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In this paper we utilize the concept of manageable functions to define multivalued 𝛼∗ − 𝜂∗ manageable contractions and prove
fixed point theorems for such contractions. As applications we deduce certain fixed point theorems which generalize and improve
Nadler’s fixed point theorem,Mizoguchi-Takahashi’s fixed point theorem, and some other well-known results in the literature. Also,
we give an illustrating example showing that our results are a proper generalization of Nadler’s theorem and provide an application
to integral equations.

1. Introduction and Preliminaries

The Banach contraction principle [1] is an elementary result
in metric fixed point theory. This golden principle has been
broadened in several directions by different authors (see [1–
18]). An interesting generalization is the elongation of the
Banach contraction principle to multivalued maps, known as
Nadler’s fixed point theorem [19] and Mizoguchi-Takahashi’s
fixed point theorem [20]. In 2012, Samet et al. [18] defined𝛼-𝜓-contractive and 𝛼-admissible mappings and then Salimi
et al. [17] generalized this idea by introducing function 𝜂
and established fixed point theorems. Further Hasanzade Asl
et al. [13] extended these notions to multivalued functions
by introducing the concepts of 𝛼∗-𝜓-contractive and 𝛼∗-
admissible for multivalued mappings and proved some fixed
point results.

Hussain et al. [14] modified the notions of 𝛼∗-admissible
as follows.

Definition 1 (see [14]). Let T : X → 2X be a multifunction
on a metric space (X, 𝑑) and 𝛼, 𝜂 : X × X → R+ be two

functions, where 𝜂 is bounded; then T is an 𝛼∗-admissible
mapping with respect to 𝜂 if

𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧)
implies that 𝛼∗ (T𝑦,T𝑧) ≥ 𝜂∗ (T𝑦,T𝑧) ,

𝑦, 𝑧 ∈ X,
(1)

where

𝛼∗ (A,B) = inf
𝑦∈A,𝑧∈B

𝛼 (𝑦, 𝑧) ,
𝜂∗ (A,B) = sup

𝑦∈A,𝑧∈B

𝜂 (𝑦, 𝑧) . (2)

Further, Ali et al. [3] generalized the results of Hussain et
al. and introduced the following definition.

Definition 2 (see [3]). Let 𝑇 : 𝑋 → 2𝑋 be a closed valued
mapping on a metric space (𝑋, 𝑑) and 𝛼, 𝜂 : 𝑋 × 𝑋 → R+
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be two functions. We say that 𝑇 is generalized 𝛼∗-admissible
mapping with respect to 𝜂 if𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧)

implies that 𝛼 (𝑢, V) ≥ 𝜂 (𝑢, V) ,∀𝑢 ∈ 𝑇𝑦, V ∈ 𝑇𝑧. (3)

Very recently, Ali et al. [2] modified Definition 2 for the
sequence of multivalued functions as follows.

Definition 3 (see [2]). Let {T𝑖 : X → 2X}∞𝑖=1 be a sequence
of closed valued maps on a metric space (X, 𝑑) and 𝛼, 𝜂 :
X × X → R+ be two functions; then the sequenceT𝑖 is 𝛼∗-
admissible mapping with respect to 𝜂 if𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧)

implies that 𝛼 (𝑢, V) ≥ 𝜂 (𝑢, V) ,∀𝑢 ∈ T𝑖𝑦, V ∈ T𝑗𝑧,
(4)

for each 𝑖, 𝑗 ∈ N. If, for all 𝑦, 𝑧 ∈ X 𝛼(𝑦, 𝑧) = 1, the sequence{T𝑖} is called 𝛼∗-subadmissible and, for 𝜂(𝑦, 𝑧) = 1, the
sequence {T𝑖} is called 𝛼∗-admissible.

Recently, Du and Khojasteh [10] initiated the concept of
manageable functions and proved some fixed point theorems.
In this paper, we introduce multivalued 𝛼∗ − 𝜂∗ manageable
contraction and prove certain fixed point results. We also
prove common fixed point theorem for multivalued contrac-
tion. The investigated results of this paper conclude several
existing fixed point results including Nadler’s theorem.

Throughout this paper, CL(X) denotes the family of
all nonempty closed subsets of a metric space (X, 𝑑). The
Hausdorff metric𝐻 is defined on CL(X) by

𝐻(A,B) = max{sup
𝑥∈A

𝐷 (𝑥,B) , sup
𝑦∈B

𝐷(𝑦,A)} , (5)

where𝐷(𝑥,B) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ B}. In the sequel, Fix{T}
denotes the set of all fixed points of mapping T, Fix{T𝑖}
denotes the set of all common fixed points of mappings T𝑖,Σ denotes the class of all functions 𝜎 : [0, +∞) → [0, 1)
fulfilling lim sup𝑡→𝑟+𝜎(𝑡) < 1, for all 𝑟 ∈ [0, +∞), Φ denotes
the set of all functions 𝜑 : [0, +∞) → [0, +∞) such that∫𝜖
0
𝜑(𝑡)𝑑𝑡 exists and ∫𝜖

0
𝜑(𝑡)𝑑𝑡 > 𝜖, for each 𝜖 > 0, Ψ denotes

the class of all nondecreasing functions 𝜓 : [0, +∞) →[0, +∞) such that ∑∞𝑛=1 𝜓𝑛(𝑡) < +∞ for all 𝑡 > 0, and Γ
denotes the set of all 𝐿-functions. Recall that a function 𝛾 :[0, +∞) → [0, +∞) is said to be an 𝐿-function if 𝛾(0) = 0
and 𝛾(𝑡) > 0 for all 𝑡 > 0 and for every 𝑡 > 0 there exists 𝑠 > 𝑡
such that 𝛾(𝑢) ≤ 𝑡 for 𝑢 ∈ [𝑡, 𝑠] [21].
2. Fixed Point and Common Fixed Point

Results for Multivalued Contractions via
Manageable Function

Consistent withDu andKhojasteh [10], we denote by M̂an(R)
the set of all manageable functions 𝜗 : R × R → R fulfilling
the following conditions:

(𝜗1) 𝜗(𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑠, 𝑡 > 0;(𝜗2) for any bounded sequence {𝑡𝑛} ⊂ (0, +∞) and any
nondecreasing sequence {𝑠𝑛} ⊂ (0, +∞), it holds that

lim
𝑛→∞

sup
𝑡𝑛 + 𝜗 (𝑡𝑛, 𝑠𝑛)𝑠𝑛 < 1. (6)

Example 4 (see [10]). Let 𝑟 ∈ [0, 1). Then 𝜗𝑟 : R × R → R

defined by 𝜗𝑟 (𝑡, 𝑠) = 𝑟𝑠 − 𝑡 (7)

is a manageable function.

