
Research Article
Boundedness of the Segal-Bargmann Transform on
Fractional Hermite-Sobolev Spaces

Hong Rae Cho, Hyunil Choi, and Han-Wool Lee

Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

Correspondence should be addressed to Hong Rae Cho; chohr@pusan.ac.kr

Received 21 November 2016; Accepted 4 January 2017; Published 19 January 2017

Academic Editor: Vakhtang M. Kokilashvili

Copyright © 2017 Hong Rae Cho et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let 𝑠 ∈ R and 2 ≤ 𝑝 ≤ ∞. We prove that the Segal-Bargmann transformB is a bounded operator from fractional Hermite-Sobolev
spaces𝑊𝑠,𝑝𝐻 (R𝑛) to fractional Fock-Sobolev spaces 𝐹𝑠,𝑝

R
.

1. Introduction

In quantummechanics, the Schrödinger equation is a partial
differential equation that describes how the quantum state of
some physical system changes with time. The most famous
example is the nonrelativistic Schrödinger equation for a
single particle moving in a potential:

√−1ℏ 𝜕𝜕𝑡Ψ (𝑥, 𝑡) = [−ℏ22𝑚 Δ + 𝑉 (𝑥, 𝑡)]Ψ (𝑥, 𝑡) , (1)

where 𝑚 is the particle’s mass, ℏ is the Planck constant, 𝑉 is
its potential energy, and Ψ is the wave function.

Let𝐻 be the most basic Schrödinger operator inR𝑛, 𝑛 ≥1, the Hermite operator (or the harmonic oscillator):

𝐻 = −Δ + |𝑥|2 . (2)

Then the Schrödinger equation can be written by

√−1𝜕Ψ𝜕𝑡 = 𝐻Ψ. (3)

This is an important model in quantum mechanics (see, e.g.,
[1]).

For 𝑠 ∈ R, we define the fractional Hermite operator𝐻𝑠 = (−Δ + |𝑥|)𝑠 of order 𝑠. Let 0 < 𝑝 ≤ ∞. The Hermite-
Sobolev space 𝑊𝑠,𝑝𝐻 (R𝑛) of fractional order 𝑠 is the space of
all tempered distributions for which the distribution𝐻𝑠/2𝑓 is
given by an 𝐿𝑝 function on R𝑛.

LetC𝑛 be the complex 𝑛-space and let 𝑑𝑉 be the ordinary
volume measure on C𝑛. If 𝑧 = (𝑧1, . . . , 𝑧𝑛) and 𝑤 =(𝑤1, . . . , 𝑤𝑛) are points in C𝑛, we write

𝑧 ⋅ 𝑤 = 𝑛∑
𝑗=1

𝑧𝑗𝑤𝑗,
|𝑧| = (𝑧 ⋅ 𝑧)1/2 .

(4)

For any 0 < 𝑝 ≤ ∞ the Fock space 𝐹𝑝 denotes the space of
entire functions 𝑓 onC𝑛 such that the function 𝑓(𝑧)𝑒−(1/4)|𝑧|2
is in 𝐿𝑝(C𝑛, 𝑑𝑉). We define

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹𝑝 = [( 𝑝4𝜋)
𝑛 ∫

C𝑛

󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑧) 𝑒−(1/4)|𝑧|2 󵄨󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑉 (𝑧)]1/𝑝 . (5)

For 𝑝 = ∞ the norm in 𝐹∞ is defined by

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹∞ = sup {󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 𝑒−(1/4)|𝑧|2 : 𝑧 ∈ C
𝑛} . (6)

Let

𝐴𝑗𝑓 (𝑧) = 2 𝜕𝜕𝑧𝑗𝑓 (𝑧) ,
𝐴∗𝑗𝑓 (𝑧) = 𝑧𝑗𝑓 (𝑧) ,

1 ≤ 𝑗 ≤ 𝑛, 𝑓 ∈ 𝐹𝑝.
(7)
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Both 𝐴𝑗 and 𝐴∗𝑗 , as defined above, are densely defined linear
operators on 𝐹𝑝 (unbounded though).We consider the radial
derivativeR defined by

