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In this paper, we propose an extension of quasi-equilibrium problems from the convex case to the nonconvex case and fromHilbert
spaces to Banach spaces. The proposed problem is called quasi-variational problem. We study the convergence of some algorithms
to solutions of the proposed nonconvex problems in Banach spaces.

1. Introduction

Let𝑋 be a Banach space and let𝑋∗ be the dual space of𝑋. Let⟨⋅, ⋅⟩ denote the duality pairing of 𝑋∗ and 𝑋. Let 𝐶 : 𝑋 󴁂󴀱 𝑋
be a set-valuedmapping with nonempty closed values and let𝐹 : 𝑋 × 𝑋 → R be a bifunction satisfying 𝐹(𝑥, 𝑥) = 0 for all𝑥 ∈ Fix(𝐶) fl {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐶(𝑥)}. We associate with a closed
convex valued set-valued mapping 𝐶 and a convex bifunction𝐹 the following well known quasi-equilibrium problem:

Find 𝑥 ∈ 𝐶 (𝑥) ,
such that 𝐹 (𝑥, 𝑥) ≥ 0,

∀𝑥 ∈ 𝐶 (𝑥) .
(QEP[𝐶, 𝐹])

In this paper we propose the following appropriate extensions
of (QEP[𝐶, 𝐹]) from the convex case to the nonconvex case
in Banach spaces setting. We associate with 𝐶 and 𝐹 the
following nonconvex quasi-variational problem equilibrium
problems:

Find 𝑥 ∈ 𝐶 (𝑥) ,
s.t. [−𝜕𝜋𝐹 (𝑥, ⋅) (𝑥)] ∩ 𝑁𝜋 (𝐶 (𝑥) ; 𝑥)

̸= 0,
(NQVP[𝐶, 𝐹])

where 𝜕𝜋 (resp. 𝑁𝜋) is the 𝑉-proximal subdifferential (resp.𝑉-proximal normal cone) introduced and studied in [1].

The proposed nonconvex quasi-variational problem
extends many existing quasi-equilibrium problems and
quasi-variational inequalities from the convex case to the
nonconvex case and from Hilbert spaces setting to Banach
spaces setting.

(1) If 𝑋 is a Hilbert space, the proposed (NQVP[𝐶, 𝐹])
becomes

Find 𝑥 ∈ 𝐶 (𝑥) ,
such that [−𝜕𝑃𝐹 (𝑥, ⋅) (𝑥)] ∩ 𝑁𝑃 (𝐶 (𝑥) ; 𝑥) ̸= 0, (1)

where 𝜕𝑃 and 𝑁𝑃 are the usual proximal subdiffer-
ential and proximal normal cone in Hilbert spaces.
This problem has been introduced and studied in
Bounkhel et al. [2]. Since then it has been studied
and extended in various ways in Hilbert spaces by the
authors in [3] and in Noor [4] and many works (see
for instances Noor et al. [5, 6]).

(2) If 𝑋 is a Hilbert space, 𝐶 is a convex closed set
in 𝑋, 𝐹 is a convex bifunction, and 𝜌 = 0, then
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(NQVP[𝐶, 𝐹]) becomes the following well known
convex equilibrium problem:

Find 𝑥 ∈ 𝐶,
such that 𝐹 (𝑥, 𝑥) ≥ 0,

∀𝑥 ∈ 𝐶,
(2)

which has been studied in various works (see for
instance Moudafi [7], M. A. Noor and K. I. Noor [5],
and the references therein).

(3) If 𝐹(𝑥, 𝑦) = ⟨𝑇(𝑥), 𝑦 − 𝑥⟩, with 𝑇 : 𝑋 → 𝑋∗, is a
nonlinear operator then (NQVP[𝐶, 𝐹]) reduces to

Find 𝑥 ∈ 𝐶 (𝑥) ,
s.t. − 𝑇 (𝑥) ∈ 𝑁𝜋 (𝐶 (𝑥) ; 𝑥) (3)

which will be shown in Section 4 to be equivalent in
the uniform 𝑉-prox-regular case, for some 𝜌 ≥ 0, to
the following quasi-variational inequality:

Find 𝑥 ∈ 𝐶 (𝑥) ,
s.t. ⟨𝑇 (𝑥) , 𝑥 − 𝑥⟩ + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0,

∀𝑥 ∈ 𝐶 (𝑥) .
(4)

This inequality is new in Banach spaces. However, it
has been studied, in Hilbert spaces, in Bounkhel et al.
[2], when𝐶 is a uniformly𝑉-prox-regular set (see also
Bounkhel and Al-Sinan [8] and Noor et al. [5, 6]).
When 𝜌 = 0 and𝐶(𝑥) ≡ 𝐶 the last inequality becomes

Find 𝑥 ∈ 𝐶,
such that ⟨𝑇 (𝑥) , 𝑥 − 𝑥⟩ ≥ 0,

∀𝑥 ∈ 𝐶,
(5)

which is known as the classical variational inequality
introduced and studied in Stampacchia [9].

Our main objective of the present paper is to prove the
convergence of some algorithms to solutions of the proposed
nonconvex quasi-variational problem (NQVP[𝐶, 𝐹]).
2. Preliminaries

In order to prepare the framework of our study we need
to state some concepts and results. First we recall (see for
instance [1, 10]) the definition of 𝑝-uniformly convex and 𝑞-
uniformly smooth Banach spaces. The space 𝑋 is said to be𝑝-uniformly convex (resp. 𝑞-uniformly smooth) if there is a
constant 𝑐 > 0 such that

𝛿𝑋 (𝜖) ≥ 𝑐𝜖𝑝 (resp. 𝜌𝑋 (𝑡) ≤ 𝑐𝑡𝑞) , (6)

where 𝛿𝑋 and 𝜌𝑋 are defined, respectively, by
𝛿𝑋 (𝜖) = inf {1 − 󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩 : ‖𝑥‖ = 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 = 1, 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
= 𝜖} , 0 ≤ 𝜖 ≤ 2,

𝜌𝑋 (𝑡) = sup {1
2 (󵄩󵄩󵄩󵄩𝑥 + 𝑦󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩) − 1 : ‖𝑥‖ = 1, 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩

= 𝑡} , 𝑡 > 0.

(7)

Notice that the constants 𝑝 and 𝑞 in the previous definition
always satisfy𝑝 ≥ 2 and 𝑞 ∈ (1, 2]. Alsowe need to recall from
[1] the concept of𝑉-proximal subdifferential 𝜕𝜋𝑓(𝑥) (called in
[1] generalised proximal subdifferential). An element 𝑥∗ ∈ 𝑋∗
belongs to 𝜕𝜋𝑓(𝑥) provided that there exists 𝜎 > 0 so that

⟨𝑥∗, 𝑥󸀠 − 𝑥⟩ ≤ 𝑓 (𝑥󸀠) − 𝑓 (𝑥) + 𝜎𝑉 (𝐽 (𝑥) , 𝑥󸀠) , (8)

for 𝑥󸀠 very close to 𝑥, where 𝐽 : 𝑋 → 𝑋∗ is the normalised
duality mapping and 𝑉 : 𝑋∗ × 𝑋 → R is a functional defined
by

𝑉 (𝑥∗, 𝑥) = 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩2 − 2 ⟨𝑥∗, 𝑥⟩ + ‖𝑥‖2 ,
for any 𝑥∗ ∈ 𝑋∗, 𝑥 ∈ 𝑋. (9)

For a closed nonempty set 𝑆 in𝑋 and 𝑥 ∈ 𝑆, the authors in
[1] defined the concept of 𝑉-proximal normal cone 𝑁𝜋(𝑆; 𝑥)
(called in [1] generalised proximal normal cone) by𝑁𝜋(𝑆; 𝑥) =𝜕𝜋𝜓𝑆(𝑥), where 𝜓𝑆 denotes the indicator function associated
with 𝑆, that is, 𝜓𝑆(𝑥) = 0 if 𝑥 ∈ 𝑆 and 𝜓𝑆(𝑥) = +∞ if𝑥 ∉ 𝑆. We recall, respectively, the concepts of limiting Fréchet
subdifferential 𝜕𝐿𝐹 and limiting 𝑉-proximal subdifferential𝜕𝐿𝜋 (see [11]):