Example 5. Let 𝜗 : R ×R → R defined by

𝜗 (𝑡, 𝑠) = {𝜓 (𝑠) − 𝑡 if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,𝑓 (𝑡, 𝑠) otherwise, (8)

where 𝜓 ∈ Ψ and 𝑓 : R × R → R is any function. Then𝜗(𝑡, 𝑠) ∈ M̂an(R). Indeed, by using Lemma 1 of [12], we have,
for any 𝑠, 𝑡 > 0, 𝜗 (𝑡, 𝑠) = 𝜓 (𝑠) − 𝑡 < 𝑠 − 𝑡, (9)

so, (𝜗1) holds. Let {𝑡𝑛} ⊂ (0, +∞) be a bounded sequence
and let {𝑠𝑛} ⊂ (0, +∞) be a nonincreasing sequence. Then
lim𝑛→∞𝑠𝑛 = inf𝑛∈N𝑠𝑛 = 𝑎 for some 𝑎 ∈ [0, +∞); we get

lim
𝑛→∞

sup
𝑡𝑛 + 𝜗 (𝑡𝑛, 𝑠𝑛)𝑠𝑛 = lim

𝑛→∞
sup

𝜓 (𝑠𝑛)(𝑠𝑛) < lim
𝑛→∞

(𝑠𝑛)(𝑠𝑛)= 1, (10)

so, (𝜗2) is also satisfied.
Definition 6. Let (X, 𝑑) be a metric space and 𝑇 : X → 2X
be a closed valued mapping. Let 𝛼, 𝜂 : X × X → R+ be two
functions and 𝜗 ∈ M̂an(R). Then T is called a multivalued𝛼∗ − 𝜂∗-manageable contraction with respect to 𝜗 if for all𝑦, 𝑧 ∈ X

𝛼∗ (T𝑦,T𝑧) ≥ 𝜂∗ (T𝑦,T𝑧)
implies 𝜗 (𝐻 (T𝑦,T𝑧) , 𝑑 (𝑦, 𝑧)) ≥ 0. (11)

Now we state and prove the main result of this section.

Theorem 7. Let (X, 𝑑) be a complete metric space and let
T : X → 2X be a closed valued map satisfying the following
conditions:

(1) T is 𝛼∗-admissible map with respect to 𝜂;
(2) T is 𝛼∗ − 𝜂∗ manageable contraction with respect to 𝜗;
(3) there exists 𝑧0 ∈ X and 𝑧1 ∈ T𝑧0 such that 𝛼(𝑧0, 𝑧1) ≥𝜂(𝑧0, 𝑧1);
(4) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑥 and𝛼(𝑧𝑛, 𝑧𝑛+1) ≥ 𝜂(𝑧𝑛, 𝑧𝑛+1), for all 𝑛 ∈ N, implies𝛼(𝑧𝑛, 𝑥) ≥ 𝜂(𝑧𝑛, 𝑥) for all 𝑛 ∈ N.

Then 𝐹𝑖𝑥{T} ̸= ⌀.
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Proof. Let 𝑧1 ∈ T𝑧0 be such that 𝛼(𝑧0, 𝑧1) ≥ 𝜂(𝑧0, 𝑧1).
Since T is 𝛼∗-admissible map with respect to 𝜂, then𝛼∗(T𝑧0,T𝑧1) ≥ 𝜂∗(T𝑧0,T𝑧1).Therefore, from (11), we have

𝜗 (𝐻 (T𝑧0,T𝑧1) , 𝑑 (𝑧0, 𝑧1)) ≥ 0. (12)

If 𝑧1 = 𝑧0, then 𝑧0 ∈ Fix{T}; also if 𝑧1 ∈ T𝑧1, then 𝑧1 ∈
Fix{T}. So, we adopt that 𝑧0 ̸= 𝑧1 and 𝑧1 ∉ T𝑧1. Thus 0 <𝑑(𝑧1,T𝑧1) ≤ 𝐻(T𝑧0,T𝑧1). Define 𝜆 : R ×R → R by

𝜆 (𝑡, 𝑠) = {{{
𝑡 + 𝜗 (𝑡, 𝑠)𝑠 if 𝑡, 𝑠 > 00 otherwise. (13)

By (𝜗1), we know that

0 < 𝜆 (𝑡, 𝑠) < 1, ∀𝑡, 𝑠 > 0. (14)

Also note that if 𝜗(𝑡, 𝑠) ≥ 0, then
0 < 𝑡 ≤ 𝑠𝜆 (𝑡, 𝑠) . (15)

So, from (12) and (14), we get

0 < 𝜆 (𝐻 (T𝑧0,T𝑧1) , 𝑑 (𝑧0, 𝑧1)) < 1. (16)

Let

𝜀1 = ( 1√𝜆 (𝐻 (T𝑧0,T𝑧1) , 𝑑 (𝑧0, 𝑧1))
− 1)𝑑 (𝑧1,T𝑧1) .

(17)

Since 𝑑(𝑧1,T𝑧1) > 0. So, by using (16), we get 𝜀1 > 0 and
𝑑 (𝑧1,T𝑧1) < 𝑑 (𝑧1,T𝑧1) + 𝜀1
= ( 1√𝜆 (𝐻 (T𝑧0,T𝑧1) , 𝑑 (𝑧0, 𝑧1)))𝑑 (𝑧1,T𝑧1) . (18)

This implies that there exists 𝑧2 ∈ T𝑧1 such that

𝑑 (𝑧1, 𝑧2)
< ( 1√𝜆 (𝐻 (T𝑧0,T𝑧1) , 𝑑 (𝑧0, 𝑧1)))𝑑 (𝑧1,T𝑧1) . (19)

Note that 𝑧1 ̸= 𝑧2 (since 𝑧1 ∉ T𝑧1). Now if 𝑧2 ∈ T𝑧2,
then 𝑧2 is a fixed point of T. Otherwise, 0 < 𝑑(𝑧2,T𝑧2) <𝐻(T𝑧1,T𝑧2). Also, since 𝛼∗(T𝑧0,T𝑧1) ≥ 𝜂∗(T𝑧0,T𝑧1),𝑧1 ∈ T𝑧0, and 𝑧2 ∈ T𝑧1, then 𝛼(𝑧1, 𝑧2) ≥ 𝜂(𝑧1, 𝑧2). So,𝛼∗(T𝑧1,T𝑧2) ≥ 𝜂∗(T𝑧1,T𝑧2), so, from (11), we get

𝜗 (𝐻 (T𝑧1,T𝑧2) , 𝑑 (𝑧1, 𝑧2)) ≥ 0. (20)

By taking

𝜀2 = ( 1√𝜆 (𝐻 (T𝑧1,T𝑧2) , 𝑑 (𝑧1, 𝑧2))
− 1)𝑑 (𝑧2,T𝑧2) ,

(21)

there exists 𝑧3 ∈ T𝑧2 with 𝑧3 ̸= 𝑧2 such that𝑑 (𝑧2, 𝑧3)
< ( 1√𝜆 (𝐻 (T𝑧1,T𝑧2) , 𝑑 (𝑧1, 𝑧2)))𝑑 (𝑧2,T𝑧2) . (22)

Hence, by induction, we form a sequence {𝑧𝑛} inX satisfying
for each 𝑛 ∈ N, 𝑧𝑛 ∈ T𝑧𝑛−1, 𝑧𝑛 ̸= 𝑧𝑛−1, 𝑧𝑛 ∉ T𝑧𝑛, and𝛼∗(𝑧𝑛−1, 𝑧𝑛) ≥ 𝜂∗(𝑧𝑛−1, 𝑧𝑛)0 < 𝑑 (𝑥𝑛,T𝑥𝑛) ≤ 𝐻 (T𝑧𝑛−1,T𝑧𝑛) , (23)

𝜗 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)) ≥ 0, (24)

𝑑 (𝑧𝑛, 𝑧𝑛+1)
< ( 1√𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)))𝑑 (𝑧𝑛,T𝑧𝑛) , (25)

by taking

𝜀𝑛 = ( 1√𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))
− 1)𝑑 (𝑧𝑛,T𝑧𝑛) .

