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In this paper, we apply the UV-algorithm to solve the constrained minimization problem of a maximum eigenvalue function
which is the composite function of an affinematrix-valuedmapping and its maximum eigenvalue. Here, we convert the constrained
problem into its equivalent unconstrained problem by the exact penalty function. However, the equivalent problem involves the
sum of two nonsmooth functions, which makes it difficult to applyUV-algorithm to get the solution of the problem. Hence, our
strategy first applies the smooth convex approximation of maximum eigenvalue function to get the approximate problem of the
equivalent problem. Then the approximate problem, the space decomposition, and the U-Lagrangian of the object function at a
given point will be addressed particularly. Finally, theUV-algorithmwill be presented to get the approximate solution of the primal
problem by solving the approximate problem.

1. Introduction

The eigenvalue optimization problems have attracted wide
attention to the nonsmooth optimization. Such problems
arise from many applications such as signal recovery [1],
shape optimization [2], and robotics [3]. Therefore, the
research on methods for solving such problems plays an
important role in enriching the blend of classical mathe-
matical techniques and contemporary optimization theory.
Various methods have been proposed to deal with such
problems; for example, the bundle method was used by
Helmberg and Oustry to solve a class of unconstrained
maximum eigenvalue optimization problems [4]. Recently,
Oustry applied U-Newton algorithm to solve the maximum
eigenvalue optimization problem [5]. However, this method
must satisfy the transversality condition. In this paper, we
design a UV-algorithm which does not satisfy the strict
condition above to solve the constrained maximum eigen-
value optimization problem approximately. Here, we focus
our attention on the following mode problem particularly:

min 𝜆1 (𝐴 (𝑥))
s.t. 𝑓𝑖 (𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚, (𝑃)

where 𝜆1(𝐴(𝑥)) is the maximum eigenvalue function and the
mapping 𝐴(𝑥) fl 𝐴0 + A(𝑥) is affine, 𝐴0 ∈ 𝑆𝑛 is given,
A : 𝑅𝑛 → 𝑆𝑛 is a linear operator, and 𝑆𝑛 is the space of𝑛×𝑛 symmetric matrices. Consider an exact penalty function
associated with (𝑃) as follows:

𝑃 (𝑥) fl 𝜆1 (𝐴 (𝑥))
+ 𝜋max {𝑓0 (𝑥) , 𝑓1 (𝑥) , . . . , 𝑓𝑚 (𝑥)} , (1)

where 𝑓0(𝑥) ≡ 0, ∇𝑓0(𝑥) ≡ 0, and 𝜋 > 0 is a penalty
parameter. For 𝜋 large enough, it is well known that the
problem (𝑃) is equivalent to the following form:

min
𝑥∈𝑅𝑛

𝑃 (𝑥) . (𝑃1)
It is known that the UV-decomposition theory must be
applied on the condition that the dimension of the V-space
is not full dimensional. Since 𝑃(𝑥) inherits the nondifferen-
tiability of 𝜆1(𝐴(𝑥)) and the function max{𝑓𝑖}, it is difficult
to apply UV-decomposition theory to (𝑃1) in that the V-
space of 𝑃(𝑥) at a given point is full dimensional. Hence, it
is imperative to consider the smooth approximation function
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𝜃𝜀(𝑥) [6] to the function 𝜆1(𝐴(𝑥)). Then the approximate
problem of (𝑃1) is given as follows:

min
𝑥∈𝑅𝑛

𝑃𝜀 (𝑥) , (𝑃2)
where 𝑃𝜀(𝑥) fl 𝜃𝜀(𝑥) + 𝜋max{𝑓0(𝑥), 𝑓1(𝑥), . . . , 𝑓𝑚(𝑥)}. Thus
the problem (𝑃2) can be solved byUV-algorithm and we can
get the approximate solution of the problem (𝑃) at the same
time.

The rest of the paper is organized as follows. Section 2
introduces three equivalent UV-space decomposition def-
initions of 𝑃𝜀(𝑥), associated with a given 𝑥 ∈ 𝑅𝑛. The U-
Lagrangian of 𝑃𝜀(𝑥) and relevant property will be addressed
more detailedly in Section 3. Section 4 is devoted to the
UV-algorithm for solving the approximate problem and the
convergence analysis of the method. Finally, Section 5 gives
some conclusive comments.