R fl
12
𝑛∑
𝑗=1

(𝐴𝑗𝐴∗𝑗 + 𝐴∗𝑗𝐴𝑗) . (8)

Let 𝑠 be a real number and 0 < 𝑝 ≤ ∞. The fractional Fock-
Sobolev space𝐹𝑠,𝑝

R
of order 𝑠 is the space of all entire functions

for whichR𝑠/2𝑓 is given by an 𝐹𝑝 function.
The Segal-Bargmann transformB is defined by

B𝑓 (𝑧) = 1𝜋𝑛/4 ∫R𝑛 𝑓 (𝑥) 𝑒𝑥⋅𝑧−(1/2)|𝑥|2−(1/4)𝑧⋅𝑧𝑑𝑉 (𝑥) , (9)

where 𝑑𝑉(𝑥) is the volume measure on R𝑛. It is well-known
that the Segal-Bargmann transform is a unitary isomorphism
between 𝐿2(R𝑛) and 𝐹2 [2, 3].

We prove that the radial derivative R has a parallel
behavior to the Hermite operator 𝐻. In particular, R is
densely defined, positive, self-adjoint and has the discrete
spectrum; it generates a diffusion semigroup. Moreover, we
show that the Segal-Bargmann transform intertwines frac-
tional Hermite-Sobolev spaces with fractional Fock-Sobolev
spaces as follows.

Theorem 1. Let 𝑠 ∈ R and 2 ≤ 𝑝 ≤ ∞. Then the Segal-
Bargmann transformB : 𝑊𝑠,𝑝𝐻 (R𝑛) → 𝐹𝑠,𝑝

R
is bounded.

2. Fractional Hermite-Sobolev Spaces

In one dimension, the Hermite polynomials 𝐻𝑘 are defined
by

𝐻𝑘 (𝑥) = 𝑒𝑥2 𝑑𝑘𝑑𝑥𝑘 (𝑒−𝑥2) , 𝑥 ∈ R, (10)

and by normalization we obtain the Hermite functions

ℎ𝑘 (𝑥) = (√𝜋2𝑘𝑘!)−1/2 𝑒−𝑥2/2 (−1)𝑘𝐻𝑘 (𝑥) , 𝑥 ∈ R. (11)

Note that

(− 𝑑2𝑑𝑥2 + 𝑥2)[𝑒−(1/2)𝑥2𝐻𝑘 (𝑥)]
= (2𝑘 + 1) [𝑒−(1/2)𝑥2𝐻𝑘 (𝑥)] , 𝑥 ∈ R.

(12)

In higher dimensions, for each multi-index 𝛼 =(𝛼1, . . . , 𝛼𝑛) ∈ N𝑛0, the Hermite functions ℎ𝛼 are defined by

ℎ𝛼 (𝑥) = 𝑛∏
𝑗=1

ℎ𝛼𝑗 (𝑥𝑗) , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R
𝑛. (13)

Here, N0 = N ∪ {0} is the set of nonnegative integer. By (12),
we know that these are the eigenfunctions of the Hermite
operator defined in (2). In fact,

𝐻ℎ𝛼 = (2 |𝛼| + 𝑛) ℎ𝛼. (14)

Moreover, {ℎ𝛼 : 𝛼 ∈ N𝑛0} is an orthonormal basis for 𝐿2(R𝑛).