(26)

By using (14), (15), (23), and (25), we get for each 𝑛 ∈ N𝑑 (𝑧𝑛,T𝑧𝑛)≤ 𝑑 (𝑧𝑛−1, 𝑧𝑛) 𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))≤ 𝑑 (𝑧𝑛−1, 𝑧𝑛) .
(27)

This implies that {𝑑(𝑧𝑛,T𝑧𝑛)}𝑛∈N is a bounded sequence. By
combining (25) and (27), for each 𝑛 ∈ N, we get𝑑 (𝑧𝑛, 𝑧𝑛+1)

< (√𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))) 𝑑 (𝑧𝑛−1, 𝑧𝑛) . (28)

Which means that {𝑑(𝑧𝑛−1, 𝑧𝑛)}𝑛∈N is a monotonically
decreasing sequence of nonnegative reals and so it must be
convergent. So, let

lim
𝑛→∞

𝑑 (𝑧𝑛, 𝑧𝑛+1) = 𝑐 ≥ 0. (29)
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From (𝜗2), we get
lim
𝑛→∞

sup 𝜆 (𝐻 (T𝑧𝑛,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)) < 1. (30)

Now, if, in (29), 𝑐 > 0, then, by taking lim𝑛→∞sup in (28) and
using (30), we have

𝑐 ≤ √ lim
𝑛→∞

sup 𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))𝑐 < 𝑐. (31)

This contradiction shows that 𝑐 = 0. Hence,
lim
𝑛→∞

𝑑 (𝑧𝑛, 𝑧𝑛+1) = 0. (32)

Next, we prove that {𝑧𝑛}𝑛∈N is a Cauchy sequence in X. Let,
for each 𝑛 ∈ N,

𝜎𝑛 = √𝜆 (𝐻 (T𝑧𝑛−1,T𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)). (33)

Then, from (16), we have 𝜎𝑛 ∈ (0, 1). By (28), we obtain
𝑑 (𝑧𝑛, 𝑧𝑛+1) < 𝜎𝑛𝑑 (𝑧𝑛−1, 𝑧𝑛) . (34)

Equation (30) implies that lim𝑛→∞𝜎𝑛 < 1, so there exists 𝛾 ∈[0, 1) and 𝑛0 ∈ N, such that

𝜎𝑛 ≤ 𝛾, ∀𝑛 ∈ N, 𝑛 ≥ 𝑛0. (35)

For any 𝑛 ≥ 𝑛0, since 𝜎𝑛 ∈ (0, 1) for all 𝑛 ∈ N and 𝛾 ∈ [0, 1),
(34) and (35) imply that

𝑑 (𝑧𝑛, 𝑧𝑛+1) < 𝜎𝑛𝑑 (𝑧𝑛−1, 𝑧𝑛) < 𝜎𝑛𝜎𝑛−1𝑑 (𝑧𝑛−2, 𝑧𝑛−1)< ⋅ ⋅ ⋅
< 𝜎𝑛𝜎𝑛−1𝜎𝑛−2 ⋅ ⋅ ⋅ 𝜎𝑛0𝑑 (𝑧0, 𝑧1)
≤ 𝛾𝑛−𝑛0+1𝑑 (𝑧0, 𝑧1) .

(36)

Put 𝛽𝑛 = (𝛾𝑛−𝑛0+1/(1 − 𝛾))𝑑(𝑧0, 𝑧1), 𝑛 ∈ N. For 𝑚, 𝑛 ∈ N with𝑚 > 𝑛 ≥ 𝑛0, we have from (36) that

𝑑 (𝑧𝑛, 𝑧𝑚) ≤ 𝑚−1∑
𝑗=𝑛

𝑑 (𝑧𝑗, 𝑧𝑗+1) < 𝛽𝑛. (37)

Since 𝛾 ∈ [0, 1), lim𝑛→∞𝛽𝑛 = 0. Hence
lim
𝑛→∞

sup {𝑑 (𝑧𝑛, 𝑧𝑚) : 𝑚 > 𝑛} = 0. (38)

This shows that {𝑧𝑛} is aCauchy sequence inX. Completeness
of X ensures the existence of 𝑧 ∈ X such that 𝑧𝑛 → 𝑧
as 𝑛 → ∞. Now, since 𝛼(𝑧𝑛, 𝑧) ≥ 𝜂(𝑧𝑛, 𝑧) for all 𝑛 ∈ N,𝛼∗(T𝑧𝑛,T𝑧) ≥ 𝜂∗(T𝑧𝑛,T𝑧), and so, from (11), we have

𝜗 (𝐻 (T𝑧𝑛,T𝑧) , 𝑑 (𝑧𝑛, 𝑧)) ≥ 0. (39)

Then, from (14) and (15), we have

𝐻(T𝑧𝑛,T𝑧) ≤ 𝜆 (𝐻 (T𝑧𝑛,T𝑧) , 𝑑 (𝑧𝑛, 𝑧)) 𝑑 (𝑧𝑛, 𝑧)< 𝑑 (𝑧𝑛, 𝑧) . (40)

Since 0 < 𝑑(𝑧,T𝑧) ≤ 𝐻(T𝑧𝑛,T𝑧) + 𝑑(𝑧𝑛, 𝑧), so, by using
(40), we get 0 < 𝑑 (𝑧,T𝑧) < 2𝑑 (𝑧𝑛, 𝑧) . (41)

Letting limit 𝑛 → ∞ in the above inequality, we get𝑑 (𝑧,T𝑧) = 0. (42)

Hence 𝑧 ∈ Fix{T}.
Example 8. Let X = R with usual metric 𝑑. Then (X, 𝑑) is
a complete metric space. Define T : X → CL(X), 𝛼, 𝜂 :
X ×X → R+ and 𝜗 : R ×R → R by

T𝑧 = {{{{{{{{{{{
{1, 14𝑧} if 𝑧 > 1;
{0, 𝑧16} if 𝑧 ∈ [0, 1] ;{2, 3} otherwise,

𝛼 (𝑦, 𝑧) = {{{{{
2 if 𝑧, 𝑦 ∈ [0, 1] ;12 otherwise.

