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We introduce the notion of generalized 𝜃 − 𝜙 contraction and establish some new fixed point theorems for this contraction in the
setting of complete 𝐺-metric spaces.The results presented in the paper improve, extend, and unify some known results. Finally, we
give an example to illustrate them.

1. Introduction and Preliminaries

In 2006, Mustafa and Sims [1] introduced the notion of 𝐺-
metric space and studied the properties of it. Subsequently,
many authors studied the fixed point theory in the setting
of complete 𝐺-metric spaces and obtained some fixed point
theorems for different contractions (see [1–10]). In 2015,
Agarwal et al. [11] presented a self-contained account of
the fixed point theory (techniques and results) in 𝐺-metric
spaces.The book [11] contains almost all the research findings
that relate to basic fixed point theorems, common fixed point
theorems, and coupled fixed point theorems in 𝐺-metric
spaces and partially ordered𝐺-metric spaces (see [11] and the
references therein).

In 2014, Jleli and Samet [12] introduced a new type of
contraction called 𝜃-contraction. Later, many authors have
studied 𝜃-contraction deeply (for example, see [13, 14]). Just
recently, Zheng et al. [15] introduced the notion of 𝜃 − 𝜙
contraction inmetric spaces which generalized 𝜃-contraction
and other contractions (see [12, 15] and the references
therein).

Inspired by [12, 15], we introduce the notion of general-
ized 𝜃 − 𝜙 contraction and establish some new fixed point
theorems for this contraction in the setting of complete 𝐺-
metric spaces. The results presented in the paper improve
and extend the corresponding results of Agarwal et al. [11],
Mustafa [4], Mustafa et al. [5], Mustafa and Sims [6], and
Shatanawi [9]. Also, we give an example to illustrate them.

According to [12, 15], denote by Θ the set of functions 𝜃 :(0,∞) → (1,∞) satisfying the following conditions:
(Θ1) 𝜃 is nondecreasing.
(Θ2) For each sequence {𝑡𝑛} ⊂ (0,∞), lim𝑛→∞𝜃(𝑡𝑛) = 1 if

and only if lim𝑛→∞𝑡𝑛 = 0+.
(Θ3) 𝜃 is continuous on (0,∞).
And by Φ the set of functions 𝜙 : [1,∞) → [1,∞)

satisfies the following conditions:

(Φ1) 𝜙 : [1,∞) → [1,∞) is nondecreasing.
(Φ2) For each 𝑡 > 1, lim𝑛→∞𝜙𝑛(𝑡) = 1.
(Φ3) 𝜙 is continuous on [1,∞).

Lemma 1 (see [15]). If 𝜙 ∈ Φ, then 𝜙(1) = 1 and 𝜙(𝑡) < 𝑡 for
each 𝑡 > 1.

Now we recall some basic definitions and give some
lemmas that will be used in the paper.

Definition 2 (see [1, 11]). A 𝐺-metric space is a pair (𝑋, 𝐺),
where 𝑋 is a nonempty set and 𝐺 : 𝑋 × 𝑋 × 𝑋 → [0, +∞)
is a function such that, for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, the following
conditions are fulfilled:

(𝐺1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧.
(𝐺2) 𝐺(𝑥, 𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦.
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(𝐺3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ̸= 𝑦.
(𝐺4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetry

in all 3).
(𝐺5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) +𝐺(𝑎, 𝑦, 𝑧) (rectangle inequal-

ity).

In such a case, the function 𝐺 is called a 𝐺-metric.

Example 3 (see [1, 11]). If 𝑋 is a nonempty subset of 𝑅, then
the function 𝐺 : 𝑋×𝑋×𝑋 → [0, +∞), given by 𝐺(𝑥, 𝑦, 𝑧) =|𝑥−𝑦|+ |𝑦−𝑧|+ |𝑧−𝑥| for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, is a𝐺-metric on𝑋.
Example 4 (see [1, 11]). Let 𝑋 = [0,∞) be the interval of
nonnegative real numbers and let 𝐺 be defined by

𝐺 (𝑥, 𝑦, 𝑧) = {{{
0, if 𝑥 = 𝑦 = 𝑧,
max {𝑥, 𝑦, 𝑧} , otherwise. (1)

Then 𝐺 is a complete 𝐺-metric on𝑋.
Definition 5 (see [1, 11]). Let (𝑋, 𝐺) be a 𝐺-metric space; let𝑥 ∈ 𝑋 and {𝑥𝑛} ⊆ 𝑋 be a sequence. We say that