Let H be the space of finite linear combinations of
Hermite functions

𝑓 = ∑
|𝛼|≤𝑁

⟨𝑓, ℎ𝛼⟩ ℎ𝛼, (15)

where

⟨𝑓, ℎ𝛼⟩ = ∫
R𝑛

𝑓 (𝑥) ℎ𝛼 (𝑥) 𝑑𝑉 (𝑥) . (16)

The spaceH is dense in𝐿2(R𝑛), and so, by the orthonormality
of the Hermite functions,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(R𝑛) = ( ∑
𝛼∈N𝑛0

󵄨󵄨󵄨󵄨⟨𝑓, ℎ𝛼⟩󵄨󵄨󵄨󵄨2)
1/2

. (17)

For 𝑠 ∈ R, we define the fractionalHermite operator𝐻𝑠 =(−Δ + |𝑥|)𝑠 of order 𝑠. For 𝑓 ∈ S(R𝑛), the Hermite series
expansion

∑
𝛼∈N𝑛0

⟨𝑓, ℎ𝛼⟩ ℎ𝛼 (18)

converges to 𝑓 uniformly in R𝑛 (and also in 𝐿2(R𝑛)), since‖ℎ𝛼‖𝐿∞(R𝑛) ≤ 𝐶, for all 𝛼 ∈ N𝑛0, and each𝑚 ∈ N, and we have
(see [4]) 󵄨󵄨󵄨󵄨⟨𝑓, ℎ𝛼⟩󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝐻𝑚𝑓󵄩󵄩󵄩󵄩𝐿2(R𝑛) (2 |𝛼| + 𝑛)−𝑚 . (19)

Definition 2. Let 𝑠 ∈ R and 𝑓 ∈ S(R𝑛). One defines the
fractional Hermite operator𝐻𝑠 by

𝐻𝑠𝑓 = ∑
𝛼∈N𝑛0

(2 |𝛼| + 𝑛)𝑠 ⟨𝑓, ℎ𝛼⟩ ℎ𝛼. (20)

The fractional Hermite operators 𝐻𝑠 were introduced in
[5].

Definition 3. Let 𝑠 ∈ R and 0 < 𝑝 ≤ ∞. The fractional
Hermite-Sobolev space 𝑊𝑠,𝑝𝐻 (R𝑛) of order 𝑠 is the space of
all tempered distributions for which the distribution 𝐻𝑠/2𝑓
is given by an 𝐿𝑝 function on R𝑛. The fractional Hermite-
Sobolev norm of order 𝑠 is defined accordingly,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑊𝑠,𝑝
𝐻
(R𝑛) = 󵄩󵄩󵄩󵄩󵄩𝐻𝑠/2𝑓󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) . (21)

The fractional Hermite-Sobolev spaces𝑊𝑠,𝑝(R𝑛) of order𝑠 were introduced in [6].

3. Radial Derivative

We consider the radial derivativeR defined on

Dom (R) = {𝑓 ∈ 𝐹2 : R𝑓 ∈ 𝐹2} (22)

by

R fl
12
𝑛∑
𝑗=1

(𝐴𝑗𝐴∗𝑗 + 𝐴∗𝑗𝐴𝑗) , (23)



Journal of Function Spaces 3

where

𝐴𝑗𝑓 (𝑧) = 2 𝜕𝜕𝑧𝑗𝑓 (𝑧) ,
𝐴∗𝑗𝑓 (𝑧) = 𝑧𝑗𝑓 (𝑧) ,

1 ≤ 𝑗 ≤ 𝑛, 𝑓 ∈ 𝐹2.
(24)

We have

R = 2 𝑛∑
𝑗=1

𝑧𝑗 𝜕𝜕𝑧𝑗 + 𝑛. (25)

The following example tells us thatDom(R) ⊊ 𝐹2. ThusR
is an unbounded operator on 𝐹2.
Example 4. Let

𝑓 (𝑧) = ∞∑
𝑘=0

𝑧𝑘1√2𝑘 (𝑘 + 1)√𝑘! . (26)

Then 𝑓 ∈ 𝐹2, butR𝑓 ∉ 𝐹2.
Proof. Note that
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐹2