(43)

𝜂(𝑦, 𝑧) = 1, for all 𝑧, 𝑦 ∈ X and 𝜗(𝑡, 𝑠) = 𝑎𝑠 − 𝑡, where 𝑎 ∈[1/16, 1). Then 𝜗 is a manageable function. Indeed, for any𝑠, 𝑡 > 0, we have 𝜗 (𝑡, 𝑠) = 𝑎𝑠 − 𝑡 < 𝑠 − 𝑡, (44)

so, (𝜗1) holds. Let {𝑡𝑛} ⊂ (0, +∞) be a bounded sequence and
let {𝑠𝑛} ⊂ (0, +∞) be a nonincreasing sequence. Then

lim
𝑛→∞

sup
𝑡𝑛 + 𝜗 (𝑡𝑛, 𝑠𝑛)𝑠𝑛 = 𝑎 < 1, (45)

which means that (𝜗2) holds. Hence 𝜗 ∈ M̂an(R).
Since 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) when 𝑧, 𝑦 ∈ [0, 1], this implies

that𝛼∗ (T𝑦,T𝑧) = inf
𝑢∈T𝑦,V∈T𝑧

𝛼 (𝑢, V) = 2 > 1
= sup
𝑢∈T𝑦,V∈T𝑧

𝜂 (𝑢, V) = 𝜂∗ (T𝑦,T𝑧) . (46)

HenceT is 𝛼∗-admissible mapping with respect to 𝜂.
Let 𝛼∗(T𝑦,T𝑧) ≥ 𝜂∗(T𝑦,T𝑧); then 𝑦, 𝑧 ∈ [0, 1]. This

implies that

𝜗 (𝐻 (T𝑦,T𝑧) , 𝑑 (𝑦, 𝑧)) = 𝜗 ( 𝑦16 − 𝑧16  , 𝑦 − 𝑧)
= 𝑎 𝑦 − 𝑧 −  𝑦16 − 𝑧16 
= 𝑦 − 𝑧 (𝑎 − 116) ≥ 0.

(47)

Thus, all conditions ofTheorem 7 are satisfied and 0 is a fixed
point ofT.

On the other hand, for 𝑦 = −1 and 𝑧 = 0, we have𝐻(T𝑦,T𝑧) = 2 > 1 = 𝑑 (𝑦, 𝑧) . (48)

This implies that T is not a multivalued contraction, so we
cannot apply Nadler’s theorem [19] with this example.
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On bearing 𝜂(𝑦, 𝑧) = 1 inTheorem 7, we get the following
corollary.

Corollary 9. Let (X, 𝑑) be a complete metric space and letT :
X → 2X be an 𝛼∗-admissible and closed valued map enjoying
the following:

(1) 𝛼∗(T𝑦,T𝑧) ≥ 1 implies 𝜗(𝐻(T𝑦,T𝑦), 𝑑(𝑦, 𝑧)) ≥ 0;
(2) there exists 𝑧0 ∈ X and 𝑧1 ∈ T𝑧0 such that 𝛼(𝑧0, 𝑧1) ≥1;
(3) for a sequence {𝑧𝑛} ⊂ X, lim

𝑛→∞
{𝑧𝑛} = 𝑥, and𝛼(𝑧𝑛, 𝑧𝑛+1) ≥ 1, for all 𝑛 ∈ N, one has 𝛼(𝑧𝑛, 𝑥) ≥ 1

for all 𝑛 ∈ N,

for all 𝑦, 𝑧 ∈ X and 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T} ̸= ⌀.

By taking 𝛼(𝑦, 𝑧) = 1 in Theorem 7, we get the following
corollary.

Corollary 10. Let (X, 𝑑) be a complete metric space and let
T : X → 2X be an 𝜂∗-admissible and closed valued map
enjoying the following conditions:

(1) 𝜂∗(T𝑦,T𝑧) ≤ 1 implies 𝜗(𝐻(T𝑦,T𝑦), 𝑑(𝑦, 𝑧)) ≥ 0;
(2) there exists 𝑧0 ∈ X and 𝑧1 ∈ T𝑧0 such that 𝜂(𝑧0, 𝑧1) ≤1;
(3) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑥, and𝜂(𝑧𝑛, 𝑧𝑛+1) ≤ 1, for all 𝑛 ∈ N, one has 𝜂(𝑧𝑛, 𝑥) ≤ 1

for all 𝑛 ∈ N,

for all 𝑦, 𝑧 ∈ X and 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T} ̸= ⌀.

Theorem 11. Let (X, 𝑑) be a complete metric space and let the
sequence {T𝑖 : X → 2X} of closed valued mappings enjoy the
following with condition (4) of Theorem 7:

(1) {T𝑖} is 𝛼∗-admissible with respect to 𝜂;
(2) 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) implies 𝜗(𝐻(T𝑖𝑦,T𝑗𝑧), 𝑑(𝑥, 𝑦)) ≥0;
(3) there exists 𝑧0 ∈ X and 𝑦𝑖 ∈ T𝑖𝑧0 for each 𝑖 ∈ N such

that 𝛼(𝑧0, 𝑦𝑖) ≥ 𝜂(𝑧0, 𝑦𝑖);
for all 𝑦, 𝑧 ∈ X, 𝑖, 𝑗 ∈ N, and 𝜗 ∈ 𝑀𝑎𝑛(R).Then 𝐹𝑖𝑥{T𝑖} ̸= ⌀
for each 𝑖 ∈ N.

Proof. Let 𝑧1 ∈ T1𝑧0 be such that 𝛼(𝑧0, 𝑧1) ≥ 𝜂(𝑧0, 𝑧1); then
from (11) we have

𝜗 (𝐻 (T1𝑧0,T2𝑧1) , 𝑑 (𝑧0, 𝑧1)) ≥ 0. (49)

If 𝑧1 ∈ T𝑖𝑧1, for each 𝑖 ∈ N, then 𝑧1 ∈ Fix{T𝑖}. Adopt that𝑧1 ∉ T2𝑧1. Thus

0 < 𝑑 (𝑧1,T2𝑧1) ≤ 𝐻 (T1𝑧0,T2𝑧1) . (50)

From (50), we get

0 < 𝜆 (𝐻 (𝑇1𝑧0, 𝑇2𝑧1) , 𝑑 (𝑧0, 𝑧1)) < 1, (51)

where 𝜆 is defined in (13). Let

𝜀1 = ( 𝛼 (𝑧0, 𝑧1)𝜂 (𝑧0, 𝑧1)√𝜆 (𝐻 (T1𝑧0,T2𝑧1) , 𝑑 (𝑧0, 𝑧1))
− 1)𝑑 (𝑧1,T2𝑧1) .

