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In this article, we give the boundedness conditions in terms of Zygmund-type integral inequalities for oscillatory integral operators
and fractional oscillatory integral operators on the vanishing generalized weighted Morrey spaces. Moreover, we investigate
corresponding commutators.

1. Introduction

The classical Morrey spaces 𝑀𝑝,𝜆 that play important role in
the theory of partial differential equations were introduced
by Morrey [1] in 1938. Since then Morrey spaces have been
studied by various authors. We refer readers to the survey
[2] and to the elegant book [3] for further information about
these spaces and references on recent developments in this
field.

So far various generalizations ofMorrey spaces have been
defined. Mizuhara [4] introduced the generalized Morrey
space 𝑀𝑝,𝜑 and Komori and Shirai [5] defined the weighted
Morrey spaces 𝐿𝑝,𝜅(𝑤). Guliyev [6] gave the notion of
generalized weighted Morrey space 𝑀𝑝,𝜑(𝑤) which can be
accepted as an extension of 𝑀𝑝,𝜑 and 𝐿𝑝,𝜅(𝑤). Eroglu [7]
proved the boundedness of oscillatory integral operators,
fractional oscillatory integral operators, and the correspond-
ing commutators on 𝑀𝑝,𝜑 and Shi et al. [8] proved the
boundedness of these operators and commutators on𝐿𝑝,𝜅(𝑤).
In [9], Lu et al. obtained the boundedness of sublinear
operators with rough kernels on 𝑀𝑝,𝜑 and in [10], Shi and
Fu showed the boundedness of these operators on 𝐿𝑝,𝜅(𝑤).
The boundedness of some sublinear operators and their
commutators on𝐿𝑝,𝜅(𝑤)was obtained by Shi et al. [11] and the

boundedness of sublinear operators on 𝑀𝑝,𝜑(𝑤) was proved
by Mustafayev [12].

Vanishing Morrey spaces 𝑉𝑀𝑝,𝜆(R𝑛) are subspaces of
functions inMorrey spaceswhichwere introduced byVitanza
[13] satisfying the condition

lim
𝑟→0

sup
𝑥∈R𝑛

0<𝑡<𝑟

𝑡−𝜆/𝑝 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑡)) = 0. (1)

The properties and applications of vanishing Morrey
Spaces were given in [14]. On vanishing Morrey spaces, the
boundedness of commutators of themultidimensional Hardy
type operators was proved in [15]. The vanishing generalized
Morrey spaces 𝑉𝑀𝑝,𝜑(R𝑛) were introduced and studied by
Samko in [16].

In this study, as distinct from [8], we focus on vanishing
generalized weighted Morrey spaces and give Zygmund-
type conditions to prove the boundedness of oscillatory
and the fractional oscillatory integral operators and their
commutators in these spaces. In Section 2 we recall some
definitions and necessary preliminaries and in Section 3 we
give our main results; namely, we prove our theorems on
vanishing generalized weighted Morrey spaces.
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Throughout this paper, 𝐶, 𝑐, 𝑐𝑖 and so on are used as
positive constant that can change from one line to another.𝐴 ≲ 𝐵 means that 𝐴 ≤ 𝑐𝐵 with some positive constant 𝑐. If𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴, then we say 𝐴 ≈ 𝐵 which means 𝐴 and 𝐵
are equivalent.

2. Preliminaries

Let 𝑤 be a weight function on R𝑛, such that 𝑤(𝑥) > 0 for
almost every 𝑥 ∈ R𝑛. 𝐸 is a measurable set with Lebesgue
measure notated by |𝐸| and we define 𝑤(𝐸) = ∫

𝐸
𝑤(𝑥)𝑑𝑥.

For 1 ≤ 𝑝 < ∞ and Ω ⊂ R𝑛 we denote the weighted
Lebesgue space by 𝐿𝑝,𝑤(Ω) with the norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(Ω) = (∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)1/𝑝 < ∞. (2)

Let 1 ≤ 𝑝 < ∞, 𝜑(𝑥, 𝑟) be a positive continuous function
onR𝑛×(0,∞) and let𝑤 be a weight function onR𝑛.We show
the generalized weighted Morrey space by 𝑀𝑝,𝜑(R𝑛; 𝑤) =𝑀𝑝,𝜑(𝑤), which is space of all functions 𝑓 ∈ 𝐿𝑙𝑜𝑐𝑝,𝑤(R𝑛) with
finite quasinorm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑀𝑝,𝜑(𝑤) = sup
𝑥∈R𝑛,𝑟>0

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) , (3)

where 𝐵(𝑥, 𝑟) is the open ball centered at 𝑥 of radius 𝑟.
The fractional integral operator (Riesz potential) 𝐼𝛼 and

fractional Maximal operator 𝑀𝛼, which play important roles
in real and harmonic analysis, are defined by

𝐼𝛼𝑓 (𝑥) = ∫
R𝑛

𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛−𝛼 𝑑𝑦, 0 < 𝛼 < 𝑛,
𝑀𝛼𝑓 (𝑥) = sup

𝑟>0

1𝑟𝑛−𝛼 ∫
𝐵(𝑥,𝑟)

𝑓 (𝑦) 𝑑𝑦, 0 ≤ 𝛼 < 𝑛,
(4)

where 𝑓 ∈ 𝐿𝑙𝑜𝑐1 (R𝑛). If 𝛼 = 0, then 𝑀 ≡ 𝑀0 is the Hardy-
Littlewood maximal operator.

The class of 𝐴𝑝 weights was introduced by Muckenhoupt
in [17] to show that Hardy-Littlewood maximal function 𝑀
is bounded onweighted Lebesgue spaces 𝐿𝑝,𝑤(R𝑛) if and only
if 𝑤 ∈ 𝐴𝑝, 1 < 𝑝 < ∞.

Now we defineMuckenhoupt class𝐴𝑝. Let 1 ≤ 𝑝 < ∞. A
weight 𝑤 is said to be an 𝐴𝑝 weight, if there exists a positive
constant 𝑐𝑝 such that, for every ball 𝐵 ⊂ R𝑛,

(∫
𝐵
𝑤 (𝑥) 𝑑𝑥) (∫

𝐵
𝑤 (𝑥)1−𝑝󸀠 𝑑𝑥)𝑝−1 ≤ 𝑐𝑝 |𝐵|𝑝 , (5)

when 1 < 𝑝 < ∞, and for 𝑝 = 1
∫
𝐵
𝑤 (𝑦) 𝑑𝑦 ≤ 𝑐1𝑤 (𝑥) |𝐵| (6)

for almost everywhere 𝑥 ∈ 𝐵. The smallest 𝑐𝑝 is shown by[𝑤]𝐴𝑝 . We define 𝐴∞ = ⋃𝑝≥1 𝐴𝑝.

A weight 𝑤 belongs to 𝐴𝑝,𝑞 for 1 < 𝑝 < 𝑞 < ∞ if there
exists 𝐶 > 1 such that

(∫
𝐵
𝑤 (𝑥)𝑞 𝑑𝑥)1/𝑞 (∫

𝐵
𝑤 (𝑥)−𝑝󸀠 𝑑𝑥)1/𝑝󸀠

≤ 𝐶 |𝐵|1+1/𝑞−1/𝑝 ,
(7)

where 1/𝑝 + 1/𝑝󸀠 = 1. 𝐴𝑝,𝑞 class was introduced by
Muckenhoupt and Wheeden [18] to study weighted norm
inequalities for fractional integral operators.

2.1. Vanishing Generalized Weighted Morrey Spaces. LetΩ be
an open set in R𝑛 and let Π be an arbitrary subset of Ω. Let
also 𝜑(𝑥, 𝑟) be a measurable nonnegative function on Π ×[0, 𝑙) (𝑙 = diamΩ) and positive for all (𝑥, 𝑡) ∈ Π× (0, 𝑙). Let𝑤
be a weight function onΩ; then we notate by𝑉𝑀𝑝,𝜑

Π (Ω; 𝑤) fl𝑉𝑀𝑝,𝜑
Π (𝑤) the vanishing weighted Morrey spaces which are

defined as the spaces of functions 𝑓 ∈ 𝐿𝑙𝑜𝑐𝑝,𝑤(Ω) with finite
quasi norm:

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤) = sup
𝑥∈Π,𝑟>0

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) (8)

such that

lim
𝑟→0

sup
𝑥∈Π

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) = 0, (9)

where 𝐵(𝑥, 𝑟) = 𝐵(𝑥, 𝑟) ∩ Ω and 1 ≤ 𝑝 ≤ ∞.
Naturally, it is suitable to impose the function 𝜑(𝑥, 𝑟) on

the following conditions:

lim
𝑟→0

sup
𝑥∈Π

‖𝑤‖𝐿1(𝐵(𝑥,𝑟))𝜑 (𝑥, 𝑟) = 0,
inf
𝑟>1

sup
𝑥∈Π

𝜑 (𝑥, 𝑟) > 0. (10)

which makes 𝑉𝑀𝑝,𝜑
Π (𝑤) nontrivial, since bounded functions

which have compact support belong to this space.
Henceforth we denote by 𝜑 ∈ B(𝑤) if 𝜑(𝑥, 𝑟) is a

nonnegative measurable function on Π × [0, 𝑙) and positive
for all (𝑥, 𝑡) ∈ Π × (0, 𝑙) and satisfies conditions (10).

2.2. Oscillatory Integral Operators and Fractional Oscillatory
Integral Operators. Oscillatory integral operators appear in
many fields of mathematics and physics. Furthermore oscil-
latory integrals have been an essential part of harmonic
analysis. Many important operators in harmonic analysis are
some versions of oscillatory integrals, such as the Fourier
transform, Bochner-Riesz means, and Radon transform.
Properties of oscillatory integral operators have been studied
by Stein in [19].

A distribution kernel 𝐾 is called a standard Calderón-
Zygmund (in short C-Z) kernel when it satisfies the following
conditions: 󵄨󵄨󵄨󵄨𝐾 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛 , 𝑥 ̸= 𝑦

󵄨󵄨󵄨󵄨∇𝑥𝐾(𝑥, 𝑦)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨∇𝑦𝐾(𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛+1 , 𝑥 ̸= 𝑦. (11)
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C-Z integral operator 𝑇 and the oscillatory integral operator𝑆 are defined by

𝑇𝑓 (𝑥) = p.v.∫
R𝑛

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦,
𝑆𝑓 (𝑥) = p.v.∫

R𝑛
𝑒𝑖𝑃(𝑥,𝑦)𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (12)

where 𝑃(𝑥, 𝑦) is a real valued polynomial defined on R𝑛 ×
R𝑛. Lu and Zhang [20] used 𝐿2-boundedness of 𝑇 to get 𝐿𝑝-
boundedness of 𝑆 with 1 < 𝑝 < ∞.

Ricci and Stein [21] introduced the standard fractional C-
Z kernel, 𝐾𝛼 with 0 < 𝛼 < 𝑛, where

󵄨󵄨󵄨󵄨𝐾𝛼 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛−𝛼 ,
󵄨󵄨󵄨󵄨∇𝑥𝐾𝛼 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨∇𝑦𝐾𝛼 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛+1−𝛼 ,

𝑥 ̸= 𝑦.
(13)

The fractional oscillatory integral operator is defined in
[22] as

𝑆𝛼𝑓 (𝑥) = p.v. ∫
R𝑛

𝑒𝑖𝑃(𝑥,𝑦)𝐾𝛼 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (14)

where𝑃(𝑥, 𝑦) is a real valued polynomial and defined onR𝑛×
R𝑛 and𝐾𝛼 is a standard fractional C-Z kernel; note that when𝛼 = 0, 𝑆𝛼 = 𝑆 and 𝐾𝛼 = 𝐾.
Lemma 1 (see [23]). If 𝐾 is a standard C-Z kernel and the C-
Z singular integral operator 𝑇 is of type (𝐿2(R𝑛), 𝐿2(R𝑛)), then
for any real polynomial 𝑃(𝑥, 𝑦) and 𝑤 ∈ 𝐴𝑝 (1 < 𝑝 < ∞),
there exists constants𝐶 > 0 independent of the coefficients of 𝑃
such that ‖𝑆𝑓‖𝐿𝑝,𝑤(R𝑛) ≤ 𝐶‖𝑓‖𝐿𝑝,𝑤(R𝑛).
Lemma 2 (see [24]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 =1/𝑝 − 𝛼/𝑛, 𝑤 ∈ 𝐴𝑝,𝑞, 𝜑 ∈ B(𝑤𝑝), and 𝜓 ∈ B(𝑤𝑞). Then
the operators 𝑀𝛼 and 𝐼𝛼 are bounded from 𝑉𝑀𝑝,𝜑

Π (R𝑛; 𝑤𝑝) to𝑉𝑀𝑞,𝜓
Π (R𝑛; 𝑤𝑞), if

∫∞

𝛿
sup
𝑥∈R𝑛

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 < ∞ (15)

for every 𝛿 > 0, and
∫∞

𝑟

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 ≤ 𝐶 𝜓1/𝑞 (𝑥, 𝑟)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑟)) , (16)

where 𝐶 does not depend on 𝑥 ∈ R𝑛 and 𝑟.
2.3.The Commutator Operators 𝑆𝑏 and 𝑆𝛼,𝑏. Let𝑓 ∈ 𝐿1𝑙𝑜𝑐(R𝑛);
we define

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩∗ = sup
𝑥∈R𝑛,𝑟>0

1|𝐵 (𝑥, 𝑟)| ∫𝐵(𝑥,𝑟) 󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓𝐵(𝑥,𝑟)󵄨󵄨󵄨󵄨 𝑑𝑦
< ∞,

(17)

where

𝑓𝐵(𝑥,𝑟) = 1|𝐵 (𝑥, 𝑟)| ∫𝐵(𝑥,𝑟) 𝑓 (𝑦) 𝑑𝑦. (18)

In harmonic analysis a function of boundedmean oscilla-
tion, also known as a BMO function, is a real valued function
whose mean oscillation is bounded. BMO(R𝑛) is the set of all
locally integrable functions 𝑓 on R𝑛 with ‖𝑓‖∗ < ∞.

Next we shall introduce the commutators of oscillatory
integral operators and fractional oscillatory integral opera-
tors.

Let 𝑏 be a locally integrable function; the commutator
operators 𝑆𝑏 and 𝑆𝛼,𝑏 which are formed by 𝑆 and 𝑏 are defined
by

𝑆𝑏𝑓 (𝑥) = 𝑆𝑓 (𝑥) 𝑏 (𝑥) − 𝑆 (𝑏𝑓) (𝑥) ,
𝑆𝛼,𝑏𝑓 (𝑥) = 𝑆𝛼𝑓 (𝑥) 𝑏 (𝑥) − 𝑆𝛼 (𝑏𝑓) (𝑥) . (19)

Lemma 3 (see [25]). Suppose that𝐾 is a standard C-Z kernel,𝑤 ∈ 𝐴𝑝 (1 < 𝑝 < ∞), and the operator 𝑇 is of type(𝐿2(R𝑛), 𝐿2(R𝑛)). Then for any 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), there exists
constants 𝐶 > 0 independent on the coefficients of 𝑃 such that

󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛) ≤ 𝐶 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛) . (20)

Lemma 4 (see [18]). Let 𝑤 ∈ 𝐴∞. Then the norm of𝐵𝑀𝑂(R𝑛) is equivalent to the norm of 𝐵𝑀𝑂(𝑤), where
𝐵𝑀𝑂 (𝑤) = {𝑏 : ‖𝑏‖∗,𝑤 = sup

𝑥∈R𝑛,𝑟>0

1𝑤 (𝐵 (𝑥, 𝑟))
⋅ ∫

𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵(𝑥,𝑟),𝑤󵄨󵄨󵄨󵄨 𝑤 (𝑦) 𝑑𝑦 < ∞} ,
𝑏𝐵(𝑥,𝑟),𝑤 = 1𝑤 (𝐵 (𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑏 (𝑦)𝑤 (𝑦) 𝑑𝑦.