= 1(2𝜋)𝑛
∞∑
𝑘=0

∫
C𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧𝑘1√2𝑘 (𝑘 + 1)√𝑘!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑒−(1/2)|𝑧|2𝑑𝑉 (𝑧)

= ∞∑
𝑘=0

1(𝑘 + 1)2 = 𝜁 (2) < ∞,
(27)

where 𝜁(⋅) is the Riemann zeta function. However, we have

󵄩󵄩󵄩󵄩R𝑓󵄩󵄩󵄩󵄩2𝐹2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∞∑
𝑘=0

(2𝑘 + 𝑛) 𝑧𝑘1√2𝑘 (𝑘 + 1)√𝑘!
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹2

= ∞∑
𝑘=0

(2𝑘 + 𝑛)2(𝑘 + 1)2
= ∞.

(28)

Lemma 5. R is a positive, self-adjoint operator onDom(R).
Proof. Let P(C𝑛) be the set of all holomorphic polynomials
on C𝑛. We know that P(C𝑛) is dense in 𝐹2 and R is self-
adjoint on P(C𝑛). Hence Dom(R) is the domain of its
unique self-adjoint extension.

Note that

⟨𝑓,R𝑓⟩𝐹2 = 2 𝑛∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝑓𝜕𝑧𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹2

+ 𝑛 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐹2 ≥ 𝑛 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐹2 ,
∀𝑓 ∈ Dom (R) .

(29)

ThusR is positive.

Lemma 6. R has the discrete spectrum 𝜎(R) = {2|𝛼| + 𝑛 :𝛼 ∈ N𝑛0}.

Proof. By (29), we have 𝜎(R) ⊆ [𝑛,∞).
We define

𝑒𝛼 (𝑧) = 𝑧𝛼‖𝑧𝛼‖𝐹2 =
𝑧𝛼√2|𝛼|𝛼! . (30)

Then {𝑒𝛼 : 𝛼 ∈ N𝑛0} is an orthonormal basis for 𝐹2. It is easy
to see that {2|𝛼| + 𝑛 : 𝛼 ∈ N𝑛0} is the set of all eigenvalues.

Let 𝜆 ∈ [𝑛,∞) \ {2|𝛼| + 𝑛 : 𝛼 ∈ N𝑛0}. First, we show that𝜆𝐼 −R : Dom(R) → 𝐹2 is injective and surjective.
Suppose that (𝜆𝐼 −R)𝑓 = (𝜆𝐼 −R)𝑓. Then

0 = (𝜆𝐼 −R) 𝑓 − (𝜆𝐼 −R) 𝑓
= ∑
𝛼∈N𝑛0

{𝜆 − (2 |𝛼| + 𝑛)} ⟨𝑓 − 𝑓, 𝑒𝛼⟩ 𝑒𝛼. (31)

This implies 𝑓 = 𝑓. Thus 𝜆𝐼 − R : Dom(R) → 𝐹2 is
injective.

For 𝑓 ∈ 𝐹2 let
𝑓 (𝑧) = ∑

𝛼∈N𝑛0

𝑐𝛼𝑒𝛼 (𝑧) (32)

be the orthonormal decomposition of 𝑓. We define

𝑔 = 1𝜆𝑓 + 1𝜆 ∑
𝛼∈N𝑛0

2 |𝛼| + 𝑛𝜆 − (2 |𝛼| + 𝑛)𝑐𝛼𝑒𝛼 (𝑧) . (33)

Since

𝜑𝑁 = 𝑁∑
|𝛼|=0

2 |𝛼| + 𝑛𝜆 − (2 |𝛼| + 𝑛)𝑐𝛼𝑒𝛼 (𝑧) (34)

is a Cauchy sequence in 𝐹2, the series in (33) converges in 𝐹2.
Hence

𝑔 = 1𝜆𝑓 + 1𝜆
∞∑
|𝛼|=0

2 |𝛼| + 𝑛𝜆 − (2 |𝛼| + 𝑛)𝑐𝛼𝑒𝛼 (𝑧) (35)

is a well-defined element of 𝐹2 and it satisfies (𝜆𝐼 −R)𝑔 = 𝑓.
This means that 𝜆𝐼 −R : Dom(R) → 𝐹2 is surjective.

Moreover,
󵄩󵄩󵄩󵄩󵄩(𝜆𝐼 −R)−1 𝑓󵄩󵄩󵄩󵄩󵄩𝐹2 ≤ 1𝜆 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹2 + 1𝜆𝛽 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹2

= 1𝜆 (1 + 𝛽) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹2 ,
(36)

where𝛽 = sup𝛼∈N𝑛0 |(2|𝛼|+𝑛)/(𝜆−(2|𝛼|+𝑛))|. Hence (𝜆𝐼−R)−1
is bounded and so 𝜎(R) = {2|𝛼| + 𝑛 : 𝛼 ∈ N𝑛0}.

For 𝑓 ∈ 𝐹2 let
𝑓 (𝑧) = ∑

𝛼∈N𝑛0

𝑐𝛼𝑒𝛼 (𝑧) (37)

be the orthonormal decomposition of 𝑓. Associated with the
operatorR is a semigroup {𝐵𝑡}𝑡≥0 defined by the expansion

𝐵𝑡𝑓 (𝑧) = ∑
𝛼∈N𝑛0

𝑒−(2|𝛼|+𝑛)𝑡𝑐𝛼𝑒𝛼 (𝑧) . (38)
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We can check that 𝑢(𝑧, 𝑡) fl 𝐵𝑡𝑓(𝑧) is the solution of the heat-
type equation:

(𝜕𝑡 +R) 𝑢 = 0 on C
𝑛 × (0,∞) ,

𝑢 (⋅, 0) = 𝑓 on C
𝑛. (39)

It is easy to see that󵄩󵄩󵄩󵄩𝐵𝑡𝑓󵄩󵄩󵄩󵄩2𝐹2 ≤ 𝑒−2𝑛𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐹2 . (40)

Thus 𝐵𝑡 is contractive.
Proposition 7. {𝐵𝑡}𝑡≥0 is a strongly continuous semigroup.

Proof. We note that

󵄩󵄩󵄩󵄩𝐵𝑡𝑓 − 𝑓󵄩󵄩󵄩󵄩2𝐹2 = ∑
𝛼∈N𝑛0

󵄨󵄨󵄨󵄨󵄨𝑒−(2|𝛼|+𝑛)𝑡 − 1󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑐𝛼󵄨󵄨󵄨󵄨2

= ∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑒−(2𝑘+𝑛)𝑡 − 1󵄨󵄨󵄨󵄨󵄨2 ∑
|𝛼|=𝑘

󵄨󵄨󵄨󵄨𝑐𝛼󵄨󵄨󵄨󵄨2 .
(41)

For 𝑘 ∈ N0 and𝑋 ⊂ N0 we define 𝛿𝑘(𝑋) by
𝛿𝑘 (𝑋) = {{{

1, if 𝑘 ∈ 𝑋,
0, if 𝑘 ∉ 𝑋. (42)

Then

lim
𝑡→0+

󵄩󵄩󵄩󵄩𝐵𝑡𝑓 − 𝑓󵄩󵄩󵄩󵄩2𝐹2 = lim
𝑡→0+

∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑒−(2𝑘+𝑛)𝑡 − 1󵄨󵄨󵄨󵄨󵄨2 ∑
|𝛼|=𝑘

󵄨󵄨󵄨󵄨𝑐𝛼󵄨󵄨󵄨󵄨2

= lim
𝑡→0+

∫∞
0

󵄨󵄨󵄨󵄨󵄨𝑒−(2𝜆+𝑛)𝑡 − 1󵄨󵄨󵄨󵄨󵄨2 𝑑] (𝜆) ,
(43)

where ] is a discrete measure defined by

] = ∞∑
𝑘=0

( ∑
|𝛼|=𝑘

󵄨󵄨󵄨󵄨𝑐𝛼󵄨󵄨󵄨󵄨2)𝛿𝑘. (44)

By Lebesgue dominate convergence theorem, we have

lim
𝑡→0+

󵄩󵄩󵄩󵄩𝐵𝑡𝑓 − 𝑓󵄩󵄩󵄩󵄩2𝐹2 = ∫∞
0

lim
𝑡→0+

󵄨󵄨󵄨󵄨󵄨𝑒−(2𝜆+𝑛)𝑡 − 1󵄨󵄨󵄨󵄨󵄨2 𝑑] (𝜆)
= 0. (45)

Hence {𝐵𝑡}𝑡≥0 is a strongly continuous semigroup.

Proposition 8. −R is the infinitesimal generator of {𝐵𝑡}𝑡≥0.
That is,

lim
𝑡→0+

𝐵𝑡𝑓 − 𝑓𝑡 = −R𝑓. (46)

Proof. By using the previous discrete measure ], it follows
that 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐵𝑡𝑓 − 𝑓𝑡 − (−R𝑓)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹2

= ∫∞
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−(2𝜆+𝑛)𝑡 − 1𝑡 + (2𝜆 + 𝑛)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 𝑑] (𝜆) .
(47)

Taking limit on both sides and by Lebesgue dominate conver-
gence theorem,

lim
𝑡→0+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐵𝑡𝑓 − 𝑓𝑡 − (−R𝑓)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹2

= lim
𝑡→0+

∫∞
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−(2𝜆+𝑛)𝑡 − 1𝑡 + (2𝜆 + 𝑛)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 𝑑] (𝜆)
= ∫∞
0

lim
𝑡→0+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−(2𝜆+𝑛)𝑡 − 1𝑡 + (2𝜆 + 𝑛)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 𝑑] (𝜆) = 0.
(48)

Thus we get the result.

By Proposition 8, we have

𝐵𝑡 = 𝑒−𝑡R. (49)

4. Fractional Fock-Sobolev Spaces

SinceRhas discrete spectrum {2|𝛼|+𝑛 : 𝛼 ∈ N𝑛0}, by using the
spectral theorem, we define the fractional radial derivative
R𝑠 for 𝑠 ∈ R as follows.

Definition 9. Let 𝑠 ∈ R. For 𝑓 ∈ 𝐹2 let
𝑓 (𝑧) = ∑

𝛼∈N𝑛0

𝑐𝛼𝑒𝛼 (𝑧) (50)

be the orthonormal decomposition of 𝑓. By the spectral
theorem,R𝑠 is given by

R
𝑠𝑓 (𝑧) = ∑

𝛼∈N𝑛0

(2 |𝛼| + 𝑛)𝑠 𝑐𝛼𝑒𝛼 (𝑧) ,
𝑓 ∈ Dom (R𝑠) .

(51)

Definition 10. Let 𝑠 be a real number and 0 < 𝑝 ≤ ∞. The
fractional Fock-Sobolev space𝐹𝑠,𝑝

R
of order 𝑠 is the space of all

entire functions for whichR𝑠/2𝑓 is given by an 𝐹𝑝 function.
The fractional Fock-Sobolev norm of 𝑓 of order 𝑠 is defined
accordingly,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹𝑠,𝑝
R

= 󵄩󵄩󵄩󵄩󵄩R𝑠/2𝑓󵄩󵄩󵄩󵄩󵄩𝐹𝑝 . (52)

We refer the reader to [7–10] for other Fock-Sobolev
spaces.