(52)

Since 𝛼(𝑧0, 𝑧1) ≥ 𝜂(𝑧0, 𝑧1), 𝑑(𝑧1,T2𝑧1) > 0. So, by using (51),
we get 𝜀1 > 0 and
𝑑 (𝑧1,T2𝑧1) < 𝑑 (𝑧1,T2𝑧1) + 𝜀1
= ( 𝛼 (𝑧0, 𝑧1)𝜂 (𝑧0, 𝑧1)√𝜆 (𝐻 (T1𝑧0,T2𝑧1) , 𝑑 (𝑧0, 𝑧1)))𝑑 (𝑧1,T2𝑧1) . (53)

This implies that there exists 𝑧2 ∈ T2𝑧1 such that

𝑑 (𝑧1, 𝑧2)
< ( 𝛼 (𝑧0, 𝑧1)𝜂 (𝑧0, 𝑧1)√𝜆 (𝐻 (T1𝑧0,T2𝑧1) , 𝑑 (𝑧0, 𝑧1)))𝑑 (𝑧1,T2𝑧1) . (54)

Note that 𝑧1 ̸= 𝑧2 (since 𝑧1 ∉ T2𝑧1). Now if 𝑧2 ∈ T𝑖𝑧2, for
each 𝑖 ∈ N, then 𝑧2 ∈ Fix{T𝑖}. Let 𝑧2 ∉ T3𝑧2; then

0 < 𝑑 (𝑧2,T3𝑧2) < 𝐻 (T2𝑧1,T3𝑧2) . (55)

Since the sequence {T𝑖} is 𝛼∗-admissible with respect to 𝜂, so
we have 𝛼(𝑧1, 𝑧2) ≥ 𝜂(𝑧1, 𝑧2) and, from condition (11), we get

𝜗 (𝐻 (T2𝑧1,T3𝑧2) , 𝑑 (𝑧1, 𝑧2)) ≥ 0. (56)

By taking

𝜀2 = ( 𝛼 (𝑧1, 𝑧2)𝜂 (𝑧1, 𝑧2)√𝜆 (𝐻 (T2𝑧1,T3𝑧2) , 𝑑 (𝑧1, 𝑧2))
− 1)𝑑 (𝑧2,T3𝑧2) ,

(57)

there exists 𝑧3 ∈ T3𝑧2 with 𝑧3 ̸= 𝑧2 such that

𝑑 (𝑧2, 𝑧3)
< ( 𝛼 (𝑧1, 𝑧2)𝜂 (𝑧1, 𝑧2)√𝜆 (𝐻 (T2𝑧1,T3𝑧2) , 𝑑 (𝑧1, 𝑧2)))𝑑 (𝑧2,T3𝑧2) . (58)
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Hence, by induction, we can establish a sequence {𝑧𝑛} in 𝑋
satisfying for each 𝑛 ∈ N, 𝑧𝑛 ∈ T𝑛𝑧𝑛−1, 𝑧𝑛 ̸= 𝑧𝑛−1, 𝑧𝑛 ∉ T𝑖𝑧𝑛
for each 𝑛 ∈ N, and 𝛼(𝑧𝑛−1, 𝑧𝑛) ≥ 𝜂(𝑧𝑛−1, 𝑧𝑛)0 < 𝑑 (𝑧𝑛,T𝑛+1𝑧𝑛) ≤ 𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , (59)

𝜗 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)) ≥ 0, (60)

𝑑 (𝑧𝑛, 𝑧𝑛+1)
< ( 𝛼 (𝑧𝑛−1, 𝑧𝑛)𝜂 (𝑧𝑛−1, 𝑧𝑛)√𝜆 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)))

× 𝑑 (𝑧𝑛,T𝑛+1𝑧𝑛) ,
(61)

by taking

𝜀𝑛 = ( 𝛼 (𝑧𝑛−1, 𝑧𝑛)𝜂 (𝑧𝑛−1, 𝑧𝑛)√𝜆 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))
− 1)𝑑 (𝑧𝑛,T𝑛+1𝑧𝑛) .

(62)

By using (14), (15), (59), and (61), we get for each 𝑛 ∈ N𝑑 (𝑧𝑛,T𝑛+1𝑧𝑛)≤ 𝑑 (𝑧𝑛−1, 𝑧𝑛) 𝜆 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))≤ 𝑑 (𝑧𝑛−1, 𝑧𝑛) .
(63)

Whichmeans that {𝑑(𝑧𝑛,T𝑛+1𝑧𝑛)}𝑛∈N is a bounded sequence.
By combining (61) and (63), for each 𝑛 ∈ N, we get𝑑 (𝑧𝑛, 𝑧𝑛+1)

< (√𝜆 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)))
× 𝑑 (𝑧𝑛−1, 𝑧𝑛) .

(64)

Which means that {𝑑(𝑧𝑛−1, 𝑧𝑛)}𝑛∈N is a monotonically
decreasing sequence of nonnegative reals and so it must be
convergent. So, let

lim
𝑛→∞

𝑑 (𝑧𝑛, 𝑧𝑛+1) = 𝑐 ≥ 0. (65)

From (𝜗2), we get
lim
𝑛→∞

sup 𝜆 (𝑑 (𝑧𝑛,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛)) < 1. (66)

Now, if, in (65), 𝑐 > 0, then, by taking lim𝑛→∞sup in (64) and
using (66), we have

𝑐 ≤ √ lim
𝑛→∞

sup 𝜆 (𝐻 (T𝑛𝑧𝑛−1,T𝑛+1𝑧𝑛) , 𝑑 (𝑧𝑛−1, 𝑧𝑛))𝑐
< 𝑐. (67)

This contradiction shows that 𝑐 = 0. Hence,
lim
𝑛→∞

𝑑 (𝑧𝑛, 𝑧𝑛+1) = 0. (68)

Next, by following the same procedure as in proof of Theo-
rem 7, we show that sequence {𝑧𝑛}𝑛∈N is a Cauchy sequence
in𝑋. Completeness ofX guarantees that there is 𝑧 ∈ X such
that 𝑧𝑛 → 𝑧 as 𝑛 → ∞. Now, since 𝛼(𝑧𝑛, 𝑧) ≥ 𝜂(𝑧𝑛, 𝑧) for all𝑛 ∈ N, and from condition (11), we have

𝜗 (𝐻 (T𝑛+1𝑧𝑛,T𝑖𝑧) , 𝑑 (𝑧𝑛, 𝑧)) ≥ 0. (69)

Then, from (14) and (15), we have

𝐻(T𝑛+1𝑧𝑛,T𝑖𝑧)≤ 𝜆 (𝐻 (T𝑛+1𝑧𝑛,T𝑖𝑧) , 𝑑 (𝑧𝑛, 𝑧)) 𝑑 (𝑧𝑛, 𝑧)< 𝑑 (𝑧𝑛, 𝑧) .
(70)

Since 0 < 𝑑(𝑧𝑛+1,T𝑖𝑧) < 𝐻(T𝑛+1𝑥𝑛,T𝑖𝑧), by using (70), we
get

0 < 𝑑 (𝑧𝑛+1,T𝑖𝑧) ≤ 𝑑 (𝑧𝑛, 𝑧) . (71)

Letting limit 𝑛 → ∞ in the above inequality, we get

𝑑 (𝑧,T𝑖𝑧) = 0. (72)

Hence 𝑧 ∈ Fix{T𝑖𝑧}.
Let us take T𝑖 = T for each 𝑖 ∈ N; then Theorem 11

reduces to the following.