To be convenient for explanation, we give the set of the
act indicators throughout the paper

𝐽 (𝑥) fl {𝑗 ∈ {0, 1, . . . , 𝑚} : 𝜃𝜀 (𝑥) + 𝜋𝑓𝑗 (𝑥) = 𝑃𝜀 (𝑥)} (2)

and set

𝜑 (𝑥) fl 𝜋max {𝑓0 (𝑥) , 𝑓1 (𝑥) , . . . , 𝑓𝑚 (𝑥)} . (3)

The solution of the problem (𝑃) depends on the study
of the objective function of problem (𝑃2). The UV-space
decomposition theory of 𝑃𝜀(𝑥) will be shown firstly.

2. UV-Space Decomposition for 𝑃𝜀(𝑥)
Firstly, we can easily obtain the description of the subdiffer-
ential about 𝑃𝜀(𝑥) as follows:

𝜕𝑃𝜀 (𝑥) = ∇𝜃𝜀 (𝑥) + 𝜕𝜑 (𝑥)
= ∇𝜃𝜀 (𝑥) + 𝜋conv {∇𝑓𝑗 (𝑥)}𝑗∈𝐽(𝑥) (4)

and the relative interior of 𝜕𝑃𝜀(𝑥)
ri𝜕𝑃𝜀 (𝑥) = ∇𝜃𝜀 (𝑥) + ri𝜕𝜑 (𝑥) . (5)

We start by defining a decomposition of space 𝑅𝑛 = U ⊕
V, associated with a given 𝑥 ∈ 𝑅𝑛. We give three definitions
for the subspacesU andV as follows.

Definition 1. (i) Define U1 as the subspace where 𝑃𝜀 (𝑥, ⋅) is
linear and take V1 fl U⊥1 , and since 𝑃𝜀 (𝑥, ⋅) is sublinear, we
have

U1 fl {𝑑 ∈ 𝑅𝑛 : 𝑃𝜀 (𝑥, 𝑑) = −𝑃𝜀 (𝑥, −𝑑)} . (6)

(ii) DefineV2 as the subspace parallel to the affine hull of𝜕𝑃𝜀(𝑥); in other words,

V2 fl lin (𝜕𝑃𝜀 (𝑥) − 𝑔) , (7)

where 𝑔 ∈ 𝜕𝑃𝜀(𝑥) is arbitrary and takeU2 fl V⊥2 .

(iii) Define U3 and V3 as the normal and tangent cones
to 𝜕𝑃𝜀(𝑥) at a given point 𝑔∘; that is,

U3 fl 𝑁𝜕𝑃𝜀(𝑥) (𝑔∘) ,
V3 fl 𝑇𝜕𝑃𝜀(𝑥) (𝑔∘) .

(8)

In the meantime,U3 andV3 are subspaces.

Theorem 2. In Definition 1, we have the following:
(i) The subspaceU3 is actually given by

U3 = {𝑑 ∈ 𝑅𝑛 : ⟨𝑔 + ∇𝜃𝜀 (𝑥) − 𝑔∘, 𝑑⟩ = 0, ∀𝑔
∈ 𝜕𝜑 (𝑥)} = 𝑁𝜕𝜑(𝑥) (𝑔∘ − ∇𝜃𝜀 (𝑥)) (9)

and is independent of the particular 𝑔∘ ∈ 𝑟𝑖𝜕𝜑(𝑥).
(ii) SubspaceV2 is parallel to the affine hull of 𝜕𝜑(𝑥); that

is,

V2 = lin (𝜕𝜑 (𝑥) − 𝑔) , ∀𝑔 ∈ 𝜕𝜑 (𝑥) . (10)

More specifically,V2 = lin{∇𝑓𝑗(𝑥) − ∇𝑓0(𝑥)}𝑗∈𝐽(𝑥).
(iii)U1 = U2 = U3 š U.

Proof. (i) On one hand, by Definition 1 and a normal cone,
we have

𝑑 ∈ 𝑁𝜕𝑃𝜀(𝑥) (𝑔∘) ⇐⇒
⟨𝑑, 𝑔 + ∇𝜃𝜀 (𝑥) − 𝑔∘⟩ ≤ 0 ⇐⇒

⟨𝑑, 𝑔 − (𝑔∘ − ∇𝜃𝜀 (𝑥))⟩ ≤ 0 ⇐⇒
𝑑 ∈ 𝑁𝜕𝜑(𝑥) (𝑔∘ − ∇𝜃𝜀 (𝑥)) ,

(11)

where 𝑔 + ∇𝜃𝜀(𝑥) ∈ 𝜕𝑃𝜀(𝑥), 𝑔 ∈ 𝜕𝜑(𝑥), and 𝑔∘ ∈ ri𝜕𝑃𝜀(𝑥).
On the other hand, let

𝑁 fl {𝑑 ∈ 𝑅𝑛 : ⟨𝑑, 𝑔 + ∇𝜃𝜀 (𝑥) − 𝑔∘⟩ = 0, ∀𝑔
∈ 𝜕𝜑 (𝑥)} . (12)

By the definition of a normal cone, 𝑁 ⊆ 𝑁𝜕𝜑(𝑥)(𝑔∘ − ∇𝜃𝜀(𝑥)).
Next, we only need to establish the converse case. Let 𝑑 ∈𝑁𝜕𝜑(𝑥)(𝑔∘ − ∇𝜃𝜀(𝑥)) and 𝑔 ∈ 𝜕𝜑(𝑥) and it suffices to prove⟨𝑑, 𝑔 − (𝑔∘ − ∇𝜃𝜀(𝑥))⟩ ≥ 0. Indeed, let

𝛽 = − 𝑔 − (𝑔∘ − ∇𝜃𝜀 (𝑥))𝑔 − (𝑔∘ − ∇𝜃𝜀 (𝑥)) ∈ V2. (13)

By the definition of relative interior, there exists a positive
constant 𝜂 such that 𝑔∘ − ∇𝜃𝜀(𝑥) + 𝜂𝛽 ∈ 𝜕𝜑(𝑥) and 𝑑 ∈𝑁𝜕𝜑(𝑥)(𝑔∘ − ∇𝜃𝜀(𝑥)) implies that

⟨𝑑, (𝑔∘ − ∇𝜃𝜀 (𝑥) + 𝜂𝛽) − 𝑔∘ + ∇𝜃𝜀 (𝑥)⟩
= − 𝜂𝑔 − (𝑔∘ − ∇𝜃𝜀 (𝑥)) ⟨𝑑, 𝑔 − (𝑔∘ − ∇𝜃𝜀 (𝑥))⟩
≤ 0.

(14)

Then the result (i) is proved.
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(ii) Taking the affine hull of 𝜕𝑃𝜀(𝑥) = ∇𝜃𝜀(𝑥) + 𝜕𝜑(𝑥), we
obtain

aff 𝜕𝑃𝜀 (𝑥) = ∇𝜃𝜀 (𝑥) + aff 𝜕𝜑 (𝑥) . (15)

Hence, the subspace which is parallel to the affine hull of𝜕𝑃𝜀(𝑥) is also parallel to the affine hull of 𝜕𝜑(𝑥); that is,V2 =
lin(𝜕𝜑(𝑥) − 𝑔), where 𝑔 ∈ 𝜕𝜑(𝑥) is arbitrary. Moreover, by
the definition of 𝜕𝜑(𝑥), we have

𝜕𝜑 (𝑥) = 𝜋conv {∇𝑓𝑗 (𝑥)}𝑗∈𝐽(𝑥) = 𝜋 𝑚∑
𝑗=0

𝛼𝑗∇𝑓𝑗 (𝑥) , (16)

where 𝛼𝑗 > 0 and ∑𝑚𝑗=0 𝛼𝑗 = 1. Let 𝛼0 = 1 and 𝛼𝑗 = 0, 𝑗 ̸= 0,
then 𝜋∇𝑓0(𝑥) ∈ 𝜕𝜑(𝑥), and we can obtain

V2 = lin
{{{

𝜋 𝑚∑
𝑗=0

𝛼𝑗∇𝑓𝑗 (𝑥) − 𝜋∇𝑓0 (𝑥)}}}𝑗∈𝐽(𝑥)
= lin {∇𝑓𝑗 (𝑥) − ∇𝑓0 (𝑥)}𝑗∈𝐽(𝑥) .

(17)

Then result (ii) is proved.
(iii) By the property of 𝑃𝜀 (𝑥, ⋅) and the definition of U1,

we have 𝜑(𝑥, 𝑑) = −𝜑(𝑥, −𝑑). By the convexity of 𝜑(𝑥), we
have

U1 = {𝑑 ∈ 𝑅𝑛 : 𝜑 (𝑥, 𝑑) = −𝜑 (𝑥, −𝑑)}
= {𝑑 ∈ 𝑅𝑛 : max

𝑔∈𝜕𝜑(𝑥)
⟨𝑔, 𝑑⟩ = min

𝑔∈𝜕𝜑(𝑥)
⟨𝑔, 𝑑⟩} . (18)

Let 𝑑 ∈ U1, ∀𝑔 ∈ 𝜕𝜑(𝑥), take 𝑔 ∈ 𝜕𝜑(𝑥), and, by (18), we
have ⟨𝑑, 𝑔 − 𝑔⟩ = ⟨𝑑, 𝑔⟩ − ⟨𝑑, 𝑔⟩ = 0. It implies that,∀𝛽 ∈ V2, ⟨𝑑, 𝛽⟩ = 0; that is, 𝑑 ∈ U2. Hence,U1 ⊆ U2.

Let 𝑑 ∈ U2, we have ⟨𝑑, 𝑔⟩ = ⟨𝑑, 𝑔⟩ for all 𝑔 ∈ 𝜕𝜑(𝑥)
and 𝑔 ∈ 𝜕𝜑(𝑥). By the assumption 𝑔∘ ∈ ri𝜕𝑃𝜀(𝑥), we have𝑔∘ − ∇𝜃𝜀(𝑥) ∈ ri𝜕𝜑(𝑥) ⊆ 𝜕𝜑(𝑥). Then ⟨𝑑, 𝑔⟩ = ⟨𝑑, 𝑔⟩ =⟨𝑑, 𝑔∘ − ∇𝜃𝜀(𝑥)⟩. By (i), we have 𝑑 ∈ U3. Hence,U2 ⊆ U3.

By (i) and (18), we obtain U3 ⊆ U1. The proof of (iii) is
completed.

The solution of problem (𝑃) is not only based on theUV-
space decomposition of 𝑃𝜀(𝑥) but also based on the study of
theU-Lagrangian of 𝑃𝜀(𝑥), which will be shown next.

3. The U-Lagrangian of 𝑃𝜀(𝑥)
Let ∇𝜃𝜀(𝑥) fl �̃� = �̃�U ⊕ �̃�V, let 𝐻2 fl ∇2𝜃𝜀(𝑥) be a positive
semidefinite matrix, and let �̂� be a basis matrix forU. ∀𝑔 ∈𝜕𝜑(𝑥), we define theU-Lagrange function of𝑃𝜀(𝑥) as follows:

𝐿U,𝑃𝜀
(𝑢, 𝑔)

= inf {𝜑 (𝑥 + 𝑢 ⊕ V) − ⟨𝑔V, V⟩
V
}

+ (𝜃𝜀 (𝑥) + ⟨�̃�U, 𝑢⟩
U

+ 12 ⟨�̂�⊤𝐻2�̂�𝑢, 𝑢⟩
U
) .

(19)

Associated with (19) we have the set of minimizers

𝑊(𝑢) fl Argmin
V∈V

{𝜑 (𝑥 + 𝑢 ⊕ V) − ⟨𝑔V, V⟩
V
} . (20)

In the following paragraphs, a series of theorems and
corollaries will be given to specify the property of 𝐿U,𝑃𝜀

and
the expansions of 𝑃𝜀(𝑥).
Theorem 3. By the definition of 𝐿U,𝑃𝜀

, we have the following
conclusions:

(i) 𝐿U,𝑃𝜀
(𝑢, 𝑔) is a proper convex function.

(ii) A minimum point 𝑤 ∈ 𝑊(𝑢) in (20) is characterized
by the existence of some 𝑔 ∈ 𝜕𝑃𝜀(𝑥) such that 𝑔V =𝑔V + �̃�V, where 𝑔 ∈ 𝜕𝜑(𝑥), and 𝑔 = 𝑔U ⊕ 𝑔V.

(iii) In particular, 0 ∈ 𝑊(0) and 𝐿U,𝑃𝜀
(0, 𝑔) = 𝑃𝜀(𝑥).

(iv) If 𝑔 ∈ 𝑟𝑖𝜕𝜑(𝑥), then𝑊(𝑢) is nonempty for each 𝑢 ∈ U
and 𝑊(0) = {0}.

Theorem 4. Let 𝑢 satisfy 𝑊(𝑢) ̸= 0. Then, ∀𝑤 ∈ 𝑊(𝑢), the
subdifferential of 𝐿U,𝑃𝜀

at this 𝑢 has the expression

𝜕𝐿U,𝑃𝜀
(𝑢, 𝑔)

= {𝑔U : 𝑔U ⊕ (𝑔V + �̃�V) ∈ 𝜕𝑃𝜀 (𝑥 + 𝑢 ⊕ 𝑤)} . (21)

In particular, 𝐿U,𝑃𝜀
is differentiable at 0, with ∇𝐿U,𝑃𝜀

(0, 𝑔) =𝑔U + �̃�U.

Corollary 5. If 𝑔 ∈ 𝑟𝑖𝜕𝜑(𝑥), then 𝑊(𝑢) = 𝑜(‖𝑢‖U).
Theorem 6. Let 𝑢 satisfy 𝑊(𝑢) ̸= 0, then, ∀𝑤 ∈ 𝑊(𝑢), 𝑔 ∈𝜕𝜑(𝑥), �̃� = ∇𝜃𝜀(𝑥), and we have

𝑃𝜀 (𝑥 + 𝑢 ⊕ 𝑤) = 𝑃𝜀 (𝑥) + ⟨𝑔 + �̃�, 𝑢 ⊕ 𝑤⟩
U

+ 𝑜 (‖𝑢‖U) . (22)

Theorem 7. Assume the function 𝐿U,𝑃𝜀
(𝑢, 𝑔) = infV∈V{𝜑(𝑥 +𝑢 ⊕ V) − ⟨𝑔V, V⟩V} has a generalized Hessian 𝐻1 at 𝑢 = 0 and𝑔 ∈ 𝑟𝑖𝜕𝜑(𝑥). For 𝑢 ∈ U and 𝑥 ∈ 𝑢 ⊕ 𝑊(𝑢), it holds that

𝑃𝜀 (𝑥 + 𝑥) = 𝑃𝜀 (𝑥) + ⟨𝑔 + �̃�, 𝑥⟩
+ 12 ⟨(𝐻1 + �̂�⊤𝐻2�̂�) 𝑢, 𝑢⟩

U

+ 𝑜 (‖𝑢‖2U) .
(23)

The proofs of the above theorems and corollary are
similar to [7] and here we ignore the details of them.

Based on the study of UV-space decomposition theory
and theU-Lagrangian of𝑃𝜀(𝑥), theUV-algorithmwhich can
solve the problem (𝑃2) will be addressed in the next section.

4. The UV-Method

Depending on the UV-theory mentioned above, the con-
strained minimization problem of maximum eigenvalue
function has been converted into the convex minimization
problem which can be solved by the UV-algorithm in [8].
Hence, we apply the UV-algorithm in [8] and do some
appropriate modifications for solving the problem (𝑃2).
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In this section, some definitions and two quadratic pro-
gramming problems will be denoted for easy understanding.

Given a tolerance 𝜎 ∈ (0, 1/2], a prox-parameter 𝜇 >0, and a prox-center 𝑥 ∈ 𝑅𝑛, to find 𝜎-approximation of𝑃𝜇(𝑥), our bundle subroutine accumulates information from
the candidates {𝑦𝑖}𝑖∈B, where B fl {𝑗 : 𝑦𝑗 = 𝑥}.
Definition 8. Let 𝑥, 𝑦𝑖 ∈ 𝑅𝑛, 𝑖 ∈ B, 𝑔𝑖 ∈ 𝜕𝑃𝜀(𝑥), and the
linearization error is defined by

𝑒𝑖 fl 𝑒 (𝑥, 𝑦𝑖) = 𝑃𝜀 (𝑥) − 𝑃𝜀 (𝑦𝑖) − 𝑔⊤𝑖 (𝑥 − 𝑦𝑖) . (24)

Definition 9. Given a positive scalar parameter 𝜇, the proxi-
mal point function depending on 𝑃𝜀(𝑥) is defined by

𝑝𝜇 (𝑥) fl argmin
𝑝∈𝑅𝑛

{𝑃𝜀 (𝑝) + 12𝜇 𝑝 − 𝑥2}
for 𝑥 ∈ 𝑅𝑛.

(25)

The first quadratic programming subproblem (𝜒 − 𝑄𝑃)
has the following form and properties; see [9]. The problem

(𝜒 − 𝑄𝑃) min {𝑟 + 12𝜇 𝑝 − 𝑥2 : (𝑟, 𝑝) ∈ 𝑅1+𝑛, 𝑟 ≥ 𝑃𝜀 (𝑥) − 𝑒𝑖 + 𝑔⊤𝑖 (𝑝 − 𝑥) , ∀𝑖 ∈ B, 𝜇 > 0} (26)

has a dual problem

min{ 12𝜇
∑𝑖∈B𝛼𝑖𝑔𝑖


2 + ∑
𝑖∈B

𝛼𝑖𝑒𝑖 : 𝛼𝑖 ≥ 0, 𝑖 ∈ B, ∑
𝑖∈B

𝛼𝑖

= 1} .
(27)

Their respective solutions, denoted by (�̃�, �̃�) and �̃� =(�̃�1, . . . , �̃�|B|), satisfy
�̃� = 𝜙 (�̃�) ,