(i) {𝑥𝑛} 𝐺-converges to 𝑥, and we write {𝑥𝑛} → 𝑥 if
lim𝑛,𝑚→∞𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) = 0; that is, for all 𝜀 > 0 there
exists 𝑛0 ∈ 𝑁 satisfying 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) ≤ 𝜀 for all𝑛,𝑚 ∈ 𝑁 such that 𝑛,𝑚 ≥ 𝑛0;

(ii) {𝑥𝑛} is 𝐺-Cauchy if lim𝑛,𝑚,𝑘→∞𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑘) = 0;
that is, for all 𝜀 > 0 there exists 𝑛0 ∈ 𝑁 satisfying𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑘) ≤ 𝜀 for all 𝑛,𝑚, 𝑘 ∈ 𝑁 such that𝑛,𝑚, 𝑘 ≥ 𝑛0;

(iii) (𝑋, 𝐺) is complete if every𝐺-Cauchy sequence in𝑋 is𝐺-convergent in𝑋.
Lemma 6 (see [1, 11]). Let (𝑋, 𝐺) be a 𝐺-metric space, let 𝑥 ∈𝑋 and {𝑥𝑛} ⊆ 𝑋 be a sequence. Then the following conditions
are equivalent.

(a) {𝑥𝑛} 𝐺-converges to 𝑥.
(b) lim𝑛→∞𝐺(𝑥𝑛, 𝑥𝑛, 𝑥) = 0.
(c) lim𝑛→∞𝐺(𝑥𝑛, 𝑥, 𝑥) = 0.
(d) lim𝑛,𝑚→∞,𝑚≥𝑛𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) = 0.
(e) lim𝑛,𝑚→∞,𝑚>𝑛𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) = 0.

Lemma 7 (see [1, 11]). Let (𝑋, 𝐺) be a G-metric space and{𝑥𝑛} ⊆ 𝑋 be a sequence. Then the following conditions are
equivalent.

(a) {𝑥𝑛} is 𝐺-Cauchy.
(b) lim𝑛,𝑚→∞𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0.
(c) lim𝑛,𝑚→∞,𝑚≥𝑛𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0.
(d) lim𝑛,𝑚→∞,𝑚>𝑛𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0.
(e) lim𝑛,𝑚→∞𝐺(𝑥𝑛, 𝑥𝑛, 𝑥𝑚) = 0.

Lemma 8 (see [11]). Let {𝑥𝑛} be an asymptotically regular
sequence in a G-metric space (𝑋, 𝐺) and suppose that {𝑥𝑛} is

not Cauchy. Then there exist a positive real number 𝜀 > 0 and
two subsequences {𝑥𝑛(𝑘)} and {𝑥𝑚(𝑘)} of {𝑥𝑛} such that, for all𝑘 ∈ 𝑁,

𝑘 ≤ 𝑛 (𝑘) < 𝑚 (𝑘) < 𝑛 (𝑘 + 1) ,
𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)−1) ≤ 𝜀 < 𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) , (2)

and also, for all given 𝑝1, 𝑝2, 𝑝3 ∈ 𝑍,
lim
𝑘→∞

𝐺(𝑥𝑛(𝑘)+𝑝1 , 𝑥𝑚(𝑘)+𝑝2 , 𝑥𝑚(𝑘)+𝑝3) = 𝜀. (3)

Lemma 9 (see [11]). Let (𝑋, 𝐺) be a 𝐺-metric space; then𝐺(𝑥, 𝑦, 𝑦) ≤ 2𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.
2. Main Results

Based on the functions 𝜃 ∈ Θ and 𝜙 ∈ Φ, we give the
following definition.

Definition 10. Let (𝑋, 𝐺) be a 𝐺-metric space. A mapping 𝑇 :𝑋 → 𝑋 is said to be a generalized 𝜃 − 𝜙 contraction if there
exist 𝜃 ∈ Θ and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)) ≤ 𝜙 [𝜃 (𝑁 (𝑥, 𝑦, 𝑧))] , (4)

where

𝑁(𝑥, 𝑦, 𝑧) = max {𝐺 (𝑥, 𝑦, 𝑧) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) ,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) , 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧) , 12𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) ,

1
2

⋅ 𝐺 (𝑦, 𝑇𝑧, 𝑇𝑧) , 12𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥) ,
1
3 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑧, 𝑇𝑧) + 𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥))} .

(5)

Theorem 11. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a generalized 𝜃 − 𝜙 contraction. Then 𝑇 has
a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥}
converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Proof. Let 𝑥0 ∈ 𝑋 be an arbitrary point. We define the
sequence {𝑥𝑛} in 𝑋 by 𝑥𝑛+1 = 𝑇𝑥𝑛, for all 𝑛 ∈ 𝑁. If 𝑥𝑛+1 = 𝑥𝑛
for some 𝑛 ∈ 𝑁, then 𝑥∗ = 𝑥𝑛 is a fixed point for 𝑇. Next, we
assume that 𝑥𝑛+1 ̸= 𝑥𝑛 for all 𝑛 ∈ 𝑁. Then 𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) >0 for all 𝑛 ∈ 𝑁. Applying inequality (4) with 𝑥 = 𝑥𝑛, 𝑦 = 𝑥𝑛+1,𝑧 = 𝑥𝑛+1, we obtain

𝜃 (𝐺 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1, 𝑇𝑥𝑛+1))
≤ 𝜙 [𝜃 (𝑁 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))] , (6)

where

𝑁(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = max {𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) ,
𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) , 𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) ,
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𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) 12𝐺 (𝑥𝑛, 𝑥𝑛+2, 𝑥𝑛+2) ,
1
2

⋅ 𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) , 12𝐺 (𝑥𝑛+1, 𝑥𝑛+1, 𝑥𝑛+1) ,
1
3 (𝐺 (𝑥𝑛, 𝑥𝑛+2, 𝑥𝑛+2) + 𝐺 (𝑥𝑛+1, 𝑥𝑛+1, 𝑥𝑛+1)
+ 𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2))} = max {𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) ,
𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) , 12𝐺 (𝑥𝑛, 𝑥𝑛+2, 𝑥𝑛+2) ,
1
3 (𝐺 (𝑥𝑛, 𝑥𝑛+2, 𝑥𝑛+2) + 𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2))}
= max {𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) , 𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2)} .

(by (𝐺5)) .
(7)

If 𝑁(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2), then it follows
from (4) that

𝜃 (𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2)) = 𝜃 (𝐺 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1, 𝑇𝑥𝑛+1))
≤ 𝜙 [𝜃 (𝑁 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))]
= 𝜙 [𝜃 (𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2))]
< 𝜃 (𝐺 (𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2)) , (by Lemma 1) ,

(8)

which is a contradiction. Hence, for ∀𝑛 ∈ 𝑁,

𝑁(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) . (9)

Thus, (4) becomes

𝜃 (𝐺 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1, 𝑇𝑥𝑛+1))
≤ 𝜙 [𝜃 (𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))] . (10)

Repeating this process, we get

𝜃 (𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)) = 𝜃 (𝐺 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛, 𝑇𝑥𝑛))
≤ 𝜙 [𝜃 (𝐺 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛))]
≤ 𝜙2 [𝜃 (𝐺 (𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛−1))]
≤ 𝜙3 [𝜃 (𝐺 (𝑥𝑛−3, 𝑥𝑛−2, 𝑥𝑛−2))]
≤ ⋅ ⋅ ⋅ ≤ 𝜙𝑛 [𝜃 (𝐺 (𝑥0, 𝑥1, 𝑥1))] .

(11)

By the definition of 𝜃 and (Φ2), we have
lim
𝑛→∞

𝜙𝑛 [𝜃 (𝐺 (𝑥0, 𝑥1, 𝑥1))] = 1. (12)

By (Θ2), we obtain
lim
𝑛→∞

𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0. (13)

Thus, {𝑥𝑛} is an asymptotically regular sequence.

In what follows, we shall prove that {𝑥𝑛} is a Cauchy
sequence in𝑋.

Suppose, on the contrary, that, by Lemma 8, there exist a
positive real number 𝜀0 > 0 and two subsequences {𝑥𝑛(𝑘)} and{𝑥𝑚(𝑘)} of {𝑥𝑛} such that, for all 𝑘 ∈ 𝑁,

𝑘 ≤ 𝑛 (𝑘) < 𝑚 (𝑘) < 𝑛 (𝑘 + 1) ,
𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)−1) ≤ 𝜀0
< 𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) ,

(14)

and also, for all given 𝑝1 = 𝑝2 = 𝑝3 ∈ 𝑍,
lim
𝑘→∞

𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘))
= lim
𝑘→∞

𝐺(𝑥𝑛(𝑘)+𝑝1 , 𝑥𝑚(𝑘)+𝑝2 , 𝑥𝑚(𝑘)+𝑝3) = 𝜀0.
(15)

Pick 𝑘 large enough, by (13), (15), and Lemma 9,

𝑁(𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) = max {𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) ,
𝐺 (𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1) , 𝐺 (𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘)+1) ,
1
2𝐺 (𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+2, 𝑥𝑛(𝑘)+2) ,

1
2

⋅ 𝐺 (𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘)+1) , 12
⋅ 𝐺 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1) ,
1
3 (𝐺 (𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1)
+ 𝐺 (𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘)+1)
+ 𝐺 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1))}
= max {𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) , 12
⋅ 𝐺 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1)}
≤ max {𝐺 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) ,
𝐺 (𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))} 󳨀→

𝜀0, (as 𝑘 󳨀→ ∞) .

