥2𝑛−1, 𝑥2𝑛, 𝑥2𝑛) for all 𝑛 ≥ 0. We deduce that
for all 𝑛 ≥ 0

𝐺𝑝 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) < 𝐺𝑝 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) . (21)

So the sequence {𝐺𝑝(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2)} is decreasing. Then
there exists 𝐿 ≥ 0, such that lim𝑛→∞𝐺𝑝 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) = 𝐿.
We claim that 𝐿 = 0. We have

lim
𝑛→∞

𝑀(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝐿. (22)

Recall that

𝜓 (𝐺𝑝 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2))
≤ 𝐹 (𝜓 (𝑀 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)) ,
𝜙 (𝑀 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))) .

(23)

As 𝑛 → ∞, by continuity of 𝐹, 𝜓, and 𝜑, we get
𝜓 (𝐿) ≤ 𝐹 (𝜓 (𝐿) , 𝜑 (𝐿)) ≤ 𝜓 (𝐿) . (24)

By a property of 𝐹, we get𝜓(𝐿) = 0 or 𝜑(𝐿) = 0; that is, 𝐿 = 0.
We conclude that

lim
𝑛→∞

𝐺𝑝 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) = 0. (25)

We shall show that {𝑥𝑛} is a 𝐺𝑝-Cauchy sequence. Suppose
that {𝑥2𝑛} is not a 𝐺𝑝-Cauchy sequences. By (12),

𝜓 (𝐺𝑝 (𝑥2𝑚𝑘+1, 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2))
= 𝜓 (𝐺𝑝 (𝑓𝑥2𝑚𝑘 , 𝑔𝑥2𝑛𝑘+1, 𝑔𝑥2𝑛𝑘+1))
≤ 𝐹 (𝜓 (𝑀(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)) ,
𝜑 (𝑀(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1))) ,

(26)

where

𝑀(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1)
= max {𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1) ,
𝐺𝑝 (𝑥2𝑚𝑘 , 𝑓𝑥2𝑚𝑘 , 𝑓𝑥2𝑚𝑘) ,
𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑔𝑥2𝑛𝑘+1, 𝑔𝑥2𝑛𝑘+1) ,
12 [𝐺𝑝 (𝑥2𝑚𝑘 , 𝑔𝑥2𝑛𝑘+1, 𝑔𝑥2𝑛𝑘+1)
+ 𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑓𝑥2𝑚𝑘 , 𝑔𝑥2𝑚𝑘)]}
= max {𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1) ,
𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘+1) ,
𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2) ,
12 [𝐺𝑝 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2)
+ 𝐺𝑝 (𝑥2𝑛𝑘+1, 𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘+1)]} .

(27)
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By taking the limit as 𝑘 → ∞, from Lemma 18, we have

lim
𝑘→∞

𝑀(𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1) = max {𝜖, 0, 0, 𝜖}
= 𝜖 (> 0) . (28)

Hence 𝜓(𝜖) ≤ 𝐹(𝜓(𝜖), 𝜙(𝜖)). We deduce that 𝜓(𝜖) = 0 or𝜙(𝜖) = 0, which is a contradiction. This proves that {𝑥2𝑛}
is a 𝐺𝑝-Cauchy sequence and hence {𝑥𝑛} is a 𝐺𝑝-Cauchy
sequence. By 𝐺𝑝-completeness of 𝑋, there exists 𝑧 ∈ 𝑋 such
that {𝑥𝑛} converges to 𝑧 as 𝑛 → ∞.

Now, we will distinguish the cases (i) and (ii) of Theo-
rem 19.

(i) Without loss of generality, suppose that 𝑔 is continu-
ous. Since 𝑥2𝑛+1 → 𝑧, we obtain that 𝑥2𝑛+2 = 𝑔(𝑥2𝑛+1) → 𝑔𝑧.
But as 𝑥2𝑛+2 → 𝑧 (as a subsequence of {𝑥𝑛}), it follows that𝑔𝑧 = 𝑧. From the beginning of the proof, we get 𝑔𝑧 = 𝑧 = 𝑓𝑧.