�̃� = 𝑥 − 1𝜇�̃�,
�̃� fl ∑
𝑖∈B

𝛼𝑖𝑔𝑖,
(28)

where 𝜙(𝑥) fl 𝑃𝜀(𝑥) − ∑𝑖∈B 𝛼𝑖𝑒𝑖 − 1/𝜇|�̃�|2 and 𝛼𝑖 = 0, for all𝑖 ∈ B, satisfies �̃� > 𝑃𝜀(𝑥) − 𝑒𝑖 + 𝑔⊤𝑖 (�̃� − 𝑥). For convenience, in
the sequel we denote the output of these calculations by

(�̃�, �̃�) = 𝜒 − 𝑄𝑃 (𝜇, 𝑥, {(𝑒𝑖, 𝑔𝑖)}𝑖∈B) . (29)

The second quadratic programming subproblem is

(𝛾 − 𝑄𝑃) min {𝑟 + 12 𝑝 − 𝑥2 : (𝑟, 𝑝) ∈ 𝑅1+𝑛, 𝑟 ≥ 𝑔⊤𝑖 (𝑝 − 𝑥) , ∀𝑖 ∈ B̃} , (30)

where B̃ fl {𝑖 ∈ B : �̃� = 𝑃𝜀(𝑥) − 𝑒𝑖 + 𝑔⊤𝑖 (�̃� − 𝑥)} ∪ {𝑖+},𝑦𝑖+ = �̃�, and 𝑔𝑖+ ∈ 𝜕𝑃𝜀(�̃�). The above problem has a dual
problem without linearization error terms:

min
{{{

12
∑𝑖∈B̃𝛼𝑖𝑔𝑖


2

: 𝛼𝑖 > 0, 𝑖 ∈ B̃, ∑
𝑖∈B̃

𝛼𝑖 = 1}}}
. (31)

Similar to (28), the respective solutions, denoted by (𝑟, 𝑝) and𝛼, satisfy
𝑝 − 𝑥 = −�̃�,

�̃� fl ∑
𝑖∈B̃

𝛼𝑖𝑔𝑖. (32)

Since the need of the algorithm, the solution of the problem(𝛾 −𝑄𝑃) will be applied to get the matrix �̃�. Firstly, define an
active index by B̃act fl {𝑖 ∈ B̃ : 𝑟 = 𝑔𝑖(𝑝 − 𝑥)}. Then, from
(32), 𝑟 = −𝑔⊤𝑖 �̃� for all 𝑖 ∈ B̃act, so

(𝑔𝑖 − 𝑔𝑙)⊤ �̃� = 0 (33)

for all such 𝑖 and for a fixed 𝑙 ∈ B̃act. Define a full-column
rank matrix �̃� by choosing the largest number of indices 𝑖
satisfying (33) such that the corresponding vectors 𝑔𝑖 − 𝑔𝑙
are linearly independent and by letting these vectors be the
columns of �̃�. Then let �̃� be a matrix where columns form an
orthogonal basis for the null-space of �̃�⊤ with �̃� = 𝐼 if �̃� is
vacuous.

For convenience, in the sequel we denote the output from
these calculations by

(�̃�, �̃�) = 𝛾 − 𝑄𝑃 ({𝑔𝑖}𝑖∈B) . (34)

The algorithm depending on the above quadratic pro-
gramming problems is given as follows.

Algorithm 10.

Step 0. Choose positive parameters 𝜀, 𝜇, and 𝑚 with 𝑚 < 1.
Let 𝑝0 ∈ 𝑅𝑛 and 𝑔0 ∈ 𝜕𝑃𝜀(𝑝0), respectively, be an initial point
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and subgradient. Also, let 𝑈0 be a matrix with orthogonal 𝑛-
dimensional columns estimating an optimalU-basis. Set 𝑠0 =𝑔0 and 𝑘 fl 0.
Step 1. Stop if ‖𝑠𝑘‖2 ≤ 𝜀.
Step 2. Choose an 𝑛𝑘×𝑛𝑘 positive definitematrix𝐻𝑘, where 𝑛𝑘
is the number of columns of𝑈𝑘 and𝑈𝑘 approximating a basis
for V(𝜒(𝑢))⊤. For 𝑥 which is a minimizer of 𝑃𝜀(𝑥), 𝜒(𝑢) =𝑥 + 𝑢 ⊕ V(𝑢), where V fl 𝑅dimU → 𝑅dimV is a 𝐶2-function
satisfying 𝑉V(𝑢) ∈ 𝑊(𝑢) for all 𝑔 ∈ ri𝜕𝑃𝜀(𝑥). 𝑉 is a basis
matrix ofV and 𝐻𝑘 is the approximation of ∇2𝐿U,𝑃𝜀