(16)

Using the contractivity condition (4),

𝜃 (𝐺 (𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘)+1))
= 𝜃 (𝐺 (𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)))
≤ 𝜙 [𝜃 (𝑁 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘), 𝑥𝑚(𝑘)))] .

(17)

Passing to limit as 𝑘 → ∞, then we get𝜃(𝜀0) ≤ 𝜙[𝜃(𝜀0)]. By Lemma 1, 𝜙[𝜃(𝜀0)] < 𝜃(𝜀0), then𝜃(𝜀0) ≤ 𝜙[𝜃(𝜀0)] < 𝜃(𝜀0), which is a contradiction. Thus, {𝑥𝑛}
is a Cauchy sequence in 𝑋.
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Taking into account the fact that (𝑋, 𝐺) is complete, there
exists 𝑥∗ ∈ 𝑋 such that {𝑥𝑛} converges to 𝑥∗. In particular,

lim
𝑛→∞

𝐺 (𝑥𝑛, 𝑥∗, 𝑥∗) = 0. (18)

Using the fact that 𝐺 is continuous on each variable,

𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) = lim
𝑛→∞

𝐺 (𝑥𝑛+1, 𝑇𝑥∗, 𝑇𝑥∗) . (19)

We claim that 𝑥∗ is a fixed point of 𝑇. Suppose, on the
contrary, if 𝑥∗ ̸= 𝑇𝑥∗, then by (18), (19),

𝑁(𝑥𝑛, 𝑥∗, 𝑥∗) = max {𝐺 (𝑥𝑛, 𝑥∗, 𝑥∗) ,
𝐺 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) , 𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) ,
𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) , 12 (𝐺 (𝑥𝑛, 𝑇𝑥∗, 𝑇𝑥∗)) ,

1
2

⋅ 𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) , 12𝐺 (𝑥∗, 𝑥𝑛+1, 𝑥𝑛+1) ,
1
3 (𝐺 (𝑥𝑛, 𝑇𝑥∗, 𝑇𝑥∗) + 𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗)
+ 𝐺 (𝑥∗, 𝑥𝑛+2, 𝑥𝑛+2))} 󳨀→

𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) , (as 𝑛 → ∞) .

(20)

Using the contractivity condition (4),

𝜃 (𝐺 (𝑥𝑛+1, 𝑇𝑥∗, 𝑇𝑥∗)) = 𝜃 (𝐺 (𝑇𝑥𝑛, 𝑇𝑥∗, 𝑇𝑥∗))
≤ 𝜙 [𝜃 (𝑁 (𝑥𝑛, 𝑥∗, 𝑥∗))] . (21)

Passing to limit as 𝑛 → ∞, then we have

𝜃 (𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗)) ≤ 𝜙 [𝜃 (𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗))] . (22)

By Lemma 1, 𝜙[𝜃(𝐺(𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗))] <𝜃(𝐺(𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗)). Then

𝜃 (𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗)) ≤ 𝜙 [𝜃 (𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗))]
< 𝜃 (𝐺 (𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗)) , (23)

which is a contradiction. As a consequence, we conclude that𝑇𝑥∗ = 𝑥∗.
Now, we will prove that 𝑇 has at most one fixed point.

Suppose, on the contrary, that there exists another distinct
fixed point 𝑦∗ of 𝑇 such that 𝑇𝑥∗ = 𝑥∗ ̸= 𝑇𝑦∗ = 𝑦∗.
Therefore, 𝐺(𝑇𝑥∗, 𝑇𝑦∗, 𝑇𝑦∗) = 𝐺(𝑥∗, 𝑦∗, 𝑦∗) > 0, and𝑁(𝑥∗, 𝑦∗, 𝑦∗) = 𝐺(𝑥∗, 𝑦∗, 𝑦∗), and then by (4)

𝜃 (𝐺 (𝑥∗, 𝑦∗, 𝑦∗)) = 𝜃 (𝐺 (𝑇𝑥∗, 𝑇𝑦∗, 𝑇𝑦∗))
≤ 𝜙 [𝜃 (𝑁 (𝑥∗, 𝑦∗, 𝑦∗))]
= 𝜙 [𝜃 (𝐺 (𝑥∗, 𝑦∗, 𝑦∗))] ,

(24)

and by Lemma 1, 𝜃(𝐺(𝑥∗, 𝑦∗, 𝑦∗)) ≤ 𝜙[𝜃(𝐺(𝑥∗, 𝑦∗, 𝑦∗))] <𝜃(𝐺(𝑥∗, 𝑦∗, 𝑥∗)), which is a contradiction. Therefore, the
fixed point of 𝑇 is unique.