𝜕𝐿𝜋𝑓 (𝑥) = lim sup
𝑥󸀠→𝑥

𝜕𝜋𝑓 (𝑥󸀠)
fl {𝑤 − lim

𝑛
𝑥∗𝑛 : 𝑥∗𝑛 ∈ 𝜕𝜋𝑓 (𝑥𝑛)with 𝑥𝑛 󳨀→𝑓 𝑥} ,

𝜕𝐿𝐹𝑓 (𝑥) = lim sup
𝑥󸀠→𝑥

𝜕𝐹𝑓 (𝑥󸀠)
fl {𝑤 − lim

𝑛
𝑥∗𝑛 : 𝑥∗𝑛 ∈ 𝜕𝐹𝑓 (𝑥𝑛)with 𝑥𝑛 󳨀→𝑓 𝑥} ,

(10)

where 𝑥𝑛→𝑓 𝑥 means 𝑥𝑛 → 𝑥 with 𝑓(𝑥𝑛) → 𝑓(𝑥) and
𝜕𝐹𝑓 (𝑥) = {𝑥∗ ∈ 𝑋∗ : ∀𝜖 > 0, ∃𝛿 > 0 : ⟨𝑥∗, 𝑥󸀠 − 𝑥⟩

≤ 𝑓 (𝑥󸀠) − 𝑓 (𝑥) + 𝜖 󵄩󵄩󵄩󵄩󵄩𝑥󸀠 − 𝑥󵄩󵄩󵄩󵄩󵄩 , ∀𝑥󸀠 ∈ 𝑥 + 𝛿B} . (11)

The limiting Fréchet normal cone is defined similarly, that is,

𝜕𝐿𝐹𝑁(𝑆; 𝑥) = lim sup
𝑥󸀠→𝑥

𝜕𝐹𝑁(𝑆; 𝑥󸀠)
fl {𝑤 − lim

𝑛
𝑥∗𝑛 : 𝑥∗𝑛 ∈ 𝑁𝐹 (𝑆; 𝑥𝑛)with 𝑥𝑛 󳨀→𝑆 𝑥} ,

(12)
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where 𝑥𝑛→𝑆 𝑥 denotes 𝑥𝑛 → 𝑥 with 𝑥𝑛 ∈ 𝑆 and 𝑁𝐹(𝑆; 𝑥)
is the Fréchet normal cone which is defined by 𝑁𝐹(𝑆; 𝑥) =𝜕𝐹𝜓𝑆(𝑥).

These all nonconvex objects coincidewith their analogues
defined in Convex Analysis whenever the data are convex as
the following proposition shows (see [1]).

Proposition 1. Let 𝑋 be a reflexive Banach space.
(1) Let 𝑓 : 𝑋 → R ∪ +∞ be a l.s.c. convex function and𝑥 ∈ 𝑋 with 𝑓(𝑥) < ∞. Then

𝜕𝜋𝑓 (𝑥) = 𝜕Con.𝑓 (𝑥) fl {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗; 𝑥 − 𝑥⟩
≤ 𝑓 (𝑥) − 𝑓 (𝑥) , ∀𝑥 ∈ 𝑋} . (13)

(2) Let 𝑆 be a closed convex subset in of𝑋 and 𝑥 ∈ 𝑆. Then

𝑁𝜋 (𝑆; 𝑥) = 𝑁Con. (𝑆; 𝑥)
fl {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗; 𝑥 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆} . (14)

The following result is needed in our study. It has been
proved in [11].

Theorem 2. Let 𝑋 be a 𝑞-uniformly smooth and 𝑝-uniformly
convex Banach space. Assume that 𝑋 admits an equivalent
norm ‖ ⋅‖ such that ‖ ⋅‖𝑠 (for some 𝑠 ≥ 2) is𝐶2-differentiable on𝑋 \ {0} and let 𝑉 be the functional associated with that norm‖ ⋅ ‖.

(1) Let𝑓 : 𝑋 → R∪{∞}, be a l.s.c. function at 𝑥 ∈ dom𝑓.
Then

𝜕𝐿𝜋𝑓 (𝑥) = 𝜕𝐹𝐿𝑓 (𝑥) . (15)

(2) Let 𝑆 be any closed nonempty set of 𝑋. Then

𝑁𝐹𝐿 (𝑆; 𝑥) = 𝑁𝐿𝜋 (𝑆; 𝑥) . (16)

We notice that the class of spaces satisfying the assump-
tions of the previous theorem is very large; it contains
obviously anyHilbert space and𝐿𝑝 spaces and Sobolev spaces𝑊𝑝,𝑚 with 𝑝 ≥ 2 (seeTheorem 1.1 in Section 5 in [10, 12]) and
for more examples and discussions we refer to [10, 12]. We
close this section with the following two concepts of uniform𝑉-prox-regularity for functions and sets (see [13]).

Definition 3. Let 𝑋 be a reflexive smooth Banach space. For
a given 𝑟 ∈ (0,∞], a subset 𝑆 is 𝑉-uniformly prox-regular
with respect to 𝑟 provided that for all 𝑥 ∈ 𝑆 and all nonzero𝑥∗ ∈ 𝑁𝜋(𝑆; 𝑥) we have

⟨ 𝑥∗
‖𝑥∗‖ , 𝑥󸀠 − 𝑥⟩ ≤ 1

2𝑟𝑉 (𝐽 (𝑥) , 𝑥󸀠) , ∀𝑥󸀠 ∈ 𝑆. (17)

We use the convention 1/𝑟 = 0 for 𝑟 = +∞.

Obviously, this class contains the class of uniformly prox-
regular sets ([14, 15]) from Hilbert spaces to Banach spaces
since inHilbert spaces we have𝑉(𝐽(𝑥), 𝑥󸀠) = ‖𝑥−𝑥󸀠‖2 and the𝑉-proximal normal cone 𝑁𝜋(𝑆; 𝑥) coincides with the usual
proximal normal cone𝑁𝑃(𝑆; 𝑥).

Definition 4. Let 𝑋 be a reflexive smooth Banach space. Let𝑓 : 𝑋 → R ∪ {+∞} be a l.s.c. function and let 𝑆 ⊂ dom𝑓 fl{𝑥 ∈ 𝑋 : 𝑓(𝑥) < ∞} be a nonempty closed set in𝑋. We recall
from [13] that 𝑓 is said to be uniformly 𝑉-prox-regular over𝑆 provided that for all 𝑥 ∈ 𝑆 and all 𝑥∗ ∈ 𝜕𝜋𝑓(𝑥) we have

⟨𝑥∗, 𝑥󸀠 − 𝑥⟩ ≤ 𝑓 (𝑥󸀠) − 𝑓 (𝑥) + 1
2𝑟𝑉 (𝐽 (𝑥) , 𝑥󸀠) ,

∀𝑥󸀠 ∈ 𝑆.
(18)

We say that 𝑓 is uniformly 𝑉-prox-regular around 𝑥 ∈
dom𝑓 provided that 𝑓 is uniformly 𝑉-prox-regular over
some closed neighborhood of 𝑥; that is, there exists a closed
neighborhood 𝑉𝑥 of 𝑥 such that ∀𝑥 ∈ 𝑉𝑥, ∀𝑥∗ ∈ 𝜕𝜋𝑓(𝑥) the
inequality (18) holds for any 𝑥󸀠 ∈ 𝑉𝑥.

The following example is quoted from [13]. For its proof
we refer the reader to [13].

Example 5. (1) Any l.s.c. proper convex function is uniformly𝑉-prox-regular over any nonempty closed set 𝑆 in its domain
with 𝑟 = +∞.

(2) Both the indicator function 𝜓𝑆 and the distance
function 𝑑𝑆 of uniformly 𝑉-prox-regular set 𝑆 are uniformly𝑉-prox-regular over 𝑆 with respect to the same constant 𝑟.

(3) Any lower-𝐶2 function 𝑓 over convex strongly com-
pact 𝐾 in 𝑋 is uniformly 𝑉-prox-regular over 𝐾 with some𝑟 ∈ (0, +∞] (see [13] for the definition of lower-𝐶2 functions).

The following two lemmas are needed in our proofs in
Section 4. The proof of the first one is proved in [1]. The
second one is proved in [16].

Lemma 6. Let 𝑋 be a 𝑝-uniformly convex and 𝑞-uniformly
smooth Banach space and 𝑆 be a bounded set. Then for some𝜂, 𝜅 > 0 we have
𝜂−1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑝 ≤ 𝑉 (𝐽 (𝑥) , 𝑦) ≤ 𝜅−1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑞 ,

∀𝑥, 𝑦 ∈ 𝑆. (19)

Lemma 7. If 𝑋 is a uniformly convex Banach space, then the
inequality

𝑉 (𝐽 (𝑥) , 𝑦) ≥ 8𝐶2𝛿𝑋(
󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩4𝐶 ) (20)

holds for all 𝑥 and 𝑦 in 𝑋, where 𝐶 = √(‖𝑥‖2 + ‖𝑦‖2)/2.
3. Main Results

First we show that in the convex case (NQVP[𝐶, 𝐹]) coincides
with the quasi-equilibrium problem (QEP[𝐶, 𝐹]).
Proposition 8. Let𝑋 be a reflexive Banach space. Assume that𝐶 is a closed convex set-valued mapping and 𝐹 is a convex
bifunction satisfying 𝐹(𝑥, 𝑥) = 0 for any 𝑥 ∈ Fix(𝐶). Then
we have (NQVP[𝐶, 𝐹]) ⇔ (QEP[𝐶, 𝐹]).
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Proof.