The case that 𝑓 is continuous is treated similarly.
(ii) Suppose that (𝑋, 𝐺𝑝, ⪯) is regular. We know that

sequence {𝑥𝑛} is nondecreasing and 𝑥𝑛 → 𝑧 in 𝑋; then by
regularity of (𝑋, 𝐺𝑝, ⪯), 𝑥2𝑛+1 ⪯ 𝑧 for all 𝑛 ∈ N. By (12)

𝜓 (𝐺𝑝 (𝑥2𝑛+1, 𝑔𝑧, 𝑔𝑧)) = 𝜓 (𝐺𝑝 (𝑓𝑥2𝑛, 𝑔𝑧, 𝑔𝑧))
≤ 𝐹 (𝜓 (𝑀(𝑥2𝑛, 𝑧, 𝑧)) , 𝜑 (𝑀 (𝑥2𝑛, 𝑧, 𝑧))) , (29)

where

𝑀(𝑥2𝑛, 𝑧, 𝑧) = max{𝐺𝑝 (𝑥2𝑛, 𝑧, 𝑧) ,
𝐺𝑝 (𝑥2𝑛, 𝑓𝑥2𝑛, 𝑓𝑥2𝑛) , 𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧) ,
[𝐺𝑝 (𝑥2𝑛, 𝑔𝑧, 𝑔𝑧) + 𝐺𝑝 (𝑧, 𝑓𝑥2𝑛, 𝑓𝑥2𝑛)]2 }

= max{𝐺𝑝 (𝑥2𝑛, 𝑧, 𝑧) , 𝐺𝑝 (𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1) ,
𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧) ,
[𝐺𝑝 (𝑥2𝑛, 𝑔𝑧, 𝑔𝑧) + 𝐺𝑝 (𝑧, 𝑥2𝑛+1, 𝑥2𝑛+1)]2 } .

(30)

By taking the limit as 𝑛 → ∞, we have lim𝑛→∞𝑀(𝑥2𝑛, 𝑧, 𝑧) =𝐺𝑝(𝑧, 𝑔𝑧, 𝑔𝑧). Thus

𝜓 (𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧)) = lim
𝑛→∞

sup𝜓 (𝐺𝑝 (𝑓𝑥2𝑛, 𝑔𝑧, 𝑔𝑧))
≤ lim
𝑛→∞

sup [𝐹 (𝜓 (𝑀 (𝑥2𝑛, 𝑧, 𝑧)) , 𝜑 (𝑀 (𝑥2𝑛, 𝑧, 𝑧)))]
≤ 𝐹 (𝜓 (𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧)) , 𝜑 (𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧)))
≤ 𝜓 (𝐺𝑝 (𝑧, 𝑔𝑧, 𝑔𝑧)) .

(31)

Similarly, we may get 𝐺𝑝(𝑧, 𝑔𝑧, 𝑔𝑧) = 0 and so 𝑧 = 𝑓𝑧 =𝑔𝑧.

Now, we provide some corollaries from our obtained
result given by Theorem 19. First, putting 𝜓(𝑡) = 𝑡 in
Theorem 19, we obtain the following.

Corollary 20. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋 satisfying

𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝐹 (𝑀(𝑥, 𝑦, 𝑦) , 𝜑 (𝑀 (𝑥, 𝑦, 𝑦))) (32)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Ψ, 𝐹 ∈ C, and

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,
𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) ,
[𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 } .

(33)

Assume either 𝑓 or 𝑔 is continuous, or (𝑋, 𝐺𝑝, ⪯) is regular.
Then 𝑓 and 𝑔 have a common fixed point.

Proceeding as Theorem 19, we have the following.

Corollary 21. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space𝑋. Assume that that there exist 𝜓, 𝜑 ∈ Ψ and 𝐹 ∈ C such
that

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦))
≤ 𝐹 (𝜓 (𝑀(𝑥, 𝑦, 𝑦)) , 𝜑 (𝑀 (𝑥, 𝑦, 𝑦))) (34)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where
𝑀(𝑥, 𝑦, 𝑦)

= 𝑎1𝐺𝑝 (𝑥, 𝑦, 𝑦) + 𝑎2𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥)
+ 𝑎3𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦)
+ 𝑎4 [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)] ,

(35)

where 𝑎𝑖 > 0 for 𝑖 = {1, 2, 3, 4}with 𝑎1+𝑎2+𝑎3+𝑎4 ≤ 1.Assume
either 𝑓 or 𝑔 is continuous or (𝑋, 𝐺𝑝, ⪯) is regular. Then 𝑓 and𝑔 have a common fixed point.

The above corollary is the 𝐺𝑝-metric space version of
Theorem 16 via the 𝐶-class function 𝐹, except that 𝜑 is taken
in addition to the fact that it is continuous in [0,∞) (with
respect to the conditions on 𝜑 inTheorem 16). If we set𝜓(𝑡) =𝑡 in Corollary 21, we get the following.