Theorem 12. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ
and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤ 𝜙 [𝜃 (𝑁 (𝑥, 𝑦, 𝑦))] , (25)

where

𝑁(𝑥, 𝑦, 𝑦) = max {𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) ,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) , 12𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥) ,

1
3 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦)

+ 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))} .
(26)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the
sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.

The followingTheorem 13 is the main result of [5].

Theorem 13 (see [5]). Let (𝑋, 𝐺) be a complete𝐺-metric space
and let 𝑇 : 𝑋 → 𝑋 be a self-mapping which satisfies the
following condition, for all 𝑥,𝑦 ∈ 𝑋,
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ max {𝑎𝐺 (𝑥, 𝑦, 𝑦) ,
𝑏 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 2𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)) ,
𝑏 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))} ,

(27)

where 0 ≤ 𝑎 < 1 and 0 ≤ 𝑏 < 1/3. Then 𝑇 has a unique fixed
point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗ for
every 𝑥 ∈ 𝑋.
Proof. Let 𝜆 = max{𝑎, 3𝑏}; then 0 ≤ 𝜆 < 1. And let 𝜃(𝑡) = 𝑒𝑡,
𝜙(𝑡) = 𝑡𝜆; then 𝜃 ∈ Θ and 𝜙 ∈ Φ. Since
max {𝑎𝐺 (𝑥, 𝑦, 𝑦) , 𝑏 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 2𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)) ,
𝑏 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))}
≤ 𝜆max {𝐺 (𝑥, 𝑦, 𝑦) ,
1
3 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 2𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)) ,
1
3 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))}
≤ 𝜆max {𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) , 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) ,
1
3 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))}
≤ 𝜆𝑁 (𝑥, 𝑦, 𝑦) .

(28)
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Therefore,

𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) = 𝑒𝐺(𝑇𝑥,𝑇𝑦,𝑇𝑦) ≤ 𝑒𝜆𝑁(𝑥,𝑦,𝑦)
= (𝑒𝑁(𝑥,𝑦,𝑦))𝜆
= 𝜙 (𝜃 (𝑁 (𝑥, 𝑦, 𝑦))) .

(29)

From Theorem 12, we can see that 𝑇 has a unique fixed
point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗
for every 𝑥 ∈ 𝑋.

The followingTheorem 14 is the main result of [6].

Theorem 14 (see [6]). Let (𝑋, 𝐺) be a complete𝐺-metric space
and let 𝑇 : 𝑋 → 𝑋 be a self-mapping which satisfies the
following condition, for all 𝑥, 𝑦 ∈ 𝑋,
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝑘max {𝐺 (𝑥, 𝑦, 𝑧) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) ,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) , 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧) , 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) ,
𝐺 (𝑦, 𝑇𝑧, 𝑇𝑧) , 𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥)} ,

(30)

where 0 ≤ 𝑘 < 1/2. Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋
such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Proof. Let 𝜆 = 2𝑘; then 0 ≤ 𝜆 < 1. And let 𝜃(𝑡) = 𝑒𝑡, 𝜙(𝑡) = 𝑡𝜆;
then 𝜃 ∈ Θ and 𝜙 ∈ Φ. Since
𝑘max {𝐺 (𝑥, 𝑦, 𝑧) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) , 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) ,
𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧) , 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) , 𝐺 (𝑦, 𝑇𝑧, 𝑇𝑧) ,
𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥)} = 𝜆 max {12𝐺 (𝑥, 𝑦, 𝑧) ,

1
2

⋅ 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) , 12𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) ,
1
2𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧) ,

1
2

⋅ 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) , 12𝐺 (𝑦, 𝑇𝑧, 𝑇𝑧) ,
1
2𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥)}

≤ 𝜆𝑁 (𝑥, 𝑦, 𝑧) ,

(31)

therefore,

𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)) = 𝑒𝐺(𝑇𝑥,𝑇𝑦,𝑇𝑧) ≤ 𝑒𝜆𝑁(𝑥,𝑦,𝑧)
= (𝑒𝑁(𝑥,𝑦,𝑧))𝜆
= 𝜙 (𝜃 (𝑁 (𝑥, 𝑦, 𝑧))) .