⇒?. Let 𝑥 be a solution of (NQVP[𝐶, 𝐹]); that is, there exists𝑦∗ ∈ 𝜕𝜋𝐹(𝑥, ⋅)(𝑥) such that −𝑦∗ ∈ 𝑁𝜋(𝐶(𝑥), 𝑥). Since 𝐶(𝑥) is
a closed convex set, the𝑉-proximal normal cone𝑁𝜋(𝐶(𝑥), 𝑥)
coincides with the convex normal cone 𝑁Con.(𝐶(𝑥), 𝑥) (by
Proposition 1) and so

⟨𝑦∗; 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐶 (𝑥) . (21)

On the other hand, the convexity of the bifunction 𝐹 and
Proposition 1 yield

⟨𝑦∗; 𝑥 − 𝑥⟩ ≤ 𝐹 (𝑥, 𝑥) − 𝐹 (𝑥, 𝑥) , ∀𝑥 ∈ 𝑋. (22)

Since 𝑥 ∈ 𝐶(𝑥) we have 𝐹(𝑥, 𝑥) = 0 (by assumption) and
hence the previous two inequalities ensure

𝐹 (𝑥, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶 (𝑥) ; (23)

that is, 𝑥 is a solution of (QEP[𝐶, 𝐹]).
⇐?. Let 𝑥 be a solution of (NQEP[𝐶, 𝐹]), that is, 𝐹(𝑥, 𝑥) ≥0, ∀𝑥 ∈ 𝐶(𝑥). Since𝐶(𝑥) is a closed convex set and𝐹(𝑥, ⋅) is a
convex function, the function 𝑥 󳨃→ ℎ(𝑥) fl 𝐹(𝑥, 𝑥) +𝜓𝐶(𝑥)(𝑥)
admits at 𝑥 a global minimum on𝑋. It follows that

0 ∈ 𝜕Con.ℎ (𝑥) = 𝜕Con.𝐹 (𝑥, ⋅) (𝑥) + 𝜕Con.𝜓𝐶(𝑥) (𝑥)
= 𝜕Con.𝐹 (𝑥, ⋅) (𝑥) + 𝑁Con. (𝐶 (𝑥) ; 𝑥) . (24)

which is equivalent to [−𝜕Con.𝐹(𝑥, ⋅)(𝑥)] ∩ 𝑁Con.(𝐶(𝑥); 𝑥) ̸=0 and hence the proof is complete since 𝜕𝜋𝐹(𝑥, ⋅)(𝑥) =𝜕Con.𝐹(𝑥, ⋅)(𝑥) and𝑁𝜋(𝐶(𝑥), 𝑥) = 𝑁Con.(𝐶(𝑥), 𝑥).
In the next proposition we establish an inequality char-

acterisation of the proposed nonconvex quasi-variational
problem (NQVP[𝐶, 𝐹]) whenever the data 𝐶 and 𝐹 are
uniformly 𝑉-prox-regular.
Proposition 9. Let 𝑋 be a reflexive Banach space and 𝑥 ∈𝑋. Assume that 𝐶(𝑥) is uniformly 𝑉-prox-regular with ratio𝑟 ∈ (0,∞] and that 𝐹(𝑥, ⋅) is uniformly 𝑉-prox-regular over𝐶(𝑥) with ratio 𝑟󸀠 ∈ (0,∞]. Assume also that 𝐹(𝑥, ⋅) is 𝛾-
Lipschitz around 𝑥 and𝐹(𝑥, 𝑥) = 0 for any 𝑥 ∈ Fix(𝐶). If 𝑥 is a
solution of (NQVP[𝐶, 𝐹]), then 𝑥 is a solution of the following
nonconvex quasi-equilibrium problem. Find 𝑥 ∈ 𝐶(𝑥) such
that

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽𝑥, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶 (𝑥) , (NQEP[𝐶, 𝐹])
for some nonnegative 𝜌 ≥ 0.
Proof. Assume that 𝑥 is a solution of (NQVP[𝐶, 𝐹]); that is,𝑦∗ ∈ 𝜕𝜋𝐹(𝑥, ⋅)(𝑥) such that −𝑦∗ ∈ 𝑁𝜋(𝐶(𝑥); 𝑥). By uniform𝑉-prox-regularity of the set 𝐶(𝑥) we have

⟨−𝑦∗, 𝑥 − 𝑥⟩ ≤ 󵄩󵄩󵄩󵄩𝑦∗󵄩󵄩󵄩󵄩2𝑟 𝑉 (𝐽𝑥, 𝑥) , ∀𝑥 ∈ 𝐶 (𝑥) . (25)

The 𝛾-Lipschitz continuity of 𝐹(𝑥, ⋅) ensures that ‖𝑦∗‖ ≤ 𝛾
and so we obtain

⟨−𝑦∗, 𝑥 − 𝑥⟩ ≤ 𝛾
2𝑟𝑉 (𝐽𝑥, 𝑥) , ∀𝑥 ∈ 𝐶 (𝑥) . (26)

On the other hand the uniform 𝑉-prox-regularity of 𝐹(𝑥, ⋅)
over 𝐶(𝑥) with ratio 𝑟󸀠 > 0; we have

⟨𝑦∗, 𝑥 − 𝑥⟩ ≤ 1
2𝑟󸀠𝑉 (𝐽𝑥, 𝑥) + 𝐹 (𝑥, 𝑥) − 𝐹 (𝑥, 𝑥) ,

∀𝑥 ∈ 𝐶 (𝑥) .
(27)

Combining this inequality (27) with (26) we obtain

𝐹 (𝑥, 𝑥) − 𝐹 (𝑥, 𝑥) + 1
2𝑟󸀠𝑉 (𝐽𝑥, 𝑥) ≥ − 𝛾

2𝑟𝑉 (𝐽𝑥, 𝑥)
∀𝑥 ∈ 𝐶 (𝑥) .

(28)

Since 𝑥 ∈ 𝐶(𝑥) we have 𝐹(𝑥, 𝑥) = 0 and so (28) becomes

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽𝑥, 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶 (𝑥) , (29)

with 𝜌 fl 𝛾/2𝑟 + 1/2𝑟󸀠 ≥ 0. Thus the proof is complete.

It is a natural question to ask whether the converse in the
previous proposition is true or not. The answer is positive
provided that the space 𝑋 and the data 𝐶 and 𝐹 satisfy some
additional assumptions as the following proposition shows.

Proposition 10. Let 𝑋 be a 𝑞-uniformly smooth and 𝑝-
uniformly convex Banach space. Assume that 𝑋 admits an
equivalent norm ‖ ⋅ ‖ such that ‖ ⋅ ‖𝑠 (for some 𝑠 ≥ 2) is 𝐶2-
differentiable on 𝑋 \ {0} and let 𝑉 be the functional associated
with that norm ‖ ⋅ ‖. Assume that𝐶(𝑥) is𝑉-proximal normally
regular at 𝑥, that is, 𝑁𝜋(𝐶(𝑥), 𝑥) = 𝑁𝐿𝜋(𝐶(𝑥), 𝑥) and that𝐹(𝑥, ⋅) is 𝑉-proximal subdifferentially regular at 𝑥, that is,𝜕𝜋𝐹(𝑥, ⋅)(𝑥) = 𝜕𝐿𝜋𝐹(𝑥, ⋅)(𝑥). Assume that 𝐹(𝑥, 𝑥) = 0 for any𝑥 ∈ Fix(𝐶). If 𝑥 is a solution of (NQEP[𝐶, 𝐹]) for some 𝜌 ≥ 0,
then 𝑥 is a solution of (NQVP[𝐶, 𝐹]).
Proof. Let 𝑥 be a solution of (NQEP[𝐶, 𝐹]) for some 𝜌 ≥ 0;
that is,

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽𝑥, 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶 (𝑥) . (30)

Then 𝑥 is a global minimum of the function 𝑥 󳨃→ ℎ(𝑥) =𝐹(𝑥, 𝑥) + 𝜌𝑉(𝐽𝑥, 𝑥) + 𝜓𝐶(𝑥)(𝑥) over 𝑋 and hence

0 ∈ 𝜕𝜋ℎ (𝑥) ⊂ 𝜕𝐿𝜋ℎ (𝑥)
= 𝜕𝐿𝜋 [𝐹 (𝑥, ⋅) + 𝜌𝑉 (𝐽𝑥, ⋅) + 𝜓𝐶(𝑥) (⋅)] (𝑥) .