Theorem 12. Let (X, 𝑑) be a complete metric space and let the
sequence T : X → 2X be a closed valued mapping enjoying
the following with conditions (3) and (4) of Theorem 7:

(1) T is generalized 𝛼∗-admissible with respect to 𝜂;
(2) 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜗(𝐻(T𝑦,T𝑧), 𝑑(𝑦, 𝑧)) ≥0;

for all 𝑦, 𝑧 ∈ X and 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T} ̸= ⌀.

As an application ofTheorems 7 and 11, we can deduce the
following result.

Theorem 13. Let (X, 𝑑) be a complete metric space and letT :
X → 2X be a closed valuedmapping satisfying for all 𝑦, 𝑧 ∈ X

𝜗 (𝐻 (T𝑦,T𝑧) , 𝑑 (𝑦, 𝑧)) ≥ 0, (73)

where 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝛼, 𝜂 : X ×X → [0,∞) by
𝛼 (𝑦, 𝑧) = 𝑑 (𝑦, 𝑧) ,
𝜂 (𝑦, 𝑧) = 𝑑 (𝑦, 𝑧) , (74)

for all 𝑦, 𝑧 ∈ X. So that 𝛼(𝑦, 𝑧) = 𝜂(𝑦, 𝑧). This implies that𝛼∗(T𝑦,T𝑧) = 𝜂∗(T𝑦,T𝑧) for all 𝑦, 𝑧 ∈ X. That is, all the
conditions ofTheorem7hold true.HenceT has a fixed point.

In the following corollaries, we obtain some known and
some new results in literature via manageable functions.
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Corollary 14 (see [19]). Let (X, 𝑑) be a complete metric space
and letT : X → 2X be a closed valued mapping satisfying for
all 𝑦, 𝑧 ∈ X

𝐻(T𝑦,T𝑧) ≤ 𝑘𝑑 (𝑦, 𝑧) , (75)

where 𝑘 ∈ (0, 1). Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝜗𝑁 : R ×R → R by

𝜗𝑁 (𝑡, 𝑠) = 𝑘𝑠 − 𝑡 ∀ (𝑡, 𝑠) ∈ R ×R, 𝑘 ∈ [0, 1) . (76)

Then 𝜗𝑁 ∈ M̂an(R), by Example 4. Therefore the result
follows by taking 𝜗 = 𝜗𝑁 in Theorem 13.

Corollary 15 (see [20]). Let (X, 𝑑) be a complete metric space
and letT : X → 2X be a closed valued mapping satisfying for
all 𝑦, 𝑧 ∈ X

𝐻(T𝑦,T𝑧) ≤ 𝜎 (𝑑 (𝑦, 𝑧)) 𝑑 (𝑦, 𝑧) , (77)

where 𝜎 ∈ Σ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝜗𝑀 : R ×R → R by

𝜗𝑀 (𝑡, 𝑠)
= {{{

𝑠𝜎 (𝑠) − 𝑡 if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,𝑓 (𝑡, 𝑠) otherwise, (78)

where 𝜎 ∈ Σ and 𝑓 : R × R → R be any function. Then𝜗𝑀 ∈ M̂an(R) (see Example C in [10]). Therefore the result
follows by taking 𝜗 = 𝜗𝑀 in Theorem 13.

Corollary 16. Let (X, 𝑑) be a complete metric space and let
T : X → 2X be a closed valued mapping satisfying for all𝑦, 𝑧 ∈ X

∫𝐻(T𝑦,T𝑧)
0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼𝑑 (𝑦, 𝑧) , (79)

where 𝜑 ∈ Φ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝜗𝐼 : R ×R → R by

𝜗𝐼 (𝑡, 𝑠)
= {{{

𝑠 − ∫𝑡
0
𝜑 (𝑢) 𝑑𝑢 if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,𝑓 (𝑡, 𝑠) otherwise,

(80)

where 𝜑 ∈ Φ and 𝑓 : R × R → R be any function. Then for𝑠, 𝑡 > 0 we have
𝜗𝐼 (𝑡, 𝑠) = 𝑠 − ∫𝑡

0
𝜑 (𝑢) 𝑑𝑢 < 𝑠 − 𝑡. (81)

Now let {𝑡𝑛} ⊂ (0, +∞) be a bounded sequence and let {𝑠𝑛} ⊂(0, +∞) be a nonincreasing sequence. Then lim𝑛→∞𝑠𝑛 =
inf𝑛∈N𝑠𝑛 = 𝑎 for some 𝑎 ∈ [0, +∞) and

lim
𝑛→∞

sup
𝑡𝑛 + 𝜗 (𝑡𝑛, 𝑠𝑛)𝑠𝑛

= lim
𝑛→∞

sup
𝑡𝑛 + 𝑠𝑛 − ∫𝑡

0
𝜑 (𝑢) 𝑑𝑢𝑠𝑛

< lim
𝑛→∞

sup
𝑡𝑛 + 𝑠𝑛 − 𝑡𝑛𝑠𝑛 = 1.

(82)

Hence 𝜗𝐼 ∈ M̂an(R). Therefore the result follows by taking𝜗 = 𝜗𝐼 in Theorem 13.

Corollary 17. Let (X, 𝑑) be a complete metric space and let
T : X → 2X be a closed valued mapping satisfying for all𝑦, 𝑧 ∈ X

𝐻(T𝑦,T𝑧) < 𝛾 (𝑑 (𝑦, 𝑧)) , (83)

where 𝛾 ∈ Γ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝜗𝐿 : R ×R → R by

𝜗𝐿 (𝑡, 𝑠) = {{{
𝛾 (𝑠) − 𝑡 if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,𝑓 (𝑡, 𝑠) otherwise, (84)

where 𝛾 ∈ Γ and 𝑓 : R × R → R be any function. Then𝜗𝐿 ∈ M̂an(R). Indeed, by using Lemma 10 of [22], we have
for 𝑠, 𝑡 > 0

𝜗𝐿 (𝑡, 𝑠) = 𝛾 (𝑠) − 𝑡 < 𝑠 − 𝑡, (85)

so, (𝜗1) holds. Let {𝑡𝑛} ⊂ (0, +∞) be a bounded sequence
and let {𝑠𝑛} ⊂ (0, +∞) be a nonincreasing sequence. Then
lim𝑛→∞𝑠𝑛 = inf𝑛∈N𝑠𝑛 = 𝑎 for some 𝑎 ∈ [0, +∞) and

lim
𝑛→∞

sup
𝑡𝑛 + 𝜗 (𝑡𝑛, 𝑠𝑛)𝑠𝑛 = lim

𝑛→∞
sup

𝛾 (𝑠𝑛)𝑠𝑛 < lim
𝑛→∞

𝑠𝑛𝑠𝑛= 1. (86)

So, (𝜗2) is also satisfied.Therefore the result follows by taking𝜗 = 𝜗𝐿 in Theorem 13.

