
Research Article
Hermite-Hadamard Type Integral Inequalities for
Functions Whose Second-Order Mixed Derivatives Are
Coordinated (𝑠, 𝑚)-𝑃-Convex

Yu-Mei Bai,1 Shan-HeWu ,2 and YingWu1

1College of Mathematics, Inner Mongolia University for Nationalities, Tongliao,
Inner Mongolia Autonomous Region 028043, China
2Department of Mathematics, Longyan University, Longyan, Fujian 364012, China

Correspondence should be addressed to Shan-He Wu; shanhewu@gmail.com

Received 29 October 2017; Accepted 11 January 2018; Published 6 February 2018

Academic Editor: Adrian Petrusel

Copyright © 2018 Yu-Mei Bai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are
coordinated (𝑠, 𝑚)-𝑃-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the
hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the
Hermite-Hadamard type inequalities for coordinated (𝑠, 𝑚)-𝑃-convex functions in an earlier article.

1. Introduction

Let 𝑓 : 𝐼 → R be a convex mapping. Then for any 𝑎, 𝑏 ∈ 𝐼
with 𝑎 < 𝑏, we have the following double inequality:

𝑓(𝑎 + 𝑏2 ) ≤ 1𝑏 − 𝑎 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 ≤ 𝑓 (𝑎) + 𝑓 (𝑏)2 . (1)

This celebrated inequality is known in the literature as the
Hermite-Hadamard inequality. As we all know, some of the
classical inequalities for means can be derived from (1) for
appropriate particular selections of the mapping 𝑓. Indeed,
Hermite-Hadamard’s inequality (1) has already found many
applications in mathematical analysis and optimization (see,
for example, [1–9]).

In recent years, the applications of various properties
of extended convex functions in establishing and improv-
ing Hermite-Hadamard type inequalities have attracted the
attention of many researchers (see [10–15] and references
cited therein).

In [16], Wu et al. established some Hermite-Hadamