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In this paper we utilize the concept of manageable functions to define multivalued «, — #, manageable contractions and prove
fixed point theorems for such contractions. As applications we deduce certain fixed point theorems which generalize and improve
Nadler’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, and some other well-known results in the literature. Also,
we give an illustrating example showing that our results are a proper generalization of Nadler’s theorem and provide an application

to integral equations.

1. Introduction and Preliminaries

The Banach contraction principle [1] is an elementary result
in metric fixed point theory. This golden principle has been
broadened in several directions by different authors (see [1-
18]). An interesting generalization is the elongation of the
Banach contraction principle to multivalued maps, known as
Nadler’s fixed point theorem [19] and Mizoguchi-Takahashi’s
fixed point theorem [20]. In 2012, Samet et al. [18] defined
a-y-contractive and a-admissible mappings and then Salimi
et al. [17] generalized this idea by introducing function 5
and established fixed point theorems. Further Hasanzade Asl
et al. [13] extended these notions to multivalued functions
by introducing the concepts of «,-y-contractive and «,-
admissible for multivalued mappings and proved some fixed
point results.

Hussain et al. [14] modified the notions of «, -admissible
as follows.

Definition I (see [14]). Let T : X — 2% be a multifunction
on a metric space (2,d) and o, : X' x L — R, be two

functions, where 7 is bounded; then J is an «,-admissible
mapping with respect to # if

a(y,2) 2n(y2)
implies that o, (7y,7z) 21, (Ty,72), €))
v,z e,
where

b = i f b b
w B = gl 7 0n)

2)

n. (4, %)= sup n(y.z).

yed,zeRB

Further, Ali et al. [3] generalized the results of Hussain et
al. and introduced the following definition.

Definition 2 (see [3]). Let T : X — 2% be a closed valued
mapping on a metric space (X,d) and o, : X x X — R,
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be two functions. We say that T is generalized «, -admissible
mapping with respect to # if

a(y.z) 2n(y.2)
implies that « (1, v) > 11 (u,v), (3)

VYueTy, veTz.

Very recently, Ali et al. [2] modified Definition 2 for the
sequence of multivalued functions as follows.

Definition 3 (see [2]). Let{T; : & — 2“6[}1-0201 be a sequence
of closed valued maps on a metric space (2,d) and o, :
I x X — R, be two functions; then the sequence 7 is e, -
admissible mapping with respect to # if

a(y,2) 21 (y,2)
implies that o (u,v) > 1 (u,v), (4)
Vue Ty, ve Tz,

for each i, j € N.If, for all y,z € X a(y,z) = 1, the sequence
{7} is called «,-subadmissible and, for #(y,z) = 1, the
sequence {7} is called «, -admissible.

Recently, Du and Khojasteh [10] initiated the concept of
manageable functions and proved some fixed point theorems.
In this paper, we introduce multivalued &, — #, manageable
contraction and prove certain fixed point results. We also
prove common fixed point theorem for multivalued contrac-
tion. The investigated results of this paper conclude several
existing fixed point results including Nadler’s theorem.

Throughout this paper, CL(X) denotes the family of
all nonempty closed subsets of a metric space (', d). The
Hausdorft metric H is defined on CL(X') by

H(&i,gg):max<|supD(x,(%‘),supD(y,szi)}, (5)
xed yERB

where D(x, B) = inf{d(x, y) : y € %}. In the sequel, Fix{T}
denotes the set of all fixed points of mapping &, Fix{TJ;}
denotes the set of all common fixed points of mappings 7,
¥ denotes the class of all functions ¢ : [0,+0c0) — [0,1)
tulfilling lim sup,_, +o(t) < 1, for all v € [0, +00), ® denotes
the set of all functions ¢ : [0,+00) — [0,+00) such that
joe @(t)dt exists and Ioe @(t)dt > €, for each € > 0, ¥ denotes
the class of all nondecreasing functions y : [0,+0c0) —
[0, +00) such that Y2 y"(f) < +ooforallt > 0,and T
denotes the set of all L-functions. Recall that a function y :
[0,+00) — [0,+00) is said to be an L-function if y(0) = 0
and p(t) > 0 forall > 0 and for every t > 0 there exists s > t
such that y(u) <t foru € [t,s] [21].