Remark 18. SinceT is aMeir-Keeler multivaluedmapping of
a metric space (X, 𝑑) if and only if there exists (nondecreas-
ing, right continuous)mapping 𝛾 ∈ Γ such that𝐻(T𝑦,T𝑧) <𝛾(𝑑(𝑦, 𝑧)) (see [21],Theorem 2), therefore, fromCorollary 17,
we get the main result of [23].

By taking 𝜗 = 𝜗𝑀 in Theorem 12, as defined in
Corollary 15, we get the following.

Corollary 19 (see [3]). Let (X, 𝑑) be a complete metric space
and letT : X → 2X be a closed valued mapping enjoying the
following with conditions (3) and (4) of Theorem 7.
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(1) T is generalized 𝛼∗-admissible with respect to 𝜂;
(2) 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) implies 𝐻(T𝑦,T𝑧) ≤ 𝜎(𝑑(𝑦,𝑧))𝑑(𝑦, 𝑧),

for all 𝑦, 𝑧 ∈ 𝑋 and 𝜎 ∈ Σ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

On considering

𝜗 (𝑡, 𝑠) = {{{
𝜓 (𝑠) − 𝑡 if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ;𝑓 (𝑡, 𝑠) otherwise, (87)

where 𝜓 ∈ Ψ and 𝑓 : R × R → R is any function, in
Theorems 7, 11, and 12, we get the following existing theorems,
respectively.

Corollary 20 (see [14]). Let (X, 𝑑) be a complete metric space
and let T : X → 2X be a closed valued mapping fulfilling
conditions (1), (3), and (4) with

𝛼∗ (T𝑦,T𝑧) ≥ 𝜂∗ (T𝑦,T𝑧)
𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (T𝑦,T𝑧) ≤ 𝜓 (𝑑 (𝑦, 𝑧)) , (88)

for all 𝑦, 𝑧 ∈ X and 𝜓 ∈ Ψ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

Corollary 21 (see [2]). Let (X, 𝑑) be a complete metric space
and let the sequence {T𝑖 : X → 2X}∞𝑖=1 be 𝛼∗-admissible
with respect to 𝜂 fulfilling condition (4) ofTheorem 7 and (3) of
Theorem 11 with 𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (T𝑖𝑦,T𝑗𝑧) ≤ 𝜓 (𝑑 (𝑦, 𝑧)) , (89)

for all 𝑦, 𝑧 ∈ 𝑋, 𝑖, 𝑗 ∈ N and 𝜓 ∈ Ψ. Then 𝐹𝑖𝑥{T𝑖} ̸= ⌀.

Corollary 22 (see [2]). Let (X, 𝑑) be a complete metric space
and let T : X → 2X be a closed valued mapping and
generalized 𝛼∗-admissible with respect to 𝜂 fulfilling conditions
(3) and (4) of Theorem 7 with

𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧)
𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (T𝑦,T𝑧) ≤ 𝜓 (𝑑 (𝑦, 𝑧)) , (90)

for all 𝑦, 𝑧 ∈ 𝑋 and 𝜓 ∈ Ψ. Then 𝐹𝑖𝑥{T} ̸= ⌀.

3. Fixed Point Results in
Partially Ordered Metric Spaces and an
Application to Integral Equations

Let (X, 𝑑, ⪯) be a partially ordered metric space. Recall that
T : X → 2X is monotone increasing if T𝑦 ⪯ T𝑧
for all 𝑦, 𝑧 ∈ X, for which 𝑦 ⪯ 𝑧 (see [8]). There are
many applications in differential and integral equations of
monotone mappings in ordered metric spaces (see [15, 24–
26] and references therein). In this section, from Theorems
7–13, we derive the following new results in partially ordered
metric spaces and give an example to integral equations.

Theorem 23. Let (X, 𝑑, ⪯) be a complete partially ordered
metric space and letT : X → 2X be a closed valued mapping
satisfying the following assertions for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧:

(1) T is monotone increasing;
(2) 𝜗(𝐻(T𝑦,T𝑧), 𝑑(𝑦, 𝑧)) ≥ 0;
(3) there exists 𝑧0 ∈ 𝑋 and 𝑧1 ∈ T𝑧0 such that 𝑧0 ⪯ 𝑧1;
(4) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑧, and 𝑧𝑛 ⪯𝑧𝑛+1 for all 𝑛 ∈ N, one has 𝑧𝑛 ⪯ 𝑧 for all 𝑛 ∈ N.

Then 𝐹𝑖𝑥{T} ̸= ⌀.

Proof. Define 𝛼, 𝜂 : X ×X → [0,∞) by
𝛼 (𝑦, 𝑧) = {{{

1 𝑦 ⪯ 𝑧0 otherwise

𝜂 (𝑦, 𝑧) = {{{
12 𝑦 ⪯ 𝑧0 otherwise.

(91)

Then for 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧, 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) implies𝛼∗(T𝑦,T𝑧) = 1 > 1/2 = 𝜂∗(T𝑦,T𝑧) and 𝛼∗(T𝑦,T𝑧) =𝜂∗(T𝑦,T𝑧) = 0 otherwise. Thus, all the conditions of
Theorem 7 are satisfied and henceT has a fixed point.

Theorem 24. Let (X, 𝑑, ⪯) be a complete partially ordered
metric space and let the sequence {T𝑖 : X → 2X} of closed
valuedmappings enjoy the following assertions, for all𝑦, 𝑧 ∈ X
with 𝑥 ⪯ 𝑦 and for each 𝑖, 𝑗 ∈ N:

(1) 𝜗(𝐻(T𝑖𝑦,T𝑗𝑧), 𝑑(𝑦, 𝑧)) ≥ 0;
(2) if 𝑦 ⪯ 𝑧, thenT𝑖𝑦 ⪯ 𝑧 for each 𝑖 ∈ N;
(3) there exists 𝑧0 ∈ 𝑋 and 𝑦𝑖 ∈ T𝑖𝑧0 for each 𝑖 ∈ N such

that 𝑧0 ⪯ 𝑦𝑖;
(4) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑧, and 𝑧𝑛 ⪯𝑧𝑛+1, for all 𝑛 ∈ N, we have 𝑧𝑛 ⪯ 𝑧 for all 𝑛 ∈ N.

Then 𝐹𝑖𝑥{T𝑖} ̸= ⌀ for all 𝑖 ∈ N.

Proof. By defining 𝛼, 𝜂 : X × X → [0,∞) as in Theorem 23
and by usingTheorem 11, we get the required result.

Similar to the arguments of Theorems 23 and 24, we
conclude the following result and omit its proof.