5. 𝐿𝑝-Boundedness of the Segal-Bargmann
Transform

TheHermite operator𝐻 is self-adjoint on the set of infinitely
differentiable functions with compact support 𝐶∞𝑐 (R𝑛), and
it can be factorized as

𝐻 = 12
𝑛∑
𝑗=1

(𝑎𝑗𝑎†𝑗 + 𝑎†𝑗𝑎𝑗) , (53)
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where

𝑎𝑗 = 𝜕𝜕𝑥𝑗 + 𝑥𝑗,
𝑎†𝑗 = − 𝜕𝜕𝑥𝑗 + 𝑥𝑗,

1 ≤ 𝑗 ≤ 𝑛.
(54)

Lemma 11. For each 𝑗 = 1, . . . , 𝑛, one has
B (𝑎𝑗𝑓) = 𝐴𝑗B (𝑓) ,
B (𝑎†𝑗𝑓) = 𝐴∗𝑗B (𝑓) . (55)

Proof. Let 𝑓 ∈ 𝐶∞𝑐 (R𝑛). By the integration by parts, we have

B( 𝜕𝜕𝑥𝑗𝑓) (𝑧)
= 1𝜋𝑛/4 ∫R𝑛 𝜕𝑓𝜕𝑥𝑗 (𝑥) 𝑒𝑥⋅𝑧−(1/2)|𝑥|

2−(1/4)𝑧⋅𝑧𝑑𝑉 (𝑥)
= −𝑧𝑗B (𝑓) +B (𝑥𝑗𝑓) .

(56)

This gives

B (𝑎†𝑗𝑓) = 𝐴∗𝑗B (𝑓) . (57)

We differentiate

B𝑓 (𝑧) = 1𝜋𝑛/4 ∫R𝑛 𝑓 (𝑥) 𝑒𝑥⋅𝑧−(1/2)|𝑥|2−(1/4)𝑧⋅𝑧𝑑𝑉 (𝑥) (58)

under the integral sign to obtain

𝐴𝑗B𝑓 (𝑧) = 1𝜋𝑛/4
⋅ ∫

R𝑛
(2𝑥𝑗 − 𝑧𝑗) 𝑓 (𝑥) 𝑒𝑥⋅𝑧−(1/2)|𝑥|2−(1/4)𝑧⋅𝑧𝑑𝑉 (𝑥) . (59)

This gives

𝐴𝑗B (𝑓) = 2B (𝑥𝑗𝑓) − 𝐴∗𝑗B (𝑓) . (60)

By (57) and (60), it follows that

𝐴𝑗B (𝑓) = B (𝑎𝑗𝑓) . (61)

Corollary 12. Consider

B𝐻 = RB. (62)

Proof. By Lemma 11, we have

B (𝐻𝑓) = 12
𝑛∑
𝑗=1

(𝐴𝑗𝐴∗𝑗 + 𝐴∗𝑗𝐴𝑗)B (𝑓) = RB. (63)

Proposition 13. Let 𝑠 ∈ R. Then

B𝐻𝑠 = R
𝑠
B. (64)

Proof. We define

𝑒𝛼 (𝑧) = 𝑧𝛼‖𝑧𝛼‖𝐹2 . (65)

Then {𝑒𝛼 : 𝛼 ∈ N𝑛0} is an orthonormal basis for 𝐹2 and
B(ℎ𝛼) = 𝑒𝛼. For 𝑓 ∈ S(R𝑛) we have

𝐻𝑠𝑓 = ∑
𝛼∈N𝑛0

(2 |𝛼| + 𝑛)𝑠 ⟨𝑓, ℎ𝛼⟩ ℎ𝛼 (66)

and so

B (𝐻𝑠𝑓) = ∑
𝛼∈N𝑛0

(2 |𝛼| + 𝑛)𝑠 ⟨𝑓, ℎ𝛼⟩ 𝑒𝛼. (67)

Since B is a unitary isomorphism, we have ⟨𝑓, ℎ𝛼⟩ =⟨B(𝑓), 𝑒𝛼⟩. Hence
B (𝐻𝑠𝑓) = ∑

𝛼∈N𝑛0

(2 |𝛼| + 𝑛)𝑠 ⟨B (𝑓) , 𝑒𝛼⟩ 𝑒𝛼
= R
𝑠
B (𝑓) .