Corollary 22. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋 satisfying

𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝐹 (𝑀(𝑥, 𝑦, 𝑦) , 𝜑 (𝑀 (𝑥, 𝑦, 𝑦))) (36)
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for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Ψ, 𝐹 ∈ C, and

𝑀(𝑥, 𝑦, 𝑦)
= 𝑎1𝐺𝑝 (𝑥, 𝑦, 𝑦) + 𝑎2𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥)
+ 𝑎3𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦)
+ 𝑎4 [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)] ,

(37)

where 𝑎𝑖 > 0 for 𝑖 = 1, 2, 3, 4with 𝑎1+𝑎2+𝑎3+2𝑎4 ≤ 1. Assume
either 𝑓 or 𝑔 is continuous or (𝑋, 𝐺𝑝, ⪯) is regular. Then 𝑓 and𝑔 have a common fixed point.

Taking 𝐹(𝑠, 𝑡) = 𝑚𝑠 with 0 < 𝑚 < 1 (𝜓(𝑡) = 𝜑(𝑡) = 𝑡) in
Theorem 19, we state the following.

Corollary 23. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋 satisfying

𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝑚 ⋅max{𝐺𝑝 (𝑥, 𝑦, 𝑦) ,
𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) , 𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) ,
[𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 } ,

(38)

for all comparable 𝑥, 𝑦 ∈ 𝑋. Assume either𝑓 or 𝑔 is continuous
or (𝑋, 𝐺𝑝, ⪯) is regular. Then 𝑓 and 𝑔 have a common fixed
point.

Proceeding similarly as Theorem 19, we have the follow-
ing.

Corollary 24. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋 satisfying

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦))
≤ 𝐹 (𝜓 (𝐺𝑝 (𝑥, 𝑦, 𝑦)) , 𝜑 (𝐺𝑝 (𝑥, 𝑦, 𝑦))) (39)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜓, 𝜑 ∈ Ψ and 𝐹 ∈ C.
Assume either 𝑓 or 𝑔 is continuous or (𝑋, 𝐺𝑝, ⪯) is regular.

Then 𝑓 and 𝑔 have a common fixed point.

Taking 𝐹(𝑠, 𝑡) = 𝑠/(1 + 𝑡) in Theorem 19, we have the
following.

Corollary 25. Let (𝑋, ⪯) be a partially ordered set. Let 𝑓 and𝑔 be weakly increasing self-mappings on a complete 𝐺𝑝-metric
space 𝑋 satisfying

𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝑘𝐺𝑝 (𝑥, 𝑦, 𝑦)1 + 𝐺𝑝 (𝑥, 𝑦, 𝑦) (40)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 0 < 𝑘 < 1. Assume either 𝑓
or 𝑔 is continuous or (𝑋, 𝐺𝑝, ⪯) is regular. Then 𝑓 and 𝑔 have
a common fixed point.

We provide the following example illustrating Theo-
rem 19.

Example 26. Let 𝐹(𝑠, 𝑡) = 𝑠/(1 + 𝑡) for all 𝑠, 𝑡 ≥ 0. Let 𝑋 =[0, 1] be a set endowed with the partial order 𝑥 ⪯ 𝑦 ⇔ 𝑦 ≤ 𝑥.
Let 𝐺𝑝(𝑥, 𝑦, 𝑧) = max {𝑥, 𝑦, 𝑧} be a 𝐺𝑝-metric on 𝑋, given𝑓, 𝑔 : 𝑋 → 𝑋 as 𝑓(𝑥) = 𝑥/12 and

𝑔 (𝑥) =
{{{{{{{

𝑥6 ; 𝑥 ∈ [0, 12) ,𝑥22 ; 𝑥 ∈ [12 , 1] .
(41)

It is clear that 𝑓 is continuous on (𝑋, 𝐺𝑝) and the pair (𝑓, 𝑔)
is weakly increasing. Take 𝜓(𝑡) = 𝑡2 and 𝜑(𝑡) = 𝑡 for all 𝑡 ≥ 0.
We shall prove that, for all 𝑥, 𝑦 ∈ [0, 1], we have

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) . (42)

First, for 𝑥 ∈ [0, 1/2) we have
𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓 (max {𝑓𝑥, 𝑔𝑦, 𝑔𝑦})

= 𝜓(max { 𝑥12 , 𝑦6 , 𝑦6 }) .
(43)

Now, we will discuss the following two cases.

Case 1. Suppose that 𝑥/12 < 𝑦/6. We have

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓(𝑦6 ) = 𝑦236 . (44)

Moreover

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) , [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 }
= max {max {𝑥, 𝑦, 𝑦} ,max {𝑥, 𝑓𝑥, 𝑓𝑥} ,
max {𝑦, 𝑔𝑦, 𝑔𝑦} , 12 [max {𝑥, 𝑔𝑦, 𝑔𝑦}]
+max {𝑦, 𝑓𝑥, 𝑓𝑥}} = max {𝑥, 𝑥, 𝑦,
12 [𝑥 +max {𝑦, 𝑥12}]} = 𝑥.