Theorem 25. Let (X, 𝑑, ⪯) be a complete partial ordered
metric space and letT : X → 2X be a closed valued mapping
satisfying (73) of Theorem 13 for all 𝑥, 𝑦 ∈ X with 𝑥 ⪯ 𝑦. Then𝐹𝑖𝑥{T} ̸= ⌀.

In case of single valued mapping, Theorems 23–25
reduced to the following.

Theorem 26. Let (X, 𝑑, ⪯) be a complete partially ordered
metric space and let T : X → X be a self-map fulfilling the
following assertions:

(1) T is monotone increasing;
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(2) 𝜗(𝑑(T𝑦,T𝑧), 𝑑(𝑦, 𝑧)) ≥ 0;
(3) there exists 𝑧0 ∈ X and 𝑧1 = T𝑧0 such that 𝑧0 ⪯ 𝑧1;
(4) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑧, and 𝑧𝑛 ⪯𝑧𝑛+1, for all 𝑛 ∈ N, we have 𝑧𝑛 ⪯ 𝑧 for all 𝑛 ∈ N,

for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧 and 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T} ̸=⌀.

Theorem 27. Let (X, 𝑑, ⪯) be a complete partially ordered
metric space and let the sequence {T𝑖 : 𝑋 → 𝑋} of self-
mappings fulfill the following assertions:

(1) 𝜗(𝑑(T𝑖𝑦,T𝑗𝑧), 𝑑(𝑦, 𝑧)) ≥ 0;
(2) T𝑖 is nondecreasing for each 𝑖;
(3) there exists 𝑧0 ∈ 𝑋 and 𝑦𝑖 = T𝑖𝑧0 for each 𝑖 ∈ N such

that 𝑧0 ⪯ 𝑦𝑖;
(4) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑧 and 𝑧𝑛 ⪯𝑧𝑛+1 for all 𝑛 ∈ N, we have 𝑧𝑛 ⪯ 𝑧 for all 𝑛 ∈ N,

for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧, 𝜗 ∈ 𝑀𝑎𝑛(R) and 𝑖 ∈ N. Then𝐹𝑖𝑥{T𝑖} ̸= ⌀.

Theorem 28. Let (X, 𝑑, ⪯) be a complete partial ordered
metric space and let T : X → X be a self-map satisfying
for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧

𝜗 (𝑑 (T𝑦,T𝑧) , 𝑑 (𝑦, 𝑧)) ≥ 0, (92)

where 𝜗 ∈ 𝑀𝑎𝑛(R). Then 𝐹𝑖𝑥{T𝑖} ̸= ⌀.

Now we give an application of our results and establish
the existence of solution of the integral equation.

𝑧 (𝑟) = ∫𝑐
𝑏
B (𝑟, 𝑠, 𝑧 (𝑠)) d𝑠 + 𝑔 (𝑟) , 𝑡 ∈ [𝑏, 𝑐] . (93)

Let ≪ be a partial order relation on R𝑛. DefineT : X → X
by

T𝑧 (𝑟) = ∫𝑐
𝑏
B (𝑟, 𝑠, 𝑧 (𝑠)) d𝑠 + 𝑔 (𝑟) , 𝑟 ∈ [𝑎, 𝑏] . (94)

Theorem 29. LetX = 𝐶([𝑏, 𝑐],R𝑛) with the usual supremum
norm. Suppose that

(1) B : [𝑏, 𝑐] × [𝑏, 𝑐] × R𝑛 → R𝑛 and 𝑔 : R𝑛 → R𝑛 are
continuous;

(2) there exists a continuous function 𝑝 : [𝑏, 𝑐] × [𝑏, 𝑐] →[𝑏, 𝑐] such that
|B (𝑟, 𝑠, 𝑢) −B (𝑟, 𝑠, V)| ≤ 𝑝 (𝑟, 𝑠) |𝑢 − V| , (95)

for each 𝑟, 𝑠 ∈ [𝑏, 𝑐] and 𝑢, V ∈ R𝑛 with 𝑢 ≪ V;

(3) sup𝑟∈[𝑏,𝑐] ∫𝑐𝑏 𝑝(𝑟, 𝑠)d𝑠 = 𝑞 ≤ 1/4;
(4) there exists 𝑧0 ∈ X and 𝑧1 ∈ T𝑧0 such that 𝑧0 ⪯ 𝑧1;
(5) for a sequence {𝑧𝑛} ⊂ X, lim𝑛→∞{𝑧𝑛} = 𝑧, and ⪯ 𝑧𝑛+1,

for all 𝑛 ∈ N, one has 𝑧𝑛 ⪯ 𝑧 for all 𝑛 ∈ N.

Then the integral equation (93) has a solution inX.

Proof. Let X = 𝐶([𝑏, 𝑐],R𝑛) and ‖𝑧‖ = max𝑟∈[𝑏,𝑐]|𝑧(𝑟)|, for𝑧 ∈ 𝐶([𝑎, 𝑏]). Consider a partial order defined onX by𝑦, 𝑧 ∈ 𝐶 ([𝑏, 𝑐] ,R𝑛) , 𝑦 ⪯ 𝑧
iff 𝑦 (𝑟) ≪ 𝑧 (𝑟) , for 𝑟 ∈ [𝑏, 𝑐] . (96)

Then (X, ‖ ⋅ ‖, ⪯) is a complete partial ordered metric space
and for any increasing sequence {𝑧𝑛} inX converging to 𝑧 ∈
X, we have 𝑧𝑛(𝑟) ≪ 𝑧(𝑟) for any 𝑟 ∈ [𝑏, 𝑐] (see [27]). By using
(94) and conditions (2) and (3) and taking 𝜗(𝑟, 𝑠) = (1/2)𝑠− 𝑟
for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯ 𝑧, we obtainT𝑦 (𝑟) −T𝑧 (𝑟)

= ∫𝑐𝑏 B (𝑟, 𝑠, 𝑦 (𝑠)) d𝑠 − ∫𝑐
𝑏
B (𝑟, 𝑠, 𝑧 (𝑠)) d𝑠

≤ ∫𝑐
𝑏

B (𝑟, 𝑠, 𝑦 (𝑠)) −B (𝑟, 𝑠, 𝑧 (𝑠)) d𝑠
≤ ∫𝑐
𝑏
𝑝 (𝑟, 𝑠) 𝑦 (𝑠) − 𝑧 (𝑠) d𝑠 ≤ 14 𝑦 − 𝑧 .

(97)

This implies that12 𝑦 − 𝑧 − T𝑦 −T𝑧 ≥ 12 𝑦 − 𝑧 − 14 𝑦 − 𝑧
= 14 𝑦 − 𝑧 . (98)

So 𝜗(𝑑(T𝑦,T𝑧), 𝑑(𝑦, 𝑧)) ≥ 0 for all 𝑦, 𝑧 ∈ X with 𝑦 ⪯𝑧. Hence all the conditions of Theorem 26 are satisfied.
ThereforeThas a fixed point; consequently, integral equation
(93) has a solution inX.
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