(21)

Remark 5 (the John-Nirenberg inequality). There are possi-
ble constants 𝐶1, 𝐶2 > 0 such that for all 𝑏 ∈ BMO(R𝑛) and𝛽 > 0

󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 : 󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵󵄨󵄨󵄨󵄨 > 𝛽}󵄨󵄨󵄨󵄨 ≤ 𝐶1 |𝐵| 𝑒−𝐶2𝛽/‖𝑏‖∗ , (22)

for all 𝐵 ⊂ R𝑛. The John-Nirenberg inequality implies that

‖𝑏‖∗ ≈ sup
𝑥∈R𝑛,𝑟>0

( 1𝑤 (𝐵 (𝑥, 𝑟))
⋅ ∫

𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵(𝑥,𝑟)󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝
(23)

for 1 ≤ 𝑝 < ∞ and 𝑤 ∈ 𝐴∞.
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Lemma 6 (see [26]). (i) Let𝑤 ∈ 𝐴∞ and let 𝑏 be a function in𝐵𝑀𝑂(R𝑛). Let also 1 ≤ 𝑝 < ∞, 𝑥 ∈ R𝑛, and 𝑟1, 𝑟2 > 0. Then

( 1𝑤 (𝐵 (𝑥, 𝑟1))
⋅ ∫

𝐵(𝑥,𝑟1)

󵄨󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵(𝑥,𝑟2),𝑤󵄨󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑦) 𝑑𝑦)1/𝑝 ≤ 𝐶(1
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ln 𝑟1𝑟2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ‖𝑏‖∗ ,
(24)

where 𝐶 > 0 is independent of 𝑓, 𝑥, 𝑟1, and 𝑟2.
(ii) Let 𝑤 ∈ 𝐴𝑝 and let 𝑏 be a function in 𝐵𝑀𝑂(R𝑛). Let

also 1 < 𝑝 < ∞, 𝑥 ∈ R𝑛, and 𝑟1, 𝑟2 > 0. Then

( 1𝑤1−𝑝󸀠 (𝐵 (𝑥, 𝑟1))
⋅ ∫

𝐵(𝑥,𝑟1)

󵄨󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵(𝑥,𝑟2),𝑤󵄨󵄨󵄨󵄨󵄨𝑝󸀠 𝑤 (𝑦)1−𝑝󸀠 𝑑𝑦)1/𝑝󸀠

≤ 𝐶(1 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ln 𝑟1𝑟2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ‖𝑏‖∗ ,

(25)

where 𝐶 > 0 is independent of 𝑓, 𝑥, 𝑟1, and 𝑟2.
Lemma 7 (see [24]). Let 1 < 𝑝 < ∞, 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), 0 <𝛼 < 𝑛/𝑝, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 𝑤 ∈ 𝐴𝑝,𝑞, 𝜑 ∈ B(𝑤𝑝), and 𝜓 ∈
B(𝑤𝑞). Then 𝑀𝛼,𝑏 and 𝐼𝛼,𝑏 are bounded from 𝑉𝑀𝑝,𝜑

Π (R𝑛; 𝑤𝑝)
to 𝑉𝑀𝑞,𝜓

Π (R𝑛; 𝑤𝑞) if
sup
0<𝑟<𝛿

∫∞

𝛿
ln(𝑒 + 𝑡𝑟) sup

𝑥∈R𝑛

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 < ∞ (26)

for every 𝛿 > 0, and
∫∞

𝑟

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 ≤ 𝐶 𝜓1/𝑞 (𝑥, 𝑟)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑟)) , (27)

where 𝐶 does not depend on 𝑥 and 𝑟.
3. Main Results

3.1. Boundedness of 𝑆 and 𝑆𝛼 in 𝑉𝑀𝑝,𝜑
Π (R𝑛; 𝑤)

Lemma 8. Let 1 < 𝑝 < ∞, 𝑤 ∈ 𝐴𝑝 and 𝐾 is a standard C-Z
kernel and C-Z singular operator𝑇 is of type (𝐿2(R𝑛), 𝐿2(R𝑛)).
Then for any ball 𝐵 = 𝐵(𝑥0, 𝑟) in R𝑛 and any real polynomial𝑃(𝑥, 𝑦) the following inequality holds:

󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵)
≤ 𝑐 ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) ‖𝑤‖−1/𝑝𝐿1(𝐵(𝑥0 ,𝑡))

𝑑𝑡𝑡 , (28)

where the constant 𝑐 > 0 does not depend on 𝐵 and 𝑓.

Proof. We split 𝑓 into two parts in a neighbourhood of point𝑥0 as follows:
𝑓 = 𝑓1 + 𝑓2, 𝑓1 (𝑦) = 𝑓 (𝑦) 𝜒2𝐵 (𝑦) ,

𝑓2 (𝑦) = 𝑓 (𝑦) 𝜒R𝑛\(2𝐵) (𝑦) . (29)

By linearity of the operator 𝑆 we have󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≤ 󵄩󵄩󵄩󵄩𝑆𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) + 󵄩󵄩󵄩󵄩𝑆𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) . (30)

From the boundedness of 𝑆𝑓 on 𝐿𝑝,𝑤(R𝑛) (see Lemma 1), it
follows that󵄩󵄩󵄩󵄩𝑆𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≤ 󵄩󵄩󵄩󵄩𝑆𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛) ≤ 𝑐 󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛)