2. Fixed Point and Common Fixed Point
Results for Multivalued Contractions via
Manageable Function

Consistent with Du and Khojasteh [10], we denote by M?n(\[R)
the set of all manageable functions 9 : R x R — R fulfilling
the following conditions:
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9,) 9(t,s) < s—tforalls,t > 0;

(9,) for any bounded sequence {t,} < (0,+0c0) and any
nondecreasing sequence {s,,} C (0, +00), it holds that

tn + 9 (tﬂ’ Sn) < 1

n

(6)

Jim s
Example 4 (see [10]). Letr € [0,1). Then 9, : RxR — R
defined by

9,(ts)=rs—t 7)
is a manageable function.

Example 5. Let 9 : R x R — R defined by
9= YOt i (9 €400 x[0400),
f(t,s)  otherwise,

where y € Yand f: R xR — R is any function. Then

O, s) € M/arm). Indeed, by using Lemma 1 of [12], we have,
for any s,t > 0,

I(t,s)=y(s)—t<s—t, 9)

so, (9;) holds. Let {t,} ¢ (0,+00) be a bounded sequence
and let {s,} < (0,+00) be a nonincreasing sequence. Then

lim,_, s, = inf, s, = a for some a € [0, +00); we get
o n9(,s) L w(s) ()
im sup ———— = lim sup ——= < lim
n—00 Sn noe0 T (s,)  m(s,)  (10)

= 1,
s0, (9,) is also satisfied.

Definition 6. Let (', d) be a metric spaceand T : & — 27
be a closed valued mapping. Let o, 7 : &' x & — R, be two

functions and 9 € M/ar@). Then 7 is called a multivalued
«, — n,-manageable contraction with respect to 9 if for all
y,zeX

. (7. 52)2n.(7y, T z)

1
implies 9(H (7 y,9z),d(y,2)) 2 0. a

Now we state and prove the main result of this section.

Theorem 7. Let (2',d) be a complete metric space and let
T+ X — 2% be a closed valued map satisfying the following

conditions:
(1) T is «,-admissible map with respect to u;
(2) T is «, —n, manageable contraction with respect to 9;

(3) thereexists z, € X and z, € T z, such that «(z, z,) >
n(zp> 21);

(4) for a sequence {z,} < X, lim,_, {z,} = x and
a2, 2,01) = Wz, 2,), for all no e N, implies
a(z,, x) = n(z,, x) foralln € N.

Then Fix{T} + @.
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Proof. Let z; € Tz, be such that a(zy,z,) > #5(zyz,).
Since I is «,-admissible map with respect to #, then
a, (T zy, T z1) =2 n,(T 25, T z,). Therefore, from (11), we have

Y(H(T20,Tz,),d(242,)) = 0. (12)
If z, = zy, then z;, € Fix{T} alsoif z;, € Tz, then z; €

Fix{7}. So, we adopt that z, # z; and z; ¢ Tz,. Thus 0 <
d(z,,Tz,) < H(Tzy, T z,). Define A : Rx R — R by

t+9(t,s) .

—27 ift,s>0

At s) = s Hhe> (13)
0 otherwise.

By (9,), we know that

0<A(t,s) <1, Vt,s>0. (14)
Also note that if 9(¢, s) > 0, then
0<t<sA(ts). (15)
So, from (12) and (14), we get
0<A(H (T2 T72,),d(z4,2,)) < 1. (16)
Let
1
& =
VAH (T2, 72)) . (2.2)))
(17)
-1 |d(2,,T7).
Since d(z,, 7 z;) > 0. So, by using (16), we get &; > 0 and
d(z,,9z)<d(z,Tz) +¢
. (18)
= d(z,,Tz).
VAH(T2,72,).d (2.2)))
This implies that there exists z, € Iz, such that
d(z1,2,)
. (19)
< d(z,,Tz).

VA(H (T2, T2,)d (20,2,))

Note that z; # z, (since z;, ¢ Tz;). Now if z, € Tz,,
then z, is a fixed point of 7. Otherwise, 0 < d(z,, 5 z,) <
H(Jz,, T z,). Also, since «, (T zy, Tz,) 2 1,(T 2y, T 21),
z, € Tzy, and z, € Tz, then a(z;,2,) > n(z,,2,). So,
a (Tz2,,Tz,) 21,(Tz,,T z,), so, from (11), we get

9(H(T2,,92,),d(z,2,)) 2 0. (20)

3
By taking
1
g =
VA (H(T2,72),d (21,2,))
(21
-1 |d(2,,T7,),
there exists z; € I z, with z; # z, such that
d (23, 23)
| (22)
< d(z,,Tz,).

VAH(T2,52,).d(21,2,))

Hence, by induction, we form a sequence {z,} in 2 satisfying
foreachn ¢ N, z, € 92,4, 2, * 2,1, 2, ¢ Tz, and
L (zn—l’zn) 2 P (zn—l’zn)

0<d(x,9x,)<H(JTz,,,9z,), (23)
19(H (gzn—l’gzn) ’d(zn—l’zn)) 2 0’ (24)
d (Zn’ Zn+1)
1 (25)
< d (Zn’ ‘C]Zn) >
VAH (72,1, 7 2,),d (2,-1,2,)
by taking
1
I3

"\ WHET2072,).d (@ z)
(26)

-1 |d(z,7z,).

By using (14), (15), (23), and (25), we get for each n € N
d(z,,Tz,)
<d(z,1,2,) AMH(T 2,01, T 2,),d (2,1,2,))  (27)
<d(z,1,2,)-

This implies that {d(z,, 7 z,)} ¢y is @ bounded sequence. By
combining (25) and (27), for each n € N, we get

d(zn’zn+l)
<(VMH T 21072 d(2,02) ) d (200 22)
Which means that {d(z,_;,%z,)},y 1S a monotonically

decreasing sequence of nonnegative reals and so it must be
convergent. So, let

(28)

lim d (z,,2,,,) = ¢ 2 0. (29)



From (9,), we get
nlglt;lo SupA(H(TZn’ 9271) ’d(zn—l>zn)) <l (30)

Now, if, in (29), ¢ > 0, then, by taking lim,_, sup in (28) and
using (30), we have

c< \/nll)nf}o supA (H (T z,.,,9z,).d(z,.1,2,))c < c. (31)
This contradiction shows that ¢ = 0. Hence,
r}Lngod (Zn’ Zn+1) =0. (32)

Next, we prove that {z,}, is @ Cauchy sequence in . Let,
foreachn € N,

0= WH(T2,1,72).d(502). ()
Then, from (16), we have o,, € (0, 1). By (28), we obtain
d (Zn’ Zn+1) < Gnd (Zn—1> Zn) . (34)

Equation (30) implies that lim
[0,1) and n,, € N, such that

nooo0n < 1, so there exists y €

0,<y, VYneN, n>n,. (35)

For any n > ny, since 0,, € (0,1) foralln € Nand y € [0,1),
(34) and (35) imply that

d (Zn’ Zn+1) < Gnd (zn—l’ Zn) < Gnan—ld (zn—Z’ Zn—l)
< ven
(36)
< 0,0, 10y anod (ZO’ zl)

<y"d (2, 2) .

Put B, = (y*™ /(1 - y))d(2p, z,), 1 € N. For m,n € N with
m > n > n,, we have from (36) that

m—1
d (zn’ Zm) < Z d (Zj’zj+l) < ﬁn' (37)
j=n
Since y € [0, 1), lim,_, f3, = 0. Hence
lim sup {d (z,,2,,) : m > n} = 0. (38)

This shows that {z,,} is a Cauchy sequence in &". Completeness
of & ensures the existence of z € X such that z, — =z
as n — 00. Now, since «(z,,z) > #(z,,z) foralln € N,
« (Tz,,Tz) >n,(9z,, T z), and so, from (11), we have

9(H(Jz,9z),d(z,2)) = 0. (39)
Then, from (14) and (15), we have
H(J%,9z)<A(H(T%,Tz),d(z,z2))d(z,z)

(40)
<d(z,,2).
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Since 0 < d(z,9z) < H(9z,,J%z) + d(z,,2), so, by using
(40), we get

0<d(z,9z)<2d(z,2). (41)

Letting limit n — co in the above inequality, we get
d(z,9z)=0. (42)
Hence z € Fix{7}. O

Example 8. Let £ = R with usual metric d. Then (2, d) is
a complete metric space. Define  : & — CL(Z), a7 :
IxT - R,andY: RxR — Rby

( 1
{1, —} if z>1;
4z
Tz =1 {0,3} if z€[0,1];
16
[ {2,3} otherwise, (43)
(2 if 2,y €[0,1];
a(y.z)=11 .
3 otherwise.

n(y,z) = 1,forallz,y € & and 9(¢t,s) = as — t, where a €
[1/16,1). Then 9 is a manageable function. Indeed, for any
s,t > 0, we have

9(t,s)=as—t<s—t, (44)

50, (9;) holds. Let {t,} ¢ (0, +0c0) be a bounded sequence and
let {s,} ¢ (0,+00) be a nonincreasing sequence. Then

t?l + S(tn’sn) —-a

lim sup <1, (45)

n—o00
n

which means that (9,) holds. Hence 9 € M/an(\[R{).

Since a(y,z) > n(y,z) when z,y € [0, 1], this implies
that

a, (Ty,Tz)= inf

a(u,v)=2>1
ueT y,veJ z
(46)
= sup nwv)=1,(Ty.9z).
ueg y,veg z
Hence 7 is «, -admissible mapping with respect to #.
Leta, (T y,T2) 2 n,(7 y,T 2); then y,z € [0,1]. This
implies that

y =z )
H g >G‘ > > = T T T -
9(H(77.72).d(n2) =9(|% - Z|.Iy-4

z
:a|y—z|—1y—6—l—6 (47)

:|y—z|<a—i>20.
16

Thus, all conditions of Theorem 7 are satisfied and 0 is a fixed
point of 7.
On the other hand, for y = —1 and z = 0, we have

H(Ty,9z)=2>1=d(y,z2). (48)

This implies that  is not a multivalued contraction, so we
cannot apply Nadler’s theorem [19] with this example.
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On bearing 71(y, z) = 1in Theorem 7, we get the following
corollary.

Corollary 9. Let (X, d) be a complete metric space and let T :

X — 2% be an o, -admissible and closed valued map enjoying
the following:

(1) (T y,Tz) = 1 implies O H(T y,T y),d(y,z)) = 0;
(2) there exists z, € X and z, € T z,, such that «(z,, z;) =
L

(3) for a sequence {z,} < X, x, and
a(z,,2,,1) = 1, foralln € N, one has a(z,,x) > 1

foralln e N,

Jimfz) =

forall y,z € L and 9 € M;z(\IR). Then Fix{T} + @.

By taking a(y,z) = 1 in Theorem 7, we get the following
corollary.

Corollary 10. Let (X, d) be a complete metric space and let
T+ X — 2% be an n,-admissible and closed valued map
enjoying the following conditions:

(1) 1,(T y,Tz) < 1impliesOH(T y, T y),d(y,2)) = 0;

(2) there exists zy € X and z, € T z, such that n(zy, z,) <

L;

(3) for a sequence {z,} < X, lim, , {z,} = x, and
Nz, 2yer) < L, foralln € N, one has n(z,,x) <1
foralln e N,

forall y,z € L and 9 € Mm). Then Fix{T} + @.

Theorem 11. Let (X, d) be a complete metric space and let the
sequence {T; : X — 2%} of closed valued mappings enjoy the
following with condition (4) of Theorem 7:
(1) {7} is v, -admissible with respect to u;
() a(y,2) = n(y,z) implies S(H(T ;y, I

5

T jz),d(x, y)) =
(3) there exists z, € X and y; € T ;z, for each i € N such
that a(zy, ¥;) = 1(2y, ¥;);

forally,z e X,i,jeN,andd e Man(R). Then Fix{T
foreachi e N.

it #+ o
Proof. Let z; € Tz, be such that a(zy, z;) > 7(z,,z,); then
from (11) we have

9(H (7120, T 121),d (20,21)) 2 0. (49)

If z, € Tz, foreachi € N, then z; € Fix{7;}. Adopt that
z, ¢ 7 ,z,. Thus

0<d(z,T,2)) <H(T 20T ,2,). (50)
From (50), we get
0<A(H(T,z9,Tyz),d (29,21)) < 1, (51)

5
where A is defined in (13). Let
e = « (2, 2,)
L=
1 (20,21) \//\ (H (7120, T 121)d (2, 21))
(52)

-1 d(zl’ 221)

Since a(zy, z,) = (zy, 2,), Az, T
we getg; > 0and

T ,z,) > 0. So, by using (51),

d(z,,T,2)) <d(z;, T

(X(ZO’ZI) d(zl»gzzl)-
1(20-21) \//\ H (71207 121)d (25, 21))

T ,z; such that

T221) + &

(53)

This implies that there exists z, €

d(z),2,)

@z 2) d(z,9,2)). &Y
1(20-21) \//\ H (7120, 7 121)d (20, 21))

Note that z; # z, (since z; ¢ 7 ,z,). Now if z, € T ,z,, for
eachi e N, then z, € Fix{T7;}. Let z, ¢ T ;z,; then

0<d(zy,T32,) <H(T,2,,T 32,). (55)

Since the sequence {7} is r, -admissible with respect to 77, so
we have a(z,, z,) > #4(z,, z,) and, from condition (11), we get

9(H (T 121, T 32,)d (21,2,)) 2 0. (56)

By taking

e = a(z),2,)
, =
n(21,2,) \/}L (H(T 321, 32,)d (21,2,))
(57)
-1 |d(2,732,),
there exists z; € I 5z, with z; # z, such that

d(z523)

(58)

< a(z12) d (25,7 32,).
n(212,) VA (H (T 520, T32,),d (21, 2,))



Hence, by induction, we can establish a sequence {z,} in X
satisfying foreachn e N, z, € 7,2, 1,2, # 2,1, 2, ¢ T2,
foreachn € N, and a(z,,_, 2,) = 5(z,_;,2,)

0< d (Zn’ 9n+lzn) < H (gnzn—l’grﬁlzn) > (59)
S(H( nZn— I’JnJrlZn)’d(anl’zn)) = 0’ (60)
d (Zn’ Zn+1)

< © (ZVL*I’ZVI) (61)

1 (Zn—l’ Zn) \/A (H (9nzn—l’ 9n+lzn) > d (Zn—l’ Zn))
xd (zn’ gn+lzn) >
by taking

“(zn 1> %n )

ﬂ(zn 1z n) \/A(H n Zn-1> n+lz ) d(znfl’zn))

(62)

-1 d (Zw ‘G/vn+lzn) .

By using (14), (15), (59), and (61), we get for each n € N
d (Zn’ 9n+lzn)
< d( Zp-1>%p )A (H (‘/ nZn— 1"/ n+lzn) ’d (zn—l’zn)) (63)

<d(n1’ )

Which means that {d(z,,, 7 ,,,12,)},.cn is @ bounded sequence.
By combining (61) and (63), for each n € N, we get

d (Zn’zrﬁ-l)
< (\//‘ (H (gnzn—l’9n+lzn) ’d(zn—l’zn))) (64)
xd(

zn—l’ Zn) .

Which means that {d(z,_;,z,)},en 1S @ monotonically
decreasing sequence of nonnegative reals and so it must be
convergent. So, let

nll_{god (Zn’ Zn+1) =c20. (65)

From (9,), we get
nlggo SllpA(d (Zn’9n+lzn)’d(zn—l’zn)) <L (66)
Now, if, in (65), ¢ > 0, then, by taking lim,, ,  sup in (64) and

using (66), we have

c< \/nlLrgo sup)t L/nzn—l’gvrﬁlzn)’d(zn—l’zn))c

(67)
<c.
This contradiction shows that ¢ = 0. Hence,
nh_}IElOd (zn’ Zn+1) =0. (68)
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Next, by following the same procedure as in proof of Theo-
rem 7, we show that sequence {z,},cy is a Cauchy sequence
in X. Completeness of & guarantees that there is z € 2 such
that z, — z as n — 00. Now, since «(z,,, z) > r(z,, z) for all
n € N, and from condition (11), we have

Y(H (T 1120 T 2),d (z,,2)) 2 0. (69)
Then, from (14) and (15), we have
H(T 412w T i2)
<SMH(T 20 712)5d(2,,2))d (z,2)  (70)
<d(z,z).

Since 0 < d(z,,,, T ;2) < H(T ,,,1x,, T ;z), by using (70), we
get

0<d(z,,1,7:2z)<d(z,,2). (71)

Letting limit # — co in the above inequality, we get
d(z,7,z) =0. (72)

Hence z € Fix{7 ;z}. O

Let us take ; = 7 for each i € N; then Theorem 11
reduces to the following.

Theorem 12 Let (X, d) be a complete metric space and let the

sequence I : X — 27 be a closed valued mapping enjoying
thefollowmg with conditions (3) and (4) of Theorem 7:

(1) T is generalized «, -admissible with respect to 1;

(2) a(y,2) = T z),d(y,z)) =

>

forall y,z € X and 9 € Mm). Then Fix{T} + @.

n(y, z) implies 9(H(T y, I

Asan application of Theorems 7 and 11, we can deduce the
following result.

Theorem 13. Let (X, d) be a complete metric space and let T :
X — 27 be a closed valued mapping satisfying for all y,z € &

9(H(Ty,92),d(y,2)) 20, (73)

where 9 € Man(R). Then Fix{T} #+ @.

Proof. Define a1y : 2 x L — [0, 00) by
a(y.z) =d(y.2),
n(y.2)=d(y.2),

forall y,z € . So that a(y, z) = (y,z). This implies that
a(Ty,9z) =n,(Ty,Tz)forall y,z € X. That is, all the
condmons of Theorem 7 hold true. Hence 7 has a fixed point.

O

(74)

In the following corollaries, we obtain some known and
some new results in literature via manageable functions.
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Corollary 14 (see [19]). Let (X, d) be a complete metric space

andlet T : X — 2% be a closed valued mapping satisfying for
all y,z € &

H(Ty,9z)<kd(y,z), (75)
where k € (0,1). Then Fix{T} + @.
Proof. Define 9y : R x R — R by

In(ts)=ks—t V(t,s) e RxR, kel0,1). (76)

Then 9y € Man(R), by Example 4. Therefore the result
follows by taking 9 = 9y, in Theorem 13. O

Corollary 15 (see [20]). Let (', d) be a complete metric space
andlet T : X — 2% be a closed valued mapping satisfying for
all y,ze &

H(Ty,Tz) <0 (d(y.2))d(y.2), (77)
whereo € X. Then Fix{T} + @.

Proof. Define 9, : R x R — R by
v (t,9)
o (s)—t
i {f (t,5)
where 0 € Zand f : R x R — R be any function. Then

I € M/arm) (see Example C in [10]). Therefore the result
follows by taking 9 = 9, in Theorem 13. O

if (t,5) € [0,+00) x [0,+00),  (78)

otherwise,

Corollary 16. Let (X, d) be a complete metric space and let

T+ X — 2% be a closed valued mapping satisfying for all
y,zeX

H(T y,9 z)
J pM)dt <ad(y,z), (79)

0
where ¢ € ®. Then Fix{T} # @.

Proof. Define 9;: R xR — R by

9, (t,s)

) {s— tho(u)du if (t,5) € [0,+00) x [0, +c0), (80)
= 0
f(ts)

otherwise,
where ¢ € ® and f: R x R — R be any function. Then for
s,t > 0 we have

t

SI(t,s)=s—J @W)du<s—t. (81)

0

Now let {t,} < (0, +00) be a bounded sequence and let {s,} C
(0,+00) be a nonincreasing sequence. Then lim,_ s, =
inf, .\, = a for some a € [0, +00) and

tn + 9 (tﬂ’ sn)

Jim sup 255
t
t,+s, — (u) du
= lim sup nr IO(P (82)
n—00 S

n

t

n_nzl‘

n

. L, +s
< lim sup
n—00 s

Hence 9; € Man(R). Therefore the result follows by taking
9 = 9; in Theorem 13. O

Corollary 17. Let (', d) be a complete metric space and let
T+ X — 2% be a closed valued mapping satisfying for all
v,z

H(T7y,z) <y(d(y:2)), (83)
wherey € I. Then Fix{T} + @.
Proof. Define 9; : R x R — R by
y(s)—t if (t,s) € [0,+00) x [0, +00),
9, (t,s) = (84)
f(ts)

otherwise,

where y € Tand f : R x R — R be any function. Then

I, € Man(R). Indeed, by using Lemma 10 of [22], we have
fors,t >0

9 (t,s)=y(s)—t<s—t, (85)

so, (9;) holds. Let {t,} ¢ (0,+00) be a bounded sequence
and let {s,} < (0,+00) be a nonincreasing sequence. Then

lim, s, = inf, s, = a for some a € [0, +00) and
t,+9(t,s s
lim sup byt 9 (twsy) _ sup Y s
n—00 » n—00 Sy n—eos, (86)

=1

So, (9,) is also satisfied. Therefore the result follows by taking
9 = 9, in Theorem 13. O

Remark 18. Since I is a Meir-Keeler multivalued mapping of
a metric space (2, d) if and only if there exists (nondecreas-
ing, right continuous) mapping y € I'suchthat H(T y, 7 z) <
y(d(y, z)) (see [21], Theorem 2), therefore, from Corollary17,
we get the main result of [23].

By taking 9 = 9,, in Theorem 12, as defined in
Corollary 15, we get the following.

Corollary 19 (see [3]). Let (', d) be a complete metric space

andlet T : X — 2% be a closed valued mapping enjoying the
following with conditions (3) and (4) of Theorem 7.



(1) T is generalized «, -admissible with respect to 1;

(2) aly,z) = o(d(y,
2))d(y, z),

forall y,z € X and o € X. Then Fix{T} + @.

n(y,z) implies H(T y,Tz) <

On considering

9(t,s) = y(s)—t
I (&9)

if (t,s) € [0,+00) X [0, +00);
(87)
otherwise,

where y € Wand f : R xR — R is any function, in
Theorems 7,11, and 12, we get the following existing theorems,
respectively.

Corollary 20 (see [14]). Let (X', d) be a complete metric space

and let T : X — 27 be a closed valued mapping fulfilling
conditions (1), (3), and (4) with

a0, (7y.52)2n.(7y, T z)
implies H(T y,Tz) <y (d(y,2)),
forall y,z € X andy € Y. Then Fix{T} + @.

Corollary 21 (see [2]). Let (X, d) be a complete metric space
and let the sequence {7, : & — 2%} be a,-admissible
with respect to n fulfilling condition (4) of Theorem 7 and (3) of
Theorem 11 with

a(y.z) 2 n(y.2)
(89)
implies H (.7iy, 9jZ) <y(d(y.2)),

forall y,z € X,i,j e Nand y € V. Then Fix{J;} + @.

Corollary 22 (see [2]). Let (X, d) be a complete metric space
and let T : X — 27 be a closed valued mapping and

generalized o -admissible with respect to n fulfilling conditions
(3) and (4) of Theorem 7 with

a(y.z) 2n(y.2)

(90)
implies H(T y,7z) <y (d(y,2)),

forall y,z € X andy € V. Then Fix{T} + @.

3. Fixed Point Results in
Partially Ordered Metric Spaces and an
Application to Integral Equations

Let (,d, <) be a partially ordered metric space. Recall that
g : X — 2% is monotone increasing if 7y < Jz
for all y,z € &, for which y < z (see [8]). There are
many applications in differential and integral equations of
monotone mappings in ordered metric spaces (see [15, 24—
26] and references therein). In this section, from Theorems
7-13, we derive the following new results in partially ordered
metric spaces and give an example to integral equations.
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Theorem 23. Let (X', d, <) be a complete partially ordered
metric space and let T : X — 2% be a closed valued mapping

satisfying the following assertions for all y,z € X with y < z:
(1) I is monotone increasing;
(2) Y(H(T y, T 2),d(y,z)) = 0;
(3) there exists zy, € X and z, € T z,, such that z; < z;;
(4) for a sequence {z,} ¢ X, lim,_, {z,} = z, and z, <

Z,1 foralln € N, one has z,, < z for alln € N.

Then Fix{T} + @.

Proof. Define a, 1 : & x £ — [0, 00) by

y<z

1
a(y,z) = { .
0 otherwise
(91
y<z

otherwise.

1
n(y,Z)={2
0

Then for y,z € & with y < z, a(y,2) = #(y,z) implies
a(Ty,92)=1>1/2=n(Ty,Tz)and a, (T y,Tz) =
1.(7y,9z) = 0 otherwise. Thus, all the conditions of
Theorem 7 are satisfied and hence I has a fixed point. [

Theorem 24. Let (X,d, <) be a complete partially ordered
metric space and let the sequence {T; : X — 2%} of closed
valued mappings enjoy the following assertions, forall y,z € &
with x < y and for each i, j € N:

(2)ify <z then T,y < z foreachi e N;

(3) there exists z, € X and y; € T ;z, for each i € N such
that z, < y;;

(4) for a sequence {z,} ¢ &, lim,_,{z,} = z, and z, <
Z,.1, foralln € N, we have z,, < z for alln € N.

Then Fix{J ;} + @ foralli e N.

Proof. By defining o, 77 : & x £ — [0, 00) as in Theorem 23
and by using Theorem 11, we get the required result. O

Similar to the arguments of Theorems 23 and 24, we
conclude the following result and omit its proof.

Theorem 25. Let (X',d,<) be a complete partial ordered
metric space and let T : I — 2% be a closed valued mapping
satisfying (73) of Theorem 13 for all x, y € X with x < y. Then
Fix{T} + @.

In case of single valued mapping, Theorems 23-25
reduced to the following.

Theorem 26. Let (X, d, <) be a complete partially ordered
metric space and let T : X — X be a self-map fulfilling the
following assertions:

(1) I is monotone increasing;
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(2) Nd(T y, T 2),d(y,2)) 2 0;
(3) there exists zy € X and z, = T z,, such that z, < z,;
(4) for a sequence {z,} ¢ &, lim,_,{z,} = z, and z, <

Z,1o foralln € N, we have z,, < z for alln € N,

forall y,z € X withy <zand 9 € MEz(TR). Then Fix{T} +
.

Theorem 27. Let (X',d, <) be a complete partially ordered
metric space and let the sequence {7; : X — X} of self-
mappings fulfill the following assertions:

(1) d(T 1y, T 2),d(y,z)) = 0;
(2) 9, is nondecreasing for each i;

(3) there exists z, € X and y; = T ;z, for each i € N such
that zy, < y;;

(4) for a sequence {z,} ¢ &, lim,_, {z,} = z and z,, <
Z,1 foralln € N, we have z,, < z for alln € N,

forall y,z € X withy <z, 9 € Man(R) and i € N. Then
Fix{T;} + @.

Theorem 28. Let (X,d,<X) be a complete partial ordered
metric space and let T : X — X be a self-map satisfying
forall y,z € X withy <z

9(d(Ty,Tz),d(y,2)) =0, (92)
where 9 € Mm). Then Fix{T ;} + @.

Now we give an application of our results and establish
the existence of solution of the integral equation.

z(r) = LC% (r,s,2(s))ds+g(r), telbc]. (93)

Let < be a partial order relation on R”. Define 7 : & —» &
by

Tz(r)= JhC%(r,s,z(s))ds+g(r), r€la,b]. (94)

Theorem 29. Let & = C([b, c], R") with the usual supremum
norm. Suppose that

(1) B : bl x[bec] xR" - R"and g : R" — R" are
continuous;

(2) there exists a continuous function p : [b,c] x [b,c] —
[b, ] such that

| B (r,s,u) — B (r,s,v)| < p(r,5) [u—v], (95)

foreachr,s € [b,c] andu,v € R" withu < v;
c
(3) Sup,cpq fb plr,s)ds =q < 1/4;
(4) there exists zy € X and z, € T z, such that z, < z,;

(5) for a sequence{z,} ¢ X, lim,_,{z,} =z, and < z,,,,
foralln € N, one has z, < z for alln € N.

Then the integral equation (93) has a solution in .

Proof. Let = C([b,c],R") and ||z|| = max, ., |2(r)|, for
z € C([a, b]). Consider a partial order defined on 2 by

y,z€C([b,c],R"), y=<z
(96)

ifft y(r) <z(r), forrelbc].

Then (X, | - ||, %) is a complete partial ordered metric space
and for any increasing sequence {z,} in 2" converging to z €
', wehavez,(r) < z(r) forany r € [b, c] (see [27]). By using
(94) and conditions (2) and (3) and taking 9(r, s) = (1/2)s—r
forall y,z € & with y < z, we obtain

|9y(r) -Jz (r)|

j-c B (r,s,y(s))ds - JC B (r,s,z(s))ds
b b

¢ (97)
< J- | (r,s,y (s)) — B (r,s,2 ()| ds

b

¢ 1
< L p(r,s) |y(s) —z(s)|ds < n ||y—z||_

This implies that
Ly-ell-1o7y-7el 2 2 y-el- Ly
(98)

= 2ly-al.

So d(T y,Tz),d(y,z)) = 0forall y,z € & with y <
z. Hence all the conditions of Theorem 26 are satisfied.
Therefore I has a fixed point; consequently, integral equation
(93) has a solution in . O
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