(45)

Thus

𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) =

𝜓 (𝑥)1 + 𝜑 (𝑥) = 𝑥21 + 𝑥 . (46)
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Therefore

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝑦236 ≤ 𝑥236 ≤ 𝑥21 + 𝑥
= 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) .

(47)

Thus (42) holds.

Case 2. Suppose that 𝑥/12 ≥ 𝑦/6; hence
𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓( 𝑥12) = 𝑥2144 . (48)

Moreover

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) , [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 }
= max {max {𝑥, 𝑦, 𝑦} ,max {𝑥, 𝑓𝑥, 𝑓𝑥} ,
max {𝑦, 𝑔𝑦, 𝑔𝑦} , 12 [max {𝑥, 𝑔𝑦, 𝑔𝑦}]
+max {𝑦, 𝑓𝑥, 𝑓𝑥}} = max {𝑥, 𝑥, 𝑦,
12 [𝑥 +max {𝑦, 𝑥12}]} = 𝑥.

(49)

Therefore

𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) =

𝜓 (𝑥)1 + 𝜑 (𝑥) = 𝑥21 + 𝑥 . (50)

Thus

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝑥2144 ≤ 𝑥21 + 𝑥
= 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) ;

(51)

that is, (42) holds.
Second, for 𝑥 ∈ [1/2, 1]
𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓 (max {𝑓𝑥, 𝑔𝑦, 𝑔𝑦})

= 𝜓(max { 𝑥12 , 𝑦2, 𝑦2}) .
(52)

Let us discuss the following two cases.

Case 1. Suppose that 𝑥/12 < 𝑦2/2. Hence
𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓(𝑦22 ) = 𝑦44 . (53)

Moreover

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) , [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 }
= max {max {𝑥, 𝑦, 𝑦} ,max {𝑥, 𝑓𝑥, 𝑓𝑥} ,
max {𝑦, 𝑔𝑦, 𝑔𝑦} , 12 [max {𝑥, 𝑔𝑦, 𝑔𝑦}]
+max {𝑦, 𝑓𝑥, 𝑓𝑥}} = max {𝑥, 𝑥, 𝑦,
12 [𝑥 +max {𝑦, 𝑥12}]} = 𝑥.

(54)

Therefore

𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) =

𝜓 (𝑥)1 + 𝜑 (𝑥) = 𝑥21 + 𝑥 . (55)

We deduce

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝑦44 ≤ 𝑥24 ≤ 𝑥21 + 𝑥
= 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) ;

(56)

that is, (42) holds.

Case 2. Suppose that 𝑥/12 ≥ 𝑦2/2. Then

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝜓( 𝑥12) = 𝑥2144 . (57)

Moreover

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺𝑝 (𝑥, 𝑦, 𝑦) , 𝐺𝑝 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺𝑝 (𝑦, 𝑔𝑦, 𝑔𝑦) , [𝐺𝑝 (𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺𝑝 (𝑦, 𝑓𝑥, 𝑓𝑥)]2 }
= max {max {𝑥, 𝑦, 𝑦} ,max {𝑥, 𝑓𝑥, 𝑓𝑥} ,
max {𝑦, 𝑔𝑦, 𝑔𝑦} , 12 [max {𝑥, 𝑔𝑦, 𝑔𝑦}]
+max {𝑦, 𝑓𝑥, 𝑓𝑥}} = max {𝑥, 𝑥, 𝑦,
12 [𝑥 +max {𝑦, 𝑥12}]} = 𝑥.

(58)

Therefore

𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) =

𝜓 (𝑥)1 + 𝜑 (𝑥) = 𝑥21 + 𝑥 . (59)
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Thus

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝑥2144 ≤ 𝑥21 + 𝑥
= 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
1 + 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) .

(60)

Then (42) holds. All the conditions ofTheorem 19 are satisfied
and 0 is the common fixed point for 𝑓 and 𝑔.

On the other hand, the contractive condition of Theo-
rem 17 is not satisfied. Indeed, for 𝑥 = 1 and 𝑦 = 1/3, we
have

𝜓 (𝐺𝑝 (𝑓𝑥, 𝑔𝑦, 𝑔𝑦)) = 𝑥2144 = 1144 > 0 = 𝑥2 − 𝑥
= 𝜓 (𝑀(𝑥, 𝑦, 𝑦))
− 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) .

(61)
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