(31)

Note that the function 𝑥 󳨃→ 𝑉(𝐽(𝑥), 𝑥) is differentiable and
its gradient is given by grad (𝑉(𝐽(𝑥), ⋅))(𝑥) = 2(𝐽(𝑥) − 𝐽(𝑥)).
Using the fact that the limiting 𝑉-proximal subdifferential
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coincides with the limiting Fréchet subdifferential (by The-
orem 2) and the exact sum rules for the limiting Fréchet
subdifferential (see for instance [17]) we can write

0 ∈ 𝜕𝐿𝜋 [𝐹 (𝑥, ⋅) + 𝜌𝑉 (𝐽𝑥, ⋅) + 𝜓𝐶(𝑥) (⋅)] (𝑥)
∈ 𝜕𝐿𝐹 [𝐹 (𝑥, ⋅) + 𝜌𝑉 (𝐽𝑥, ⋅) + 𝜓𝐶(𝑥) (⋅)] (𝑥)
∈ 𝜕𝐿𝐹𝐹 (𝑥, ⋅) (𝑥) + 𝜕𝐿𝐹 (𝜌𝑉 (𝐽𝑥, ⋅)) (𝑥)

+ 𝜕𝐿𝐹𝜓𝐶(𝑥) (⋅) (𝑥)
∈ 𝜕𝐿𝐹𝐹 (𝑥, ⋅) (𝑥) + 2𝜌 (𝐽 (𝑥) − 𝐽 (𝑥))

+ 𝑁𝐿𝐹 (𝐶 (𝑥) ; 𝑥)
∈ 𝜕𝐿𝐹𝐹 (𝑥, ⋅) (𝑥) + 𝑁𝐿𝐹 (𝐶 (𝑥) ; 𝑥) .

(32)

This is equivalent to say that [−𝜕𝐿𝐹𝐹(𝑥, ⋅)(𝑥)] ∩ 𝑁𝐿𝐹(𝐶(𝑥);𝑥) ̸= 0. Thus completing the proof since 𝜕𝜋𝐹(𝑥, ⋅)(𝑥) =𝜕𝐿𝜋𝐹(𝑥, ⋅)(𝑥) = 𝜕𝐿𝐹𝐹(𝑥, ⋅)(𝑥) and 𝑁𝜋(𝐶(𝑥), 𝑥) = 𝑁𝐿𝜋(𝐶(𝑥);𝑥) = 𝑁𝐿𝐹(𝐶(𝑥); 𝑥).
The following proposition has its own interest and is

needed to prove the equivalence between (NQVP[𝐶, 𝐹]) and(NQEP[𝐶, 𝐹]) whenever 𝐶 and 𝐹 are uniformly 𝑉-prox-
regular.

Proposition 11. Let 𝑋 be a reflexive Banach space and let𝑓 : 𝑋 → R ∪ {∞} be a l.s.c. function and let 𝑥 ∈ dom𝑓.
If 𝑓 is uniformly 𝑉-prox-regular around 𝑥, then 𝜕𝜋𝑓(𝑥) =𝜕𝐿𝜋𝑓(𝑥); that is, 𝑓 is 𝑉-proximal subdifferentially regular at𝑥. Consequently, for any uniformly 𝑉-prox-regular closed set 𝑆
at 𝑥 ∈ 𝑆we have𝑁𝜋(𝑆, 𝑥) = 𝑁𝐿𝜋(𝑆; 𝑥); that is, 𝑆 is𝑉-proximal
normally regular at 𝑥.
Proof. We only prove the first assertion; the second one
follows directly from the first one and Example 5 Part (2).
Since we always have the inclusion 𝜕𝜋𝑓(𝑥) ⊂ 𝜕𝐿𝜋𝑓(𝑥), it is
enough to prove the reverse one, that is, 𝜕𝐿𝜋𝑓(𝑥) ⊂ 𝜕𝜋𝑓(𝑥).
Let 𝑥∗ ∈ 𝜕𝐿𝜋𝑓(𝑥); that is, there exists 𝑥𝑛→𝑓 𝑥 and 𝑥∗𝑛 ∈𝜕𝜋𝑓(𝑥𝑛) such that 𝑥∗ = 𝑤 − lim𝑛 𝑥∗𝑛 . By the uniform𝑉-prox-
regularity of 𝑓 around 𝑥, there exist 𝑟 > 0 and 𝛿 > 0 such that
for any 𝑥 ∈ 𝑥 + 𝛿B and any 𝑦∗ ∈ 𝜕𝜋𝑓(𝑥)

⟨𝑦∗, 𝑥󸀠 − 𝑥⟩ ≤ 1
2𝑟𝑉 (𝐽𝑥, 𝑥󸀠) + 𝑓 (𝑥󸀠) − 𝑓 (𝑥) ,

∀𝑥󸀠 ∈ 𝑥 + 𝛿B.
(33)

Since 𝑥𝑛 → 𝑥 we can write for 𝑛 large enough that 𝑥𝑛 ∈ 𝑥 +(𝛿/2)B and hence by (33) we have

⟨𝑥∗𝑛 , 𝑥󸀠 − 𝑥𝑛⟩ ≤ 1
2𝑟𝑉 (𝐽𝑥𝑛, 𝑥󸀠) + 𝑓 (𝑥󸀠) − 𝑓 (𝑥𝑛) ,

∀𝑥󸀠 ∈ 𝑥𝑛 + 𝛿B.
(34)

Fix any 𝑦 ∈ 𝑥 + (𝛿/2)B. Clearly 𝑦 ∈ 𝑥𝑛 + (𝛿/2)B + (𝛿/2)B ⊂𝑥𝑛 + 𝛿B and hence (34) ensures

⟨𝑥∗, 𝑦 − 𝑥⟩ = ⟨𝑥∗ − 𝑥∗𝑛 , 𝑦 − 𝑥⟩ + ⟨𝑥∗𝑛 , 𝑦 − 𝑥𝑛⟩
+ ⟨𝑥∗𝑛 ; 𝑥𝑛 − 𝑥⟩

≤ ⟨𝑥∗ − 𝑥∗𝑛 , 𝑦 − 𝑥⟩ + ⟨𝑥∗𝑛 ; 𝑥𝑛 − 𝑥⟩
+ 1

2𝑟𝑉 (𝐽𝑥𝑛, 𝑦) + 𝑓 (𝑦) − 𝑓 (𝑥𝑛) .
(35)

Using now the fact that 𝑥𝑛→𝑓 𝑥, the continuity of 𝐽 and 𝑉,
and the weak convergence of 𝑥∗𝑛 to 𝑥∗ to pass to the limit as𝑛 goes to ∞ and to get

⟨𝑥∗, 𝑦 − 𝑥⟩ ≤ 1
2𝑟𝑉 (𝐽𝑥, 𝑦) + 𝑓 (𝑦) − 𝑓 (𝑥) , (36)

for any 𝑦 ∈ 𝑥 + (𝛿/2)B, this means by definition that 𝑥∗ ∈𝜕𝜋𝑓(𝑥) and the proof is complete.

Using this result together with Propositions 9 and
10 we obtain the equivalence between (NQVP[𝐶, 𝐹]) and(NQEP[𝐶, 𝐹]).
Proposition 12. Let 𝑋 be a 𝑞-uniformly smooth and 𝑝-
uniformly convex Banach space and 𝑥 ∈ 𝑋. Assume that 𝑋
admits an equivalent norm ‖ ⋅ ‖ such that ‖ ⋅ ‖𝑠 (for some𝑠 ≥ 2) is 𝐶2-differentiable on 𝑋 \ {0} and let 𝑉 be the
functional associated with that norm ‖ ⋅ ‖. Assume that 𝐶(𝑥) is
uniformly𝑉-prox-regularwith ratio 𝑟 ∈ (0,∞] and that𝐹(𝑥, ⋅)
is uniformly 𝑉-prox-regular over 𝐶(𝑥) with ratio 𝑟󸀠 ∈ (0,∞].
Assume also that 𝐹(𝑥, ⋅) is 𝛾-Lipschitz around 𝑥 and 𝐹(𝑥, 𝑥) =0 for any 𝑥 ∈ Fix(𝐶). Then (NQVP[𝐶, 𝐹]) is equivalent to(NQEP[𝐶, 𝐹]) for some 𝜌 ≥ 0.
4. Convergence Analysis

4.1. Case 1: 𝐶 Is a Constant Set-Valued Mapping. In this case
the proposed problem becomes as follows:

Find 𝑥 ∈ 𝐶
s.t. [−𝜕𝜋𝐹 (𝑥, ⋅) (𝑥)] ∩ 𝑁𝜋 (𝐶; 𝑥) ̸= 0. (NVP[𝐶, 𝐹])

In this subsection we propose the following algorithm.

Algorithm 13. Let 𝜌 ≥ 0 and 𝜆𝑛 > 0 for all 𝑛 ≥ 1;
(1) Select 𝑥0 ∈ 𝐶;
(2) For 𝑛 ≥ 1 select 𝑥𝑛+1 ∈ 𝐶 such that

𝜆−1𝑛 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩
≤ 𝐹 (𝑥𝑛, 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥) , ∀𝑥 ∈ 𝐶. (37)

Theorem 14. Let𝑋 be a 𝑞-uniformly convex Banach space. Let𝐶 be a closed nonempty subset of𝑋 and let 𝐹 : 𝐶×𝐶 → R be a
bifunction satisfying 𝐹(𝑥, 𝑥) = 0 for any 𝑥 ∈ Fix(𝐶). Let {𝑥𝑛}𝑛
be a sequence generated by Algorithm 13. Assume that
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(1) 𝐶 is 𝑉-uniformly prox-regular with some 𝑟 ∈ (0,∞];
(2) 𝐶 is ball compact; that is, 𝐶 ∩ 𝜂𝐵 is compact for any𝜂 > 0;
(3) The solution set of (NQVP[𝐶, 𝐹]) is nonempty;
(4) 𝐹 is 𝑊-strongly monotone over 𝐶 for some 𝜎 ≥ 0; that

is,

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥) ≤ −𝜎𝑊(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶, (38)

where𝑊(𝑥, 𝑦) fl (1/2)[𝑉(𝐽(𝑥), 𝑦) + 𝑉(𝐽(𝑦), 𝑥)];
(5) 𝐹 is upper semicontinuous with respect to the first

variable over 𝐶; that is,
lim sup
𝑥󸀠→𝑥

𝐹 (𝑥󸀠, 𝑦) ≤ 𝐹 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐶; (39)

(6) The bifurcation 𝐹 is 𝛾-Lipschitz with respect to the
second variable and 𝐹(𝑥𝑛+1, ⋅) is 𝑉-uniformly prox-
regular over 𝐶 with some 𝑟󸀠 ∈ (0, +∞];

(7) There exists 𝜆 > 0 such that 𝜆𝑛 ≥ 𝜆 for all 𝑛;
(8) Theparameters 𝑟, 𝑟󸀠, 𝛾, 𝜌, 𝜎 satisfy the inequalities 2𝜌 ≤𝛾/2𝑟 + 1/2𝑟󸀠 ≤ 𝜎/3.

Then, there exists subsequence of {𝑥𝑛} converges to 𝑥̃ ∈ 𝐶which
solves (NVP[𝐶, 𝐹]).
Proof. Let 𝑥 ∈ 𝐶 be a solution of (NVP[𝐶, 𝐹]). Then by
Proposition 9 we have

𝐹 (𝑥, 𝑥) + 𝜌0𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶, (40)

for 𝜌0 fl 𝛾/2𝑟 + 1/2𝑟󸀠. By the 𝑊-strong monotonicity of 𝐹
over 𝐶 we have

𝐹 (𝑥, 𝑥) + 𝐹 (𝑥, 𝑥) ≤ −𝜎𝑊 (𝑥, 𝑥) , ∀𝑥 ∈ 𝐶. (41)

By setting 𝑥 = 𝑥𝑛 in these two inequalities we get

𝐹 (𝑥𝑛, 𝑥) + 𝐹 (𝑥, 𝑥𝑛) ≤ −𝜎𝑊(𝑥𝑛, 𝑥) ,
−𝐹 (𝑥, 𝑥𝑛) ≤ 𝜌0𝑉 (𝐽 (𝑥) , 𝑥𝑛) . (42)

Combining these two inequalities we obtain

𝐹 (𝑥𝑛, 𝑥) ≤ 𝜌0𝑉 (𝐽 (𝑥) , 𝑥𝑛) − 𝜎𝑊(𝑥𝑛, 𝑥)
≤ (2𝜌0 − 𝜎)𝑊 (𝑥𝑛, 𝑥) . (43)

Using the 8th assumption in Theorem 14 we have 2𝜌0 − 𝜎 ≤−𝜌0 and hence

𝐹 (𝑥𝑛, 𝑥) ≤ −𝜌0𝑊(𝑥𝑛, 𝑥) . (44)

This combined with Algorithm 13 gives

⟨𝑥∗𝑛+1, 𝑥 − 𝑥𝑛+1⟩ ≤ 𝐹 (𝑥𝑛, 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥)
≤ −𝜌0𝑊(𝑥𝑛, 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥)
≤ (2𝜌 − 𝜌0)𝑊 (𝑥𝑛, 𝑥) ,

(45)

with 𝑥∗𝑛+1 fl 𝜆−1𝑛 [𝐽(𝑥𝑛) − 𝐽(𝑥𝑛+1)]. Therefore,

⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩
≤ 𝜆𝑛 (2𝜌 − 𝜌0)𝑊 (𝑥𝑛, 𝑥) . (46)

Define now a sequence of nonnegative real numbers 𝜙𝑛 =(1/2)𝑉(𝐽(𝑥𝑛), 𝑥). It is not hard to verify that

2 [𝜙𝑛+1 − 𝜙𝑛] + 𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1)
= 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩ . (47)

Indeed,

2 [𝜙𝑛+1 − 𝜙𝑛] = 𝑉 (𝐽 (𝑥𝑛+1) , 𝑥) − 𝑉 (𝐽 (𝑥𝑛) , 𝑥)
= [󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1)󵄩󵄩󵄩󵄩2 − 2 ⟨𝐽 (𝑥𝑛+1) , 𝑥⟩ + ‖𝑥‖2]

− [󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩2 − 2 ⟨𝐽 (𝑥𝑛) , 𝑥⟩ + ‖𝑥‖2]
= 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1)󵄩󵄩󵄩󵄩2 + 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥⟩

− 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩2
= 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥⟩ − 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1)󵄩󵄩󵄩󵄩2

− 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩2 + 2 ⟨𝐽 (𝑥𝑛+1) , 𝑥𝑛+1⟩
= 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥⟩ − 𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1)

− 2 ⟨𝐽 (𝑥𝑛) , 𝑥𝑛+1⟩ + 2 ⟨𝐽 (𝑥𝑛+1) , 𝑥𝑛+1⟩
= 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥⟩ − 𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1)

− 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥𝑛+1⟩
= 2 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩

− 𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1) .

(48)

It follows that

𝜙𝑛+1 − 𝜙𝑛 ≤ ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩ , (49)

which ensures with (46) that

𝜙𝑛+1 − 𝜙𝑛 ≤ 𝜆𝑛 (2𝜌 − 𝜌0)𝑊 (𝑥𝑛, 𝑥) . (50)

Using the assumption 𝜌0 ≥ 2𝜌 in the 8th assumption we
obtain

𝜙𝑛+1 ≤ 𝜙𝑛. (51)

Therefore, the sequence {𝜙𝑛} is a nonincreasing converging
sequence to some limit and so it is bounded by some 𝛼 > 0.
Thus by the properties of the functional 𝑉 we obtain

(‖𝑥‖ − 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩)2 ≤ 𝑉 (𝐽 (𝑥𝑛) , 𝑥) = 2𝜙𝑛 ≤ 2𝛼 (52)

and so
󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 ≤ ‖𝑥‖ + √2𝛼; (53)
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that is, {𝑥𝑛} is bounded and so by the 𝑞󸀠-uniform convexity
of𝑋∗ (by Lemma 6) we have for some 𝜂 > 0 depending on 𝛼
and on the space 𝑋∗ the inequality

󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1) − 𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩𝑞󸀠 ≤ 𝜂𝑉∗ (𝐽∗ (𝐽 (𝑥𝑛+1)) , 𝐽 (𝑥𝑛))
= 𝜂𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1) ,

(54)

where 𝐽∗ : 𝑋∗ → 𝑋∗∗(=𝑋) is the normalised duality map-
ping on𝑋∗ and𝑉∗ : 𝑋∗∗ ×𝑋∗ → R is the functional defined
by

𝑉∗ (𝑥∗∗; 𝑥∗) fl 󵄩󵄩󵄩󵄩𝑥∗∗󵄩󵄩󵄩󵄩2 − 2 ⟨𝑥∗∗; 𝑥∗⟩ + 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩2 ,
∀𝑥∗ ∈ 𝑋∗, 𝑥∗∗ ∈ 𝑋∗∗. (55)

Using now (46) and (47) and the assumption 𝜌0 ≥ 2𝜌 we
obtain

1
2𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1) ≤ 𝜙𝑛 − 𝜙𝑛+1. (56)

Therefore, it follows from the 7th assumption of Theorem 14
that

󵄩󵄩󵄩󵄩𝑥∗𝑛+1󵄩󵄩󵄩󵄩𝑞󸀠 = 𝜆−𝑞󸀠𝑛 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1) − 𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩𝑞󸀠

≤ 𝜆−𝑞󸀠 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1) − 𝐽 (𝑥𝑛)󵄩󵄩󵄩󵄩𝑞󸀠

≤ 𝜆−𝑞󸀠𝜂𝑉 (𝐽 (𝑥𝑛) , 𝑥𝑛+1)
≤ 2𝜂

𝜆𝑞󸀠 [𝜙𝑛 − 𝜙𝑛+1] 󳨀→ 0 as 𝑛 󳨀→ ∞,

(57)

which ensures that lim𝑛→∞ 𝑥∗𝑛+1 = 0. On the other hand,
since {𝑥𝑛} is bounded in 𝐶 and 𝐶 is ball compact then there
exists a subsequence {𝑥𝑛𝑘} which converges to some limit𝑥̃ ∈ 𝐶. By Algorithm 13 this subsequence satisfies

⟨𝑥∗𝑛𝑘+1, 𝑥 − 𝑥𝑛𝑘+1⟩ ≤ 𝐹 (𝑥𝑛𝑘 , 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛𝑘) , 𝑥) ,
∀𝑘, ∀𝑥 ∈ 𝐶. (58)

Thus, by letting 𝑘 → ∞ in the inequality (58) and by taking
into account the upper semicontinuity of𝐹 and the continuity
of 𝑉 and 𝐽, we obtain

0 ≤ 𝐹 (𝑥̃, 𝑥) + 𝜌𝑉 (𝐽 (𝑥̃) , 𝑥) , ∀𝑥 ∈ 𝐶. (59)

This means that 𝑥̃ is a solution of (NEP[𝐶, 𝐹]). Finally, using
now Proposition 12 we get 𝑥̃ is a solution of (NVP[𝐶, 𝐹]) and
so the proof is complete.

4.2. Case 2:𝐶 Is aGeneral Set-ValuedMapping. In this general
case we propose the following algorithm.

Algorithm 15. Let 𝜌 ≥ 0 and 𝜆𝑛 > 0 for all 𝑛 ≥ 1;
(1) Select 𝑥0 ∈ 𝐶(𝑥0);
(2) For 𝑛 ≥ 1 select 𝑥𝑛+1 ∈ 𝐶(𝑥𝑛) such that

𝜆−1𝑛 ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩
≤ 𝐹 (𝑥𝑛, 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥) , ∀𝑥 ∈ Im𝐶, (60)

where 𝑀 > 0 is a given positive number and Im𝐶
is the image of 𝐶, that is, Im𝐶 fl {𝑦 ∈ 𝑋 : ∃𝑥 ∈𝑋 such that 𝑦 ∈ 𝐶(𝑥)}.

Obviously Algorithm 15 coincides with Algorithm 13 when 𝐶
is a constant set-valued mapping. However the assumptions
assumed on 𝐹 in the previous subsection are not sufficient
to prove the convergence of the sequence {𝑥𝑛} generated by
Algorithm 15 to a solution of (NQVP[𝐶, 𝐹]). We need to
replace the 𝑊-strong monotonicity by a relaxed 𝑊-strong
monotonicity of the bifunction 𝐹 over Im𝐶 and we do not
assume the nonemptiness of the solution set of the proposed
problem. We will say that 𝐹 is relaxed 𝑊-strongly monotone
over Im𝐶 provided that for some 𝜎 ≥ 0 we have

𝐹 (𝑥, 𝑦) ≤ −𝜎𝑊(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ Im𝐶. (61)

By symmetry of 𝑊, it is clear that any 𝑊-relaxed strongly
monotone bifunction with respect to 𝜎 ≥ 0 is 𝑊-strongly
monotone with respect to 2𝜎. This relaxed assumption on 𝐹
has been used in Hilbert spaces in [4] and in Banach spaces
in [13]. The following theorem is our main result in this
subsection.

Theorem 16. Let𝑋 be a 𝑞-uniformly convex Banach space. Let𝐶 be a closed nonempty subset of𝑋 and let 𝐹 : 𝐶×𝐶 → R be a
bifunction satisfying 𝐹(𝑥, 𝑥) = 0 for any 𝑥 ∈ Fix(𝐶). Let {𝑥𝑛}𝑛
be a sequence generated by Algorithm 15. Assume that

(1) The values of 𝐶 are 𝑉-uniformly prox-regular with
some ratio 𝑟 ∈ (0,∞];

(2) The image of 𝐶 is ball compact in 𝑋 and its graph is
closed;

(3) 𝐹 is relaxed𝑊-stronglymonotone over Im𝐶with some𝜎 > 0;
(4) 𝐹 is upper semicontinuous with respect to the first

variable over Im𝐶;
(5) 𝐹(𝑥𝑛, ⋅) is 𝑉-uniformly prox-regular over Im𝐶 with

some 𝑟󸀠 ∈ (0, +∞];
(6) There exists 𝜆 > 0 such that 𝜆𝑛 ≥ 𝜆 for all 𝑛;
(7) The nonnegative parameter 𝜌 is taken in the interval[0, 𝜎/2].

Then, there exists subsequence of {𝑥𝑛} converging to a solution
of (NQVP[𝐶, 𝐹]).
Proof. Let 𝑥 ∈ Im𝐶. By the relaxed 𝑊-strong monotonicity
of 𝐹 over Im𝐶 we have

𝐹 (𝑥𝑛, 𝑥) ≤ −𝜎𝑊(𝑥𝑛, 𝑥) , ∀𝑛 ≥ 1. (62)

By Algorithm 15 we have

⟨𝑥∗𝑛+1, 𝑥 − 𝑥𝑛+1⟩ ≤ 𝐹 (𝑥𝑛, 𝑥) + 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥) , (63)

with 𝑥∗𝑛+1 fl 𝜆−1𝑛 [𝐽(𝑥𝑛) − 𝐽(𝑥𝑛+1)]. Combining these two
inequalities we get

⟨𝑥∗𝑛+1, 𝑥 − 𝑥𝑛+1⟩ ≤ 𝜌𝑉 (𝐽 (𝑥𝑛) , 𝑥) − 𝜎𝑊(𝑥𝑛, 𝑥)
≤ (2𝜌 − 𝜎)𝑊 (𝑥𝑛, 𝑥) . (64)
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Therefore,

⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩
≤ 𝜆𝑛 (2𝜌 − 𝜎)𝑊 (𝑥𝑛, 𝑥) . (65)

Define now the same nonnegative real sequence 𝜙𝑛 =(1/2)𝑉(𝐽(𝑥𝑛), 𝑥) used in the proof of Theorem 14. Then we
have

𝜙𝑛+1 − 𝜙𝑛 ≤ ⟨𝐽 (𝑥𝑛) − 𝐽 (𝑥𝑛+1) , 𝑥 − 𝑥𝑛+1⟩ , (66)

which ensures with (65) that

𝜙𝑛+1 − 𝜙𝑛 ≤ 𝜆𝑛 (2𝜌 − 𝜎)𝑊 (𝑥𝑛+1, 𝑥) . (67)

Using the assumption 𝜎 ≥ 2𝜌 yields

𝜙𝑛+1 ≤ 𝜙𝑛. (68)

Following the same reasoning in the proof of Theorem 14
and the ball compactness of the image of 𝐶, we get a
subsequence {𝑥𝑛𝑘}which converges to some limit 𝑥̃ satisfying𝑥̃ ∈ 𝐶(𝑥̃) by closedness of the graph of 𝐶. By Algorithm 15
this subsequence satisfies

⟨𝑥∗𝑛𝑘+1, 𝑥 − 𝑥𝑛𝑘+1⟩ ≤ 𝐹 (𝑥𝑛𝑘+1, 𝑥)
+ 𝜌𝑉 (𝐽 (𝑥𝑛𝑘+1) , 𝑥) ,

∀𝑘, ∀𝑥 ∈ Im𝐶.
(69)

Thus, by letting 𝑘 → ∞ in the inequality (69) and by taking
into account the upper semicontinuity of𝐹 and the continuity
of 𝑉 and 𝐽, we obtain

0 ≤ 𝐹 (𝑥̃, 𝑥) + 𝜌𝑉 (𝐽 (𝑥̃) , 𝑥) , ∀𝑥 ∈ 𝐶 (𝑥̃) . (70)

This means that 𝑥̃ is a solution of (NQEP[𝐶, 𝐹]) which
ensures by Proposition 12 that under the assumptions of our
theorem the solution 𝑥̃ is also a solution of (NQVP[𝐶, 𝐹]).
Thus completing the proof.