= 𝑐 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) , (31)

where constant 𝑐 > 0 is independent of 𝐵 and 𝑓.
Since |𝐾(𝑥, 𝑦)| ≤ C/|𝑥 − 𝑦|𝑛, 𝑥 ̸= 𝑦, we have

󵄨󵄨󵄨󵄨𝑆𝑓2 (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑛\(2𝐵) 𝑒𝑖𝑃(𝑥,𝑦)𝐾(𝑥, 𝑦) 𝑓2 (𝑦) 𝑑𝑦󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶∫

R𝑛

󵄨󵄨󵄨󵄨𝑓2 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛
(32)

for 𝑥 ∈ 𝐵(𝑥0, 𝑟). It is obvious that 𝑥 ∈ 𝐵 and 𝑦 ∈ R𝑛 \ (2𝐵)
implies that |𝑥0 − 𝑦| < |𝑥 − 𝑦|. Thus we get

󵄨󵄨󵄨󵄨𝑆𝑓2 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 . (33)

Since the right-hand side does not depend on 𝑥 we get

󵄩󵄩󵄩󵄩𝑆𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≲ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫R𝑛\(2𝐵)
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦. (34)

By Fubini’s theorem we have

∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
≈ ∫

R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 (∫∞

|𝑥0−𝑦|

𝑑𝑡𝑡𝑛+1)𝑑𝑦
≈ ∫

2𝑟
(∫∞

2𝑟≤|𝑥0−𝑦|≤𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦) 𝑑𝑡𝑡𝑛+1
≲ ∫∞

2𝑟
(∫

𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦) 𝑑𝑡𝑡𝑛+1 .

(35)

By Hölder’s inequality, we get

∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
≲ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1
≤ [𝑤]1/𝑝𝐴𝑝 ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) ‖𝑤‖−1/𝑝𝐿1(𝐵(𝑥0 ,𝑡))

𝑑𝑡𝑡 .
(36)
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Thus,
󵄩󵄩󵄩󵄩𝑆𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵)

≲ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) ‖𝑤‖−1/𝑝𝐿1(𝐵(𝑥0 ,𝑡))

𝑑𝑡𝑡 . (37)

On the other hand,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) ≈ 𝑟𝑛 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) ∫∞

2𝑟

𝑑𝑡𝑡𝑛+1
≲ 𝑟𝑛 ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1
≲ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1 .
(38)

By (31) and (38) we write

󵄩󵄩󵄩󵄩𝑆𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵)
≲ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1
≈ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) ‖𝑤‖−1/𝑝𝐿1(𝐵(𝑥0 ,𝑡))

𝑑𝑡𝑡 .
(39)

Then by (37) and (39) we get the inequality (29).

Remark 9. Note that Lemma 8 was proved in [7] in the case𝑤 ≡ 1.
Theorem 10. Let 1 < 𝑝 < ∞, 𝑤 ∈ 𝐴𝑝, and 𝜑, 𝜓 ∈ B(𝑤). The
oscillatory integral operator 𝑆 is bounded from 𝑉𝑀𝑝,𝜑

Π (R𝑛; 𝑤)
to 𝑉𝑀𝑝,𝜓

Π (R𝑛; 𝑤) for any real polynomial 𝑃(𝑥, 𝑦) if 𝐾 is a
standard C-Z kernel, the C-Z singular operator 𝑇 is of type(𝐿2(R𝑛), 𝐿2(R𝑛)):

𝑐𝛿 fl ∫∞

𝛿
sup
𝑥∈Π

𝜑1/𝑝 (𝑥, 𝑡)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡))

𝑑𝑡𝑡 < ∞ (40)

for every 𝛿 > 0, and
∫∞

𝑟

𝜑1/𝑝 (𝑥, 𝑡)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡))

𝑑𝑡𝑡 ≤ 𝑐0 𝜓1/𝑝 (𝑥, 𝑟)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟)) , (41)

where 𝑐0 does not depend on 𝑥 ∈ Π and 𝑟 > 0.
Proof. To estimate the norm of the operator we use (28) and
get

󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,ΨΠ (𝑤)
= sup
𝑥∈Π,𝑟>0

1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟))
≤ 𝑐 sup

𝑥∈Π,𝑟>0

1𝜓1/𝑝 (𝑥, 𝑟) ‖𝑤‖1/𝑝𝐿1
⋅ ∫∞

𝑟
𝑡−1 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑡)) ‖𝑤‖−1/𝑝𝐿1(𝐵(𝑥,𝑡))

𝑑𝑡.
(42)

By using (41) we can write

󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤) ≤ 𝑐 sup
𝑥∈Π,𝑟>0

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) . (43)

Thus, 󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤) ≤ 𝑐 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤) . (44)

Now we prove that it belongs to 𝑉𝑀𝑝,𝜓
Π (𝑤); that is,

lim
𝑟→0

sup
𝑥∈Π

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) = 0 󳨐⇒
lim
𝑟→0

sup
𝑥∈Π

1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) = 0. (45)