(32)

From Theorem 11, we can see that 𝑇 has a unique fixed
point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗
for every 𝑥 ∈ 𝑋.
Theorem 15. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ
and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)) ≤ 𝜙 [𝜃 (𝐺 (𝑥, 𝑦, 𝑧))] . (33)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Theorem 16 (see [4]). Let (𝑋, 𝐺) be a complete𝐺-metric space
and let 𝑇 : 𝑋 → 𝑋 be a self-mapping such that there exists𝜆 ∈ [0, 1) satisfying, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜆𝐺 (𝑥, 𝑦, 𝑧) . (34)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the
sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Proof. Let 𝜃(𝑡) = 𝑒𝑡, 𝜙(𝑡) = 𝑡𝜆; then 𝜃 ∈ Θ and 𝜙 ∈ Φ.
𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜆𝐺(𝑥, 𝑦, 𝑧) is equivalent to 𝑒𝐺(𝑇𝑥,𝑇𝑦,𝑇𝑦) ≤

𝑒𝜆𝐺(𝑥,𝑦,𝑧) = (𝑒𝐺(𝑥,𝑦,𝑧))𝜆; that is, 𝜃(𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧)) ≤𝜙(𝜃(𝐺(𝑥, 𝑦, 𝑧))).
From Theorem 15, we can see that 𝑇 has a unique fixed

point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗
for every 𝑥 ∈ 𝑋.
Corollary 17. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ
and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤ 𝜙 [𝜃 (𝐺 (𝑥, 𝑦, 𝑦))] . (35)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 18. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping such that there exists 𝜆 ∈ [0, 1)
satisfying, for any 𝑥, 𝑦 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ 𝜆𝐺 (𝑥, 𝑦, 𝑦) . (36)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the
sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 19. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ
and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧))
≤ 𝜙 [𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧)3 )] .

(37)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 20. Let (𝑋, 𝐺) be a complete𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping such that there exists 𝜆 ∈ [0, 1)
satisfying, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)
≤ 𝜆(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧)3 ) . (38)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
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Corollary 21. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ̸= 0,
we have

𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦))
≤ 𝜙 [𝜃(max{𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 , 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧)2 , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧)2 })] . (39)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the
sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 22. Let (𝑋, 𝐺) be a complete𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping which satisfies the following
condition, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝑘max {𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥)
+ 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) , 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)
+ 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧) , 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑧, 𝑇𝑧, 𝑇𝑧)} ,

(40)

where 0 ≤ 𝑘 < 1/2. Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋
such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 23. Let (𝑋, 𝐺) be a complete𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there exist 𝜃 ∈ Θ
and 𝜙 ∈ Φ such that, for any 𝑥, 𝑦 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ̸= 0 󳨐⇒
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦))
≤ 𝜙 [𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 )] .

(41)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Corollary 24. Let (𝑋, 𝐺) be a complete𝐺-metric space and let𝑇 : 𝑋 → 𝑋 be a self-mapping such that there exists 𝜆 ∈ [0, 1)
satisfying, for any 𝑥, 𝑦 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)
≤ 𝜆(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 ) . (42)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Theorem25 (see [9]). Let (𝑋, 𝐺) be a complete𝐺-metric space
and let 𝑇 : 𝑋 → 𝑋 be a mapping such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜑 (𝐺 (𝑥, 𝑦, 𝑧)) , (43)

where 𝜑 : [0,∞) → [0,∞) is an increasing continuous func-
tion such that lim𝑛→∞𝜑𝑛(𝑡) = 0 for 𝑡 > 0.

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 and for every 𝑥 ∈𝑋 the sequence {𝑇𝑛𝑥} converges to 𝑥∗.

Proof. Let 𝜃(𝑡) = 𝑒𝑡 for all 𝑡 ∈ [0, +∞), and 𝜙(𝑡) = 𝑒𝜑(ln 𝑡) for
all 𝑡 ∈ [1, +∞).

Obviously, 𝜃 ∈ Θ, 𝜙 ∈ Φ.
By the definition of 𝜙, we have 𝜙(𝑒𝑡) = 𝑒𝜑(𝑡).
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)) = 𝑒𝐺(𝑇𝑥,𝑇𝑦,𝑇𝑧) ≤ 𝑒𝜑(𝐺(𝑥,𝑦,𝑧))

= 𝜙 [𝑒𝐺(𝑥,𝑦,𝑧)]
= 𝜙 [𝜃 (𝐺 (𝑥, 𝑦, 𝑧))] .