4.3. Case 3: 𝐹 Has the Form: 𝐹(𝑥, 𝑦) = ⟨𝑇(𝑥), 𝑦 − 𝑥⟩. In this
subsection we restrict our attention to the following form of
the bifunction 𝐹:

𝐹 (𝑥, 𝑦) = ⟨𝑇 (𝑥) , 𝑦 − 𝑥⟩ , (71)

where 𝑇 : 𝑋 → 𝑋∗ is a nonlinear operator. In this case𝜕𝜋𝐹(𝑥, ⋅)(𝑥) = {𝑇(𝑥)} and so (NQVP[𝐶, 𝐹]) becomes:

Find 𝑥 ∈ 𝐶 (𝑥) ,
such that 𝑇 (𝑥) ∈ −𝑁𝜋 (𝐶 (𝑥) , 𝑥) . (NQVP[𝐶, 𝑇])

We suggest the following algorithm to solve (NQVP[𝐶, 𝑇])
under some natural and appropriate assumptions on 𝐶 and𝑇.

Algorithm 17. Let 𝛿𝑛 ↓ 0 with 𝛿0 be too small.

(i) Select 𝑥0 ∈ 𝐶(𝑥0), 𝑦∗0 = 𝑇(𝑥0) and 𝜌 > 0;
(ii) For 𝑛 ≥ 0,

(a) Compute 𝑧𝑛+1 fl 𝐽∗(𝐽(𝑥𝑛) − 𝜌𝑦∗𝑛 );
(b) Compute 𝑥𝑛+1 fl 𝜋𝐶(𝑥𝑛)(𝐽(𝑧𝑛+1)) and 𝑦∗𝑛+1 fl𝑇(𝑥𝑛+1),

where 𝜋𝑆 is the generalised projection defined in
terms of the functional 𝑉 instead of the norm square
(introduced and studied in the convex case in [16] and
for the nonconvex case we refer to the recent paper
[11]). A point𝑥 ∈ 𝑆 is called the generalised projection
of a given 𝑥∗ ∈ 𝑋∗ provided that

𝑉 (𝑥∗, 𝑥) = inf
𝑠∈𝑆

𝑉 (𝑥∗, 𝑠) . (72)

The following characterisation of the 𝑉-proximal normal
cone in terms of the generalised projection is proved in [1].

Proposition 18. For any closed nonempty set 𝑆 in a reflexive
Banach space 𝑋 and for any point 𝑥 ∈ 𝑆 we have

𝑁𝜋 (𝑆; 𝑥) = {𝑥∗ ∈ 𝑋∗ : ∃𝜆 > 0 such that 𝑥
∈ 𝜋𝑆 (𝐽 (𝑥) + 𝜆𝑥∗)} . (73)

We need the following lemma:

Lemma 19. Let 𝑆 be a closed set in 𝑋, 𝑥 ∈ 𝑆, 𝑦∗ ∈ 𝑋∗, and𝑟 > 0. If 𝑥 ∈ 𝜋𝑆(𝐽(𝑥) − 𝑟𝑦∗); then 𝑥 ∈ 𝜋𝑆(𝐽(𝑥) − 𝜌𝑦∗), for any𝜌 ∈ [0, 𝑟].
Proof. Let 𝑟 > 0, 𝑦∗ ∈ 𝑋∗, and let 𝑥 be a point satisfying 𝑥 ∈𝜋𝑆(𝐽(𝑥) − 𝑟𝑦∗). Assume that 𝜌 ∈ [0, 𝑟]. Let 𝜆 fl 𝜌/𝑟 ∈ [0, 1].
We claim that

𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑥) = inf
𝑠∈𝑆

𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑠) . (74)

First, observe that for any 𝑠 ∈ 𝑆 we have
2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩

= 2 ⟨𝜆 (𝐽 (𝑥) − 𝑟𝑦∗) + (1 − 𝜆) 𝐽 (𝑥) − 𝐽𝑥; 𝑠 − 𝑥⟩
= 2𝜆 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩ .

(75)

If ⟨(𝐽(𝑥) − 𝑟𝑦∗) − 𝐽(𝑥); 𝑠 − 𝑥⟩ < 0, then obviously we have

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ < 0 ≤ 𝑉 (𝐽 (𝑥) , 𝑠) . (76)

Otherwise, we have ⟨(𝐽(𝑥)−𝑟𝑦∗)−𝐽(𝑥); 𝑠−𝑥⟩ ≥ 0.Then since0 ≤ 𝜆 ≤ 1 we have
2𝜆 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩

≤ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩ (77)
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and so we obtain

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩
≤ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) − 𝐽 (𝑥) ; 𝑠 − 𝑥⟩
≤ 󵄩󵄩󵄩󵄩𝐽 (𝑥) − 𝑟𝑦∗󵄩󵄩󵄩󵄩2 − 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) ; 𝑥⟩ + ‖𝑥‖2

+ 2 ⟨(𝐽 (𝑥) − 𝑟𝑦∗) ; 𝑠⟩ − 󵄩󵄩󵄩󵄩𝐽 (𝑥) − 𝑟𝑦∗󵄩󵄩󵄩󵄩2 − ‖𝑠‖2
+ ‖𝑠‖2 − 2 ⟨𝐽 (𝑥) ; 𝑠 − 𝑥⟩ − ‖𝑥‖2

≤ 𝑉 (𝐽 (𝑥) − 𝑟𝑦∗, 𝑥) − 𝑉 (𝐽 (𝑥) − 𝑟𝑦∗, 𝑠)
+ 𝑉 (𝐽 (𝑥) , 𝑠)

≤ inf
𝑧∈𝑆

𝑉 (𝐽 (𝑥) − 𝑟𝑦∗, 𝑧) − 𝑉 (𝐽 (𝑥) − 𝑟𝑦∗, 𝑠)
+ 𝑉 (𝐽 (𝑥) , 𝑠) ≤ 𝑉 (𝐽 (𝑥) , 𝑠) ;

(78)

that is,

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ ≤ 𝑉 (𝐽 (𝑥) , 𝑠) . (79)

Therefore, from (76) and (79) we have in both cases

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ ≤ 𝑉 (𝐽 (𝑥) , 𝑠) , ∀𝑠 ∈ 𝑆. (80)

Hence

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ − 𝑉 (𝐽 (𝑥) , 𝑠) ≤ 0,
∀𝑠 ∈ 𝑆. (81)

On the other hand we have the decomposition

2 ⟨𝐽 (𝑥) − 𝜌𝑦∗ − 𝐽𝑥; 𝑠 − 𝑥⟩ − 𝑉 (𝐽 (𝑥) , 𝑠)
= 2 ⟨𝐽 (𝑥) − 𝜌𝑦∗; 𝑠⟩ − 2 ⟨𝐽 (𝑥) − 𝜌𝑦∗; 𝑥⟩ + 2 ‖𝑥‖2

− 2 ⟨𝐽𝑥; 𝑠⟩ − [‖𝑥‖2 − 2 ⟨𝐽𝑥; 𝑠⟩ + ‖𝑠‖2]
= [󵄩󵄩󵄩󵄩𝐽 (𝑥) − 𝜌𝑦∗󵄩󵄩󵄩󵄩2 − 2 ⟨𝐽 (𝑥) − 𝜌𝑦∗; 𝑥⟩ + ‖𝑥‖2]

− [󵄩󵄩󵄩󵄩𝐽 (𝑥) − 𝜌𝑦∗󵄩󵄩󵄩󵄩2 − 2 ⟨𝐽 (𝑥) − 𝜌𝑦∗; 𝑠⟩ + ‖𝑠‖2]
= 𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑥) − 𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑠) .

(82)

Consequently, we have

𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑥) − 𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑠) ≤ 0,
for any 𝑠 ∈ 𝑆, (83)

that is,

𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑥) = inf
𝑠∈𝑆

𝑉 (𝐽 (𝑥) − 𝜌𝑦∗, 𝑠) ; (84)

which means that 𝑥 ∈ 𝜋𝑆(𝐽(𝑥) − 𝜌𝑦∗) and hence the proof is
complete.

Now, we state and prove our main theorem for(NQVP[𝐶, 𝑇]).