(68)

Thus we get the result.

We consider the mapping property of the Segal-
Bargmann transform B as a map from 𝐿𝑝(R𝑛) to 𝐹𝑝 for𝑝 ∈ [2,∞]. Note that one-dimensional case is in [11].

Theorem 14. Consider

󵄩󵄩󵄩󵄩B𝑓󵄩󵄩󵄩󵄩𝐹∞ ≤ (4𝜋)𝑛/4 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞(R𝑛) . (69)

Proof. We have

󵄨󵄨󵄨󵄨B𝑓 (𝑧)󵄨󵄨󵄨󵄨 ≤ 1𝜋𝑛/4 𝑒|𝑧|2/4 sup𝑥∈R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨
⋅ ∫

R𝑛
𝑒Re(𝑧⋅𝑥)−(1/2)|𝑥|2−(1/4)Re(𝑧⋅𝑧)−|𝑧|2/4𝑑𝑉 (𝑥) .

(70)

Note that

|Re (𝑧)|2 = 12 {|𝑧|2 + Re (𝑧 ⋅ 𝑧)} . (71)

Hence

Re (𝑧 ⋅ 𝑥) − 12 |𝑥|2 − 14 Re (𝑧 ⋅ 𝑧) − |𝑧|24
= Re (𝑧 ⋅ 𝑥) − 12 |𝑥|2 − 12 |Re (𝑧)|2
= −12 |Re (𝑧) − 𝑥|2

(72)
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and so󵄨󵄨󵄨󵄨B𝑓 (𝑧)󵄨󵄨󵄨󵄨
≤ 1𝜋𝑛/4 𝑒|𝑧|2/4 sup𝑥∈R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ∫

R𝑛
𝑒−(1/2)|Re(𝑧)−𝑥|2𝑑𝑉 (𝑥)

= (4𝜋)𝑛/4 𝑒|𝑧|2/4 sup
𝑥∈R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 .
(73)

Thus we get the result.

The following Stein-Weiss interpolation theorem is well-
known. See, for example, [3, 12].

Lemma 15. Let 𝑤,𝑤0, and 𝑤1 be positive weight functions on
a measure space (𝑋, 𝑑𝜆). If 1 ≤ 𝑝0 ≤ 𝑝1 ≤ ∞ and 0 ≤ 𝜃 ≤ 1,
then

[𝐿𝑝0 (𝑋,𝑤0𝑑𝜆) , 𝐿𝑝1 (𝑋, 𝑤1𝑑𝜆)]𝜃 = 𝐿𝑝 (𝑋, 𝑤𝑑𝜆) (74)

with equal norms, where

1𝑝 = 1 − 𝜃𝑝0 + 𝜃𝑝1 ,
𝑤1/𝑝 = 𝑤(1−𝜃)/𝑝00 𝑤𝜃/𝑝11 .

(75)

Theorem 16. Let 2 ≤ 𝑝 ≤ ∞. There exists 𝐶 > 0 such that
󵄩󵄩󵄩󵄩B𝑓󵄩󵄩󵄩󵄩𝐹𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) . (76)

Proof. The 𝐿2-boundedness is followed by the unitary iso-
morphism of the Segal-Bargmann transform. InTheorem 14,
we proved the 𝐿∞-boundedness of the Segal-Bargmann
transform. By Lemma 15, we have the required result.

By Proposition 13 andTheorem 16, we have the following
result.

Theorem 17. Let 𝑠 ∈ R and 2 ≤ 𝑝 ≤ ∞. Then the Segal-
Bargmann transformB : 𝑊𝑠,𝑝𝐻 (R𝑛) → 𝐹𝑠,𝑝

R
is bounded.
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