(44)

Therefore, fromTheorem 15, 𝑇 has a unique fixed point 𝑥∗ ∈𝑋 and for every 𝑥 ∈ 𝑋 the sequence {𝑇𝑛𝑥} converges to 𝑥∗.

Remark 26. In [9], the function 𝜑 is not required to be
continuous. But due to Theorem 1 of [16] and item 4.2.3 of
[11], we can suppose that 𝜑 is continuous.

Falt = {𝜑 : [0,∞) → [0,∞) | 𝜑 is continuous and non-
decreasing, 𝜑(𝑡) = 0 ⇔ 𝑡 = 0}, and

F󸀠alt = {𝜔 : [0,∞) → [0,∞) | 𝜔 is lower semicontin-
uous, 𝜔(𝑡) = 0 ⇔ 𝑡 = 0}.
Theorem 27 (see [11]). Let (𝑋, 𝐺) be a complete 𝐺-metric
space and let 𝑇 : 𝑋 → 𝑋 be a self-mapping. Assume that there
exist 𝜑 ∈ F𝑎𝑙𝑡 and 𝜔 ∈ F󸀠𝑎𝑙𝑡 such that, for any 𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤ 𝜑 (𝐺 (𝑥, 𝑦, 𝑦))
− 𝜔 (𝐺 (𝑥, 𝑦, 𝑦)) . (45)

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
Proof. Due to Theorem 1 of [16] and item 4.2.3 of [11], the
condition where there exist 𝜑 ∈ Falt and 𝜔 ∈ F󸀠alt such
that, for any 𝑥, 𝑦 ∈ 𝑋, 𝜑(𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤ 𝜑(𝐺(𝑥, 𝑦, 𝑦)) −𝜔(𝐺(𝑥, 𝑦, 𝑦)) is equivalent to the condition where there exist𝑎 ∈ [0, 1) and 𝜓 ∈ Falt such that, for any 𝑥, 𝑦 ∈ 𝑋, 𝜓(𝐺(𝑇𝑥,
𝑇𝑦, 𝑇𝑦)) ≤ 𝑎𝜓(𝐺(𝑥, 𝑦, 𝑦)). Let 𝜃(𝑡) = 𝑒𝜓(𝑡), 𝜙(𝑡) = 𝑡𝑎; then 𝜃 ∈Θ and 𝜙 ∈ Φ. 𝜓(𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤ 𝑎𝜓(𝐺(𝑥, 𝑦, 𝑦)) is equiva-
lent to 𝑒𝜓(𝐺(𝑇𝑥,𝑇𝑦,𝑇𝑦)) ≤ 𝑒𝑎𝜓(𝐺(𝑥,𝑦,𝑦)); that is, 𝜃(𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) ≤𝜙[𝜃(𝐺(𝑥, 𝑦, 𝑦))].

FromTheorem 15, 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 and
for every 𝑥 ∈ 𝑋 the sequence {𝑇𝑛𝑥} converges to 𝑥∗.
Remark 28. According to fixed point theory of metric spaces,
we divide contractions into different type in the setting
of 𝐺-metrics. Then Theorem 16 and Corollary 18 belong to
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Banach type, Corollaries 19–24Kannan type [17],Theorem 25
Browder type [18], and Theorem 27 Choudhury type. To
some extent, our results unify them.

3. Example

In this section, we give an example to illustrate our results.

Example 29. Let 𝑋 = {0, ±1, ±2, . . .} be endowed with the 𝐺-
metric 𝐺(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥| for all 𝑥, 𝑦,𝑧 ∈ 𝑋.Then (𝑋, 𝐺) is a complete 𝐺-metric space. Define the
mapping 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 =
{{{{{{{{{

0, if 𝑥 = 0;
− (𝑛 − 1) , if 𝑥 = 𝑛;
𝑛 − 1, if 𝑥 = −𝑛.

(46)

At first, we observe thatTheorems 16, 25, and 27 cannot be
applied since for all 𝑥 = 𝑛 > 𝑦 = 𝑧 = 𝑚 > 2, 𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) =𝐺(𝑇𝑛, 𝑇𝑚, 𝑇𝑚) = 2𝑛 − 2𝑚 = 𝐺(𝑛,𝑚,𝑚).