To show that sup𝑥∈Π(1/𝜓1/𝑝(𝑥, 𝑟))‖𝑆𝑓‖𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) < 𝜀 for small𝑟, we split the right-hand side of (28):
1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) ≤ 𝐶 [𝐼𝛿0 (𝑥, 𝑟) + 𝐽𝛿0 (𝑥, 𝑟)] , (46)

where 𝛿0 > 0 (we may take 𝛿0 < 1) and
𝐼𝛿0 (𝑥, 𝑟)

fl
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟))𝜓1/𝑝 (𝑥, 𝑟) (∫𝛿0

𝑟

𝜑1/𝑝 (𝑥, 𝑡)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡)) sup0<𝑟<𝑡

1𝜑1/𝑝 (𝑥, 𝑟)
⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) 𝑑𝑡𝑡 ) ,

𝐽𝛿0 (𝑥, 𝑟)
fl

‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟))𝜓1/𝑝 (𝑥, 𝑟) (∫∞

𝛿0

𝜑 (𝑥, 𝑡)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡)) sup0<𝑟<𝑡

1𝜑1/𝑝 (𝑥, 𝑟)
⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) 𝑑𝑡𝑡 )

(47)

and it is supposed that 𝑟 < 𝛿0.
Now we fix 𝛿0 > 0 such that sup𝑥∈Πsup0<𝑟<𝑡(1/𝜑1/𝑝(𝑥, 𝑟))‖𝑓‖𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) < 𝜀/2𝐶𝑐0, where 𝑐0 and 𝐶 are

constants from (41) and (46), respectively. Then we can write

sup
𝑥∈Π

𝐶𝐼𝛿0 (𝑥, 𝑟) < 𝜀2 , 0 < 𝑟 < 𝛿0. (48)

By choosing 𝑟 sufficiently small and considering (40) we have

𝐽𝛿0 (𝑥, 𝑟) ≤ 𝑐𝛿0 ‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟))𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤) , (49)

where 𝑐𝛿0 is the constant from (40). Then by (10) we choose 𝑟
small enough such that

sup
𝑥∈Π

‖𝑤‖𝐿1(𝐵(𝑥,𝑟))𝜓 (𝑥, 𝑟) < ( 𝜀2𝐶𝑐𝛿0 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤)

)𝑝

(50)

which completes the proof.
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Theorem 11. Let 1 < 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 1/𝑞 =1/𝑝 − 𝛼/𝑛, 𝑃(𝑥, 𝑦) be real polynomial; 𝑤 ∈ 𝐴𝑝,𝑞, 𝜑 ∈ B(𝑤𝑝),
and 𝜓 ∈ B(𝑤𝑞). Then 𝑆𝛼 is bounded from 𝑉𝑀𝑝,𝜑

Π (𝑤𝑝) to𝑉𝑀𝑞,𝜓
Π (𝑤𝑞) if

∫∞

𝛿
sup
𝑥∈Π

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 < ∞ (51)

for every 𝛿 > 0, and
∫∞

𝑟

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 ≤ 𝐶 𝜓1/𝑞 (𝑥, 𝑟)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑟)) , (52)

where 𝐶 is not depending on 𝑥 ∈ Π and 𝑟.
Proof. Since |𝑆𝛼𝑓(𝑥)| ≤ 𝐼𝛼(|𝑓|)(𝑥) and thanks to Lemma 2
proof is completed.

3.2. Boundedness of 𝑆𝑏 and 𝑆𝛼,𝑏 in the Spaces 𝑉𝑀𝑝,𝜑
Π (𝑤)

Lemma 12. Let 1 ≤ 𝑝 < ∞, 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), 𝑤 ∈ 𝐴𝑝, 𝐾 is
a standard C-Z kernel, and the C-Z integral operator 𝑇 is type
of (𝐿2(R𝑛), 𝐿2(R𝑛)). Then for 1 < 𝑝 < ∞ and polynomial𝑃(𝑥, 𝑦) the inequality

󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≤ 𝐶 ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

𝑟
ln(𝑒 + 𝑡𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡

(53)

holds for any ball 𝐵 = 𝐵(𝑥0, 𝑟) and for all 𝑓 ∈ 𝐿𝑙𝑜𝑐𝑝 (𝑤).
Proof. Let 1 < 𝑝 < ∞. For any 𝑥0 ∈ R𝑛, we split 𝑓 into two
parts in a neighbourhood of point 𝑥0 such that

𝑓 = 𝑓1 + 𝑓2,
𝑓1 (𝑦) = 𝑓 (𝑦) 𝜒2𝐵 (𝑦) ,
𝑓2 (𝑦) = 𝑓 (𝑦) 𝜒R𝑛\(2𝐵) (𝑦) ,

(54)

where 𝑟 > 0, and by linearity of the operator 𝑆𝑏 we have󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≤ 󵄩󵄩󵄩󵄩𝑆𝑏𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) + 󵄩󵄩󵄩󵄩𝑆𝑏𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) . (55)

Moreover, from the boundedness of 𝑆𝑏 in 𝐿𝑝,𝑤(R𝑛) (see
Lemma 3), it follows that󵄩󵄩󵄩󵄩𝑆𝑏𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≤ 󵄩󵄩󵄩󵄩𝑆𝑏𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛) ≤ 𝐶 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(R𝑛)

= 𝐶 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) , (56)

where constant 𝐶 > 0 is independent of 𝑓.
For 𝑥 ∈ 𝐵(𝑥0, 𝑟) we have

󵄨󵄨󵄨󵄨𝑆𝑏𝑓2 (𝑥)󵄨󵄨󵄨󵄨 ≲ ∫
R𝑛

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓2 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

≈ ∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦.