(𝑢, 0).
Step 3. Compute an approximate U-Newton step by solving
the linear system

𝐻𝑘Δ𝑢 = −𝑈⊤𝑘 𝑠𝑘 for Δ𝑢 = Δ𝑢𝑘 ∈ 𝑅𝑛𝑘 (35)

and set 𝑥𝑐𝑘+1 fl 𝑝𝑘 + 𝑈𝑘Δ𝑢𝑘 = 𝑝𝑘 − 𝑈𝑘𝐻−1𝑘 𝑈⊤𝑘 𝑠𝑘.
Step 4. Choose 𝜇𝑘+1 ≥ 𝜇, 𝜎𝑘+1 ∈ (0, 1/2], initialize B, and run
the following bundle subprocedure with 𝑥 = 𝑥𝑐𝑘+1:

Compute recursively

(�̃�, �̃�) = 𝜒 − 𝑄𝑃 (𝜇𝑘+1, 𝑥, {(𝑒𝑖, 𝑔𝑖)𝑖∈B})
�̃� = 𝑃𝜀 (�̃�) − �̃�

(�̃�, �̃�) = 𝛾 − 𝑄𝑃 ({𝑔𝑖}𝑖∈B̃)
(36)

until satisfying

�̃� ≤ 𝜎𝑘+1𝜇𝑘+1 |̃𝑠|
2 . (37)

Then set

(𝜀𝑐𝑘+1, 𝑝𝑐𝑘+1, 𝑠𝑐𝑘+1, 𝑈𝑐𝑘+1) fl (�̃�, �̃�, �̃�, �̃�) (38)

Step 5. If

𝑃𝜀 (𝑝𝑐𝑘+1) − 𝑃𝜀 (𝑝𝑘+1) ≤ 𝑚2𝜇𝑘+1
𝑠𝑐𝑘+12 , (39)

and then declare a successful candidate and set
(𝑥𝑘+1, 𝜀𝑘+1, 𝑝𝑘+1, 𝑠𝑘+1, 𝑈𝑘+1)

fl (𝑥𝑐𝑘+1, 𝜀𝑐𝑘+1, 𝑝𝑐𝑘+1, 𝑠𝑐𝑘+1, 𝑈𝑐𝑘+1) . (40)

Otherwise, execute a line search on the line determined by𝑝𝑘 and 𝑝𝑐𝑘+1 to find 𝑥𝑘+1 thereon satisfying 𝑃𝜀(𝑥𝑘+1) ≤ 𝑃𝜀(𝑝𝑘);
reinitialize B and return the above bundle subroutine, but
with 𝑥 = 𝑥𝑘+1, to find new values for (�̃�, �̃�, �̃�, �̃�); then set(𝜀𝑘+1, 𝑝𝑘+1, 𝑠𝑘+1, 𝑈𝑘+1) fl (�̃�, �̃�, �̃�, �̃�).
Step 6. Replace 𝑘 by 𝑘 + 1 and go to stopping test.

Next, we will show the convergence of Algorithm 10.
From here on, we assume that 𝜀 = 0 and that Algorithm 10
does not terminate.When the primal track at the initial point
exists, firstly, it shows that if some execution of the bundle
procedure in Algorithm 10 continues indefinitely, there is
convergence to a minimizer of 𝑃𝜀.

Theorem 11. If the bundle procedure does not terminate, that
is, if (37) never holds, then the sequence of �̃�-values converges to𝑝𝜇(𝑥) and 𝑝𝜇(𝑥) minimizes 𝑃𝜀(𝑥). If the procedure terminates
with �̃� = 0, the corresponding �̃� equals 𝑝𝜇(𝑥) and minimizes𝑃𝜀(𝑥). In both of these cases 𝑝𝜇(𝑥) − 𝑥 ∈ V(𝑝𝜇(𝑥)).
Proof. The recursion in the bundle subprocedure replacing B
by B̃ satisfies conditions (4.7) to (4.9) in [9]. By Proposition4.3 in [9], if this procedure does not terminate it generates an
infinite sequence of �̃�-values converging to zero. Since (37)
does not hold, the sequence of ‖�̃�‖-values also converges to
0. Thus, by lemma 5 in [8] and continuity of 𝑃𝜀, we can get𝑃𝜀(𝑧) ≥ 𝑃𝜀(𝑝𝜇(𝑥)) for all 𝑧 ∈ 𝑅𝑛. The termination case with�̃� = 0 follows in a similar manner, since (37) implies �̃� = 0
in this case. In either case, by the minimality of 𝑝𝜇(𝑥), 0 ∈𝜕𝑃𝜀(𝑝𝜇(𝑥)). From (3) in [8], 0−𝜇(𝑥−𝑝𝜇(𝑥)) ∈ V(𝑝𝜇(𝑥)), and
the final result follows, since 𝜇 ̸= 0.