Theorem 20. Let 𝑋 be a 2-uniformly smooth Banach space.
Let 𝐶 : 𝑋 󴁂󴀱 𝑋 be a set-valued mapping with closed nonempty
values and 𝑇 : 𝑋 → 𝑋∗. Let {𝑥𝑛}𝑛 be a sequence generated by
Algorithm 17. Assume that

(1) The solution set of (NQVP[𝐶, 𝑇]) is nonempty;
(2) 𝑇 is bounded by some constant 𝐿 > 0;
(3) 𝑇 is 𝐽-Lipschitz, with constant 𝛽 > 0; that is,

󵄩󵄩󵄩󵄩𝑇 (𝑥1) − 𝑇 (𝑥2)󵄩󵄩󵄩󵄩 ≤ 𝛽 󵄩󵄩󵄩󵄩𝐽 (𝑥1) − 𝐽 (𝑥2)󵄩󵄩󵄩󵄩 ,
∀𝑥𝑖 ∈ 𝑋, 𝑖 = 1, 2; (85)

(4) 𝑇 is 𝐽-strongly monotone with constant 𝛼 > 0; that is,
⟨𝐽∗ (𝑇 (𝑥1) − 𝑇 (𝑥2)) ; 𝐽 (𝑥1) − 𝐽 (𝑥2)⟩

≥ 𝛼 󵄩󵄩󵄩󵄩𝐽 (𝑥1) − 𝐽 (𝑥2)󵄩󵄩󵄩󵄩2 , ∀𝑥1, 𝑥2 ∈ 𝑋; (86)

(5) The values of 𝐶 satisfy for some 𝑟 ∈ (0,∞]:
𝑢 ∈ 𝜋𝐶(𝑢) (𝐽 (𝑢) + 𝑟𝑢∗) , ∀𝑢∗ ∈ 𝑋∗ (87)

for any unit vector 𝑢∗ in 𝑋∗ and any 𝑢 solution of(NQVP[𝐶, 𝑇]);
(6) There exists some constant 𝑘 ∈ (0, 1) and 𝜉 > 0 such

that
󵄩󵄩󵄩󵄩󵄩𝐽 (𝜋𝐶(𝑥1) (𝑥∗1 )) − 𝐽 (𝜋𝐶(𝑥2) (𝑥∗2 ))󵄩󵄩󵄩󵄩󵄩

≤ 𝜉 󵄩󵄩󵄩󵄩𝑥∗1 − 𝑥∗2 󵄩󵄩󵄩󵄩 + 𝑘 󵄩󵄩󵄩󵄩𝐽 (𝑥1) − 𝐽 (𝑥2)󵄩󵄩󵄩󵄩 ,
(88)

for all 𝑥𝑖 ∈ 𝑋, 𝑥∗𝑖 ∈ 𝑋∗, 𝑖 = 1, 2;
(7) Thepositive constants𝛼 and𝛽 satisfy the inequality𝛼 >

𝛽√1 − (1 − 𝑘)2/𝑐𝜉2;
(8) The parameter 𝜌 in Algorithm 17 satisfies

𝛼
𝛽2 − 𝜖 < 𝜌 < min{𝜇 − 𝛿0𝐿 , 𝛼

𝛽2 + 𝜖} ,

𝜖 fl √𝛼2 − 𝛽2 (1 − (1 − 𝑘)2 /𝑐𝜉2)
𝛽2 .

(89)

Then, the sequence {𝑥𝑛}𝑛 generated by Algorithm 17 converges
to a solution of (NQVP[𝐶, 𝑇]).
Proof. Let 𝑥 ∈ 𝐶(𝑥) be a solution of (NQVP[𝐶, 𝑇]), that is,−𝑇(𝑥) ∈ 𝑁𝜋(𝐶(𝑥); 𝑥). Then by the characterisation of the 𝑉-
proximal normal cone in Proposition 18, there exists 𝜆 > 0
such that 𝑥 ∈ 𝜋𝐶(𝑥)(𝐽(𝑥)−𝜆𝑇(𝑥)). Using Lemma 19 we obtain𝑥 ∈ 𝜋𝐶(𝑥)(𝐽(𝑥) − 𝜏𝑇(𝑥)), for any 𝜏 ∈ [0, 𝜆]. By assumption (5)
wemay assume that𝜆 ≤ 𝑟/𝐿 and sowe get 𝜌 ≤ 𝑟/𝐿. Hence𝑥 ∈𝜋𝐶(𝑥)(𝐽(𝑧)) for 𝑧 fl 𝐽∗(𝐽(𝑥) − 𝜌𝑇(𝑥)). Since 𝑋 is 2-uniformly
smooth we have 𝑋∗ is 2-uniformly convex; that is,

𝛿𝑋∗ (𝜖) ≥ 2𝑐−1𝜖2, (90)
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for some constant 𝑐 > 0 (depending only on the space 𝑋∗)
and so by Lemma 7 we get

𝑉∗ (𝐽∗𝑥∗, 𝑦∗) ≥ 8𝐶2𝛿𝑋∗ (
󵄩󵄩󵄩󵄩𝑥∗ − 𝑦∗󵄩󵄩󵄩󵄩4𝐶 )

≥ 𝑐−1 󵄩󵄩󵄩󵄩𝑥∗ − 𝑦∗󵄩󵄩󵄩󵄩2 , ∀𝑥∗, 𝑦∗ ∈ 𝑋∗.
(91)

Thus we can write

󵄩󵄩󵄩󵄩𝜌 [𝑇 (𝑥𝑛) − 𝑇 (𝑥)] − (𝐽 (𝑥𝑛) − 𝐽 (𝑥))󵄩󵄩󵄩󵄩2
≤ 𝑐 [𝑉∗ (𝜌𝐽∗ (𝑇 (𝑥𝑛) − 𝑇 (𝑥)) ; 𝐽 (𝑥𝑛) − 𝐽 (𝑥))] . (92)

Therefore,

󵄩󵄩󵄩󵄩𝐽 (𝑧𝑛+1) − 𝐽 (𝑧)󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝜌𝑇 (𝑥𝑛) − 𝐽 (𝑥) + 𝜌𝑇 (𝑥)󵄩󵄩󵄩󵄩2
≤ 𝑐 [𝑉∗ (𝜌𝐽∗ (𝑇 (𝑥𝑛) − 𝑇 (𝑥)) ; 𝐽 (𝑥𝑛) − 𝐽 (𝑥))]
≤ 𝑐 [𝜌2 󵄩󵄩󵄩󵄩𝑇 (𝑥𝑛) − 𝑇 (𝑥)󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2]

− 2𝑐𝜌 ⟨𝐽∗ (𝑇 (𝑥𝑛) − 𝑇 (𝑥)) ; 𝐽 (𝑥𝑛) − 𝐽 (𝑥)⟩ .

(93)

Using the 𝐽-Lipschitz continuity of 𝑇 with ratio 𝛽 we have

󵄩󵄩󵄩󵄩𝑇 (𝑥𝑛) − 𝑇 (𝑥)󵄩󵄩󵄩󵄩2 ≤ 𝛽2 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2 (94)

and by the 𝐽-strong monotonicity of 𝑇 with ratio 𝛼 we have

⟨𝐽∗ (𝑇 (𝑥𝑛) − 𝑇 (𝑥)) ; 𝐽 (𝑥𝑛) − 𝐽 (𝑥)⟩
≥ 𝛼 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2 .

(95)

Thus, we get

󵄩󵄩󵄩󵄩𝐽 (𝑧𝑛+1) − 𝐽 (𝑧)󵄩󵄩󵄩󵄩2
≤ 𝑐 [𝜌2𝛽2 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2]

− 2𝑐𝜌𝛼 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2
≤ 𝑐 (1 + 𝜌2𝛽2 − 2𝜌𝛼) 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩2

(96)

and so
󵄩󵄩󵄩󵄩𝐽 (𝑧𝑛+1) − 𝐽 (𝑧)󵄩󵄩󵄩󵄩

≤ √𝑐 (1 + 𝜌2𝛽2 − 2𝜌𝛼) 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩 .
(97)

On the other hand we have by the 6th assumption

󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩󵄩𝐽 (𝜋𝐶(𝑥𝑛) (𝐽 (𝑧𝑛+1))) − 𝐽 (𝜋𝐶(𝑥) (𝐽 (𝑧)))󵄩󵄩󵄩󵄩󵄩
≤ 𝜉 󵄩󵄩󵄩󵄩𝐽 (𝑧𝑛+1) − 𝐽 (𝑧)󵄩󵄩󵄩󵄩 + 𝑘 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩 .

(98)

Thus
󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛+1) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩

≤ (𝑘 + 𝜉√𝑐 (1 + 𝜌2𝛽2 − 2𝜌𝛼)) 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑛) − 𝐽 (𝑥)󵄩󵄩󵄩󵄩 .
(99)

Our assumptions and the choice of 𝜌 ensure that (𝑘 +
𝜉√𝑐(1 + 𝜌2𝛽2 − 2𝜌𝛼)) < 1 and hence ‖𝐽(𝑥𝑛) − 𝐽(𝑥)‖ → 0
which means that 𝑥𝑛 → 𝑥 by the uniform continuity of 𝐽∗
and thus completing the proof.

Remark 21. A simple inspection of the proof of the previous
theorem shows that the result is valid in the case when 𝑇 is
taken a general set-valuedmapping instead of a single-valued
operator defined from𝑋 to𝑋∗ and of course the assumptions
on 𝑇 should be adapted naturally for the set-valued case.
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