(57)

Then

󵄩󵄩󵄩󵄩𝑆𝑏𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵)
≤ 𝐶(∫

𝐵
(∫

R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦)𝑝

⋅ 𝑤 (𝑥) 𝑑𝑥)1/𝑝

≲ (∫
𝐵
(∫

R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦)𝑝

⋅ 𝑤 (𝑥) 𝑑𝑥)1/𝑝

+ (∫
𝐵
(∫

R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦)𝑝

⋅ 𝑤 (𝑥) 𝑑𝑥)1/𝑝 = 𝐼 + 𝐼𝐼.

(58)

Let us estimate 𝐼
𝐼 = 𝐶 ‖𝑤‖1/𝑝𝐿1(𝐵) ∫R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦

= 𝐶 ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫

R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 ∫∞

|𝑥0−𝑦|

𝑑𝑡𝑡𝑛+1 𝑑𝑦
= 𝐶 ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

2𝑟
∫
2𝑟≤|𝑥0−𝑦|≤𝑡

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑡𝑡𝑛+1
≤ 𝐶 ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

2𝑟
∫
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑡𝑡𝑛+1 .

(59)

Using Hölder’s inequality and (25), we have

𝐼 ≲ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟
(∫

𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏𝐵(𝑥0 ,𝑟),𝑤󵄨󵄨󵄨󵄨󵄨𝑝󸀠

⋅ 𝑤 (𝑦)1−𝑝󸀠 𝑑𝑦)1/𝑝󸀠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1
≲ [𝑤]1/𝑝𝐴𝑝 ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟
(1 + ln 𝑡𝑟)

⋅ 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿
𝑝󸀠
(𝐵(𝑥0 ,𝑡))

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1
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≲ [𝑤]1/𝑝𝐴𝑝 ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟
(𝑒 + ln 𝑡𝑟)

⋅ 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡 .
(60)

In order to estimate 𝐼𝐼 note that
𝐼𝐼 = (∫

𝐵

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝐵,𝑤󵄨󵄨󵄨󵄨𝑝 𝑤 (𝑥) 𝑑𝑥)1/𝑝

⋅ ∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦.
(61)

By (23) we get

𝐼𝐼 ≲ ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫R𝑛\(2𝐵)
󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦. (62)

Applying Hölder’s inequality, we get

∫
R𝑛\(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥0 − 𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦
≲ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿
𝑝󸀠
(𝐵(𝑥0 ,𝑡))

𝑑𝑡𝑡𝑛+1
≤ [𝑤]1/𝑝𝐴𝑝 ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡 .
(63)

Thus by (63) we write

𝐼𝐼 ≲ ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡 . (64)

Summing up 𝐼 and 𝐼𝐼, for all 1 < 𝑝 < ∞ we get

󵄩󵄩󵄩󵄩𝑆𝑏𝑓2󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) ≲ ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟
ln(𝑒 + 𝑡𝑟)

⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡 .
(65)

On the other hand,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) ≈ |𝐵| 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) ∫∞

2𝑟

𝑑𝑡𝑡𝑛+1 ≤ |𝐵|
⋅ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1 ≤ ‖𝑤‖1/𝑝𝐿1(𝐵) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (𝐵)
⋅ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑑𝑡𝑡𝑛+1 ≤ ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 󵄩󵄩󵄩󵄩󵄩𝑤−1/𝑝󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (𝐵) 𝑑𝑡𝑡𝑛+1 ≤ [𝑤]1/𝑝𝐴𝑝
⋅ ‖𝑤‖1/𝑝𝐿1(𝐵) ∫∞

2𝑟

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡)) 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡 .

(66)

Thus,

󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵) ≲ ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(2𝐵) + ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵)
⋅ ∫∞

2𝑟
ln(𝑒 + 𝑡𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥0 ,𝑡))

⋅ 𝑤 (𝐵 (𝑥0, 𝑡))−1/𝑝 𝑑𝑡𝑡 ,
(67)

which along with (66) and (67) lead us to (53).

Theorem 13. Let 1 < 𝑝 < ∞ and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), 𝑤 ∈ 𝐴𝑝

and 𝜑, 𝜓 ∈ B(𝑤). Then 𝑆𝑏 is bounded from 𝑉𝑀𝑝,𝜑
Π (R𝑛; 𝑤) to𝑉𝑀𝑝,𝜓

Π (R𝑛; 𝑤) if
𝑐𝛿 fl sup

0<𝑟<𝛿

∫∞

𝛿
ln(𝑒 + 𝑡𝑟) sup

𝑥∈R𝑛

𝜑1/𝑝 (𝑥, 𝑡)
‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡))

𝑑𝑡𝑡 < ∞ (68)

for every 𝛿 > 0, and
∫∞

𝑟
ln(𝑒 + 𝑡𝑟) 𝜑1/𝑝 (𝑥, 𝑡)

‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 ≤ 𝑐0 𝜓1/𝑝 (𝑥, 𝑟)

‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟)) , (69)

where 𝑐0 does not depend on 𝑥 ∈ R𝑛 and 𝑟 > 0.
Proof. Boundedness follows from Lemma 12 and the same
procedure is argued in the proof of Theorem 10. We have to
prove that

lim
𝑟→0

sup
𝑥∈R𝑛

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) = 0 󳨐⇒
lim
𝑟→0

sup
𝑥∈R𝑛

1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) = 0.
(70)

We suppose that 0 < 𝑟 < 𝛿0. In view of (53) we can write

1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) ≤ 𝐶‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑟))𝜓1/𝑝 (𝑥, 𝑟)
⋅ ∫∞