Next theorem shows minimizing convergence from any
initial point without assuming the existence of a primal track.
Here we assume that all executions of bundle procedure
terminate.

Theorem 12. Suppose that the algorithm sequence {𝜇𝑘} is
bounded above by 𝜇. Then the following hold:

(i) The sequence {𝑃𝜀(𝑝𝑘)} is decreasing and either{𝑃𝜀(𝑝𝑘)} → −∞ or {‖𝑠𝑘‖} and {𝜀𝑘} both converge to 0.
(ii) If 𝑃𝜀 is bounded from below, then any accumulation

point of {𝑝𝑘} minimizes 𝑃𝜀.
Proof. (i) Since ‖𝑠𝑘‖ ̸= 0, whether or not 𝑝𝑐𝑘+1 is successful
candidate, the inequality

𝑃𝜀 (𝑝𝑘+1) − 𝑃𝜀 (𝑝𝑘) ≤ 𝑚2𝜇𝑘+1
𝑠𝑘+12 (41)

holds. Equation (41) implies that {𝑃𝜀(𝑝𝑘)} is decreasing.
Suppose {𝑃𝜀(𝑝𝑘)}  −∞. Then summing (41) over 𝑘 and
using the fact that 𝑚/(2𝜇𝑘) ≥ 𝑚/(2𝜇) for all 𝑘 imply that{‖𝑠𝑘‖} → 0. FromLemma 5 in [8] and (37)with (𝜇, 𝜎, �̃�, �̃�, �̃�) =(𝜇𝑘, 𝜎𝑘, 𝜀𝑘, 𝑠𝑘), we have

𝑃𝜀 (𝑝𝑘) + 𝑠⊤𝑘 (𝑧 − 𝑝𝑘) − 𝜀𝑘 ≤ 𝑃𝜀 (𝑧) ∀𝑧 ∈ 𝑅𝑛, (42)

𝜀𝑘 ≤ 𝜎𝑘𝜇𝑘
𝑠𝑘2 . (43)

Then (43) with 𝜎𝑘 ≤ 1/2 and 𝜇𝑘 ≥ 𝜇 > 0 implies that 𝜀𝑘 → 0
which establishes (i).

(ii) Now suppose 𝑃𝜀 is bounded below and 𝑝 is any
accumulation point of {𝑃𝑘}. Then, because ‖𝑠𝑘‖ and {𝜀𝑘}
converge to 0 by item (i), (42) together with the continuity
of 𝑃𝜀 implies that 𝑃𝜀(𝑝) ≤ 𝑃𝜀(𝑧) for all 𝑧 ∈ 𝑅𝑛 and (ii) is
proved.

In order to obtain convergence of the whole sequence 𝑝𝑘,
we need the concept of a strong minimizer.

Definition 13. We say that 𝑥 is a strong minimizer of 𝑃𝜀 if 0 ∈
ri𝜕𝑃𝜀(𝑥) and the correspondingU-Lagrangian 𝐿U,𝑃𝜀

(𝑢, 0) has
a Hessian at 𝑢 = 0 that is positive definite.
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Corollary 14. Suppose that 𝑥 is a strong minimizer of 𝑃𝜀,
as in Definition 13, and that the algorithm sequence {𝜇𝑘} is
bounded above by 𝜇. Then {𝑝𝑘} converges to 𝑥. If, in addition,
the sequence {𝐻−1𝑘 } is bounded, then {𝑥𝑐𝑘+1} and {𝑥𝑘} converge
to 𝑥 and {𝑠𝑐𝑘+1} converges to 0 ∈ 𝑅𝑛.
Proof. The proofs will be finished when �̃�, �̃�, and 𝑃𝜀 take the
place of �̂�, �̂�, and 𝑓, respectively.
5. Conclusions

The principal result is that we present theUV-algorithm for
solving the constrained minimization problem of maximum
eigenvalue functions. The innovative point is converting the
constrained problem into the approximate unconstrained
problem. By using the smooth convex approximation ofmax-
imum eigenvalue function, the latter problem can be solved
by UV-algorithm. Although this method is based on some
assumptions, it enriches the ways to deal with the constrained
minimization problem of maximum eigenvalue functions.
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