AndTheorem 13 cannot be applied too. In fact, let 𝑥 = 𝑛,𝑦 = 𝑧 = 0; then 𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) = 𝐺(𝑇𝑛, 𝑇0, 𝑇0) = 2𝑛 − 2,
while

max {𝑎𝐺 (𝑥, 𝑦, 𝑦) , 𝑏 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 2𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)) ,
𝑏 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))}
= max {𝑎𝐺 (𝑛, 0, 0) , 𝑏 (𝐺 (𝑛, − (𝑛 − 1) , − (𝑛 − 1))
+ 0) , 𝑏 (𝐺 (𝑛, 0, 0) + 𝐺 (0, 𝑇0, 𝑇0)
+ 𝐺 (0, − (𝑛 − 1) , − (𝑛 − 1)))} = max {2𝑎𝑛, 𝑏 (4𝑛
− 2)} ≤ max {2𝑎𝑛, 4𝑛 − 23 } ,

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ max {𝑎𝐺 (𝑥, 𝑦, 𝑦) , 𝑏 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥)
+ 2𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)) , 𝑏 (𝐺 (𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)
+ 𝐺 (𝑦, 𝑇𝑥, 𝑇𝑥))} ,

(47)

is equivalent to 2𝑛 − 2 ≤ max{2𝑎𝑛, (4𝑛 − 2)/3}.
Since 2𝑛−2 ≤ max{2𝑎𝑛, (4𝑛−2)/3} for all 𝑛 ∈ 𝑁, we have𝑎 = 1, which yields a contradiction since 𝑎 < 1.
By the same way, we can see that Theorem 14 cannot be

applied.
Now, let the function 𝜃 : (0,∞) → (1,∞) be defined by

𝜃 (𝑡) = 5𝑡. (48)

And define 𝜙 : [1,∞) → [1,∞) by

𝜙 (𝑡) = {{{
1, if 1 ≤ 𝑡 ≤ 2;
𝑡 − 1, if 𝑡 ≥ 2. (49)

Obviously, 𝜃 ∈ Θ, 𝜙 ∈ Φ.
Inwhat follows,we prove that𝑇 is some 𝜃−𝜙Kannan-type

contraction; that is, 𝑇 satisfies the condition of Corollary 23.
We consider three cases.

Case 1 (𝑥 = 𝑛 ≥ 1, 𝑦 = 0 or 𝑥 = −𝑛 (𝑛 ≥ 1), 𝑦 = 0). In this
case, we have

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) = 2 (𝑛 − 1) ,
𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) = 2 (2𝑛 − 1) ,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) = 0,
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) = 𝜃 (2𝑛 − 2) = 52𝑛−2,
𝜙 (𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 ))

= 𝜙(𝜃 (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥)2 )) = 𝜙 (𝜃 (2𝑛 − 1))
= 𝜙 (52𝑛−1) = 52𝑛−1 − 1 = 5 × 52(𝑛−1) − 1 ≥ 52(𝑛−1)
= 𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) .

(50)

Case 2 (𝑥 = 𝑛 > 𝑦 = 𝑚 ≥ 1 or 𝑥 = −𝑛 < 𝑦 = −𝑚 ≤ −1). In
this case, we have

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) = 2𝑛 − 2𝑚,
𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) = 4𝑛 − 2,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) = 4𝑚 − 2,
𝜙(𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 ))
= 𝜙 (𝜃 (2𝑛 + 2𝑚 − 2)) = 𝜙 (52𝑛+2𝑚−2)
= 54𝑚−2 × 52𝑛−2𝑚 − 1 ≥ 52𝑛−2𝑚
= 𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)) .

(51)

Case 3 (𝑥 = 𝑛, 𝑦 = −𝑚, 𝑛 > 𝑚 ≥ 1 or 𝑥 = −𝑛, 𝑦 = 𝑚,𝑛 > 𝑚 ≥ 1). In this case, we have

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) = 2𝑛 + 2𝑚 − 4,
𝐺 (𝑥, 𝑇𝑥, 𝑇𝑋) = 4𝑛 − 2,
𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦) = 4𝑚 − 2,
𝜙(𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 ))
= 𝜙 (𝜃 (2𝑛 + 2𝑚 − 2)) = 𝜙 (52𝑛+2𝑚−2)
= 25 × 52𝑛+2𝑚−4 − 1 ≥ 52𝑛+2𝑚−4 = 𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦)) .

(52)

Therefore, we have for all 𝑥, 𝑦 ∈ 𝑋
𝜃 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦))
≤ 𝜙 [𝜃(𝐺 (𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑦, 𝑇𝑦, 𝑇𝑦)2 )] . (53)

Thus, 𝑇 is a 𝜃 − 𝜙 Kannan-type contraction.
So all the hypotheses of Corollary 23 are satisfied, thus 𝑇

has a fixed point. In this example 𝑥 = 0 is the fixed point.
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