𝑟
ln(𝑒 + 𝑡𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑡)) ‖𝑤‖−1/𝑝

𝐿1(𝐵(𝑥,𝑡))

𝑑𝑡𝑡 .
(71)

To show that sup𝑥∈R𝑛(1/𝜓1/𝑝(𝑥, 𝑟))‖𝑆𝑏𝑓‖𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) < 𝜀 for
small 𝑟, we split the right side of (71)

1𝜓1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑆𝑏𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟))
≤ 𝐶 [𝐼𝛿0 (𝑥, 𝑟) + 𝐽𝛿0 (𝑥, 𝑟)] ,

(72)
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where

𝐼𝛿0 (𝑥, 𝑟) fl ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵)𝜓1/𝑝 (𝑥, 𝑟)
⋅ ∫𝛿0

𝑟

𝜑1/𝑝 (𝑥, 𝑡) ln (𝑒 + 𝑡/𝑟)
𝑡 ‖𝑤‖1/𝑝

𝐿1(𝐵(𝑥,𝑡))

sup
0<𝑟<𝑡

1𝜑1/𝑝 (𝑥, 𝑟)
⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) 𝑑𝑡,

𝐽𝛿0 (𝑥, 𝑟) fl ‖𝑏‖∗ ‖𝑤‖1/𝑝𝐿1(𝐵(𝑥,𝑡))𝜓1/𝑝 (𝑥, 𝑟)
⋅ ∫∞

𝛿0

𝜑1/𝑝 (𝑥, 𝑡) ln (𝑒 + 𝑡/𝑟)
𝑡 ‖𝑤‖1/𝑝

𝐿1(𝐵(𝑥,𝑡))

sup
0<𝑟<𝑡

1𝜑1/𝑝 (𝑥, 𝑟)
⋅ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) 𝑑𝑡.

(73)

Now we choose any fixed 𝛿0 > 0 such that

sup
𝑥∈R𝑛

sup
0<𝑟<𝑡

1𝜑1/𝑝 (𝑥, 𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑤(𝐵(𝑥,𝑟)) < 𝜀2𝐶𝑐0 ‖𝑏‖∗ , (74)

where 𝐶 and 𝑐0 are constants appearing in (72) and (69),
respectively. This allows to estimate the first term uniformly
in 𝑟 ∈ (0, 𝛿0):

sup
𝑥∈R𝑛

𝐶𝐼𝛿0 (𝑥, 𝑟) < 𝜀2 , 0 < 𝑟 < 𝛿0. (75)

The estimation of the second term can be obtained by
choosing 𝑟 sufficiently small. Indeed, by (10), we have

𝐽𝛿0 (𝑥, 𝑟) ≤ ‖𝑏‖∗ 𝑐𝛿0 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑Π (𝑤)

‖𝑤‖1/𝑝𝐿1(𝐵)𝜓1/𝑝 (𝑥, 𝑟) , (76)

where 𝑐𝛿0 is the constant from (68). Then by (10) it suffices to
choose 𝑟 small enough such that

sup
𝑥∈R𝑛

‖𝑤‖𝐿1(𝐵(𝑥,𝑡))𝜓 (𝑥, 𝑟) ≤ ( 𝜀2𝐶𝑐𝛿0 ‖𝑏‖∗ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑉𝑀𝑝,𝜑(𝑤))
𝑝

(77)

which completes the proof.

Theorem 14. Let 1 < 𝑝 < ∞, 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), 0 < 𝛼 <𝑛/𝑝, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 𝑃(𝑥, 𝑦) be a real valued polynomial,𝜑 ∈ B(𝑤𝑝) and 𝜓 ∈ B(𝑤𝑞). Then 𝑆𝛼,𝑏 is bounded from𝑉𝑀𝑝,𝜑
Π (𝑤𝑝) to 𝑉𝑀𝑞,𝜓

Π (𝑤𝑞) if
sup
0<𝑟<𝛿

∫∞

𝛿
ln(𝑒 + 𝑡𝑟) sup

𝑥∈Π

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 < ∞ (78)

for every 𝛿 > 0, and
∫∞

𝑟

𝜑1/𝑝 (𝑥, 𝑡)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑡))
𝑑𝑡𝑡 ≤ 𝐶 𝜓1/𝑞 (𝑥, 𝑟)‖𝑤‖𝐿𝑞(𝐵(𝑥,𝑟)) , (79)

where 𝐶 does not depend on 𝑥 and 𝑟.
Proof. Since |𝑆𝛼,𝑏𝑓(𝑥)| ≤ 𝐼𝛼,𝑏(|𝑓|)(𝑥), from the boundedness
of 𝐼𝛼,𝑏 (see Lemma 7) proof is completed.
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[24] B. Çekiç andA. C. Alabalık, “Boundedness of fractional integral
operators and their commutators in vanishing generalized
weighted Morrey spaces,” https://arxiv.org/abs/1701.07766.

[25] S. G. Shi, “Weighted boundedness for commutators of one
class of oscillatory integral operators,” Journal of Beijing Normal
University (Natural Science), no. 47, pp. 344–346, 2011.

[26] V. S. Guliyev, T. Karaman, R. Mustafayev, and A. Serbeti,
“Commutators of sublinear operators generated by Calderon-
Zygmund operator on generalized weighted Morrey spaces,”
Czechoslovak Mathematical Journal, vol. 64, no. 139, pp. 365–
386, 2014.

https://arxiv.org/abs/1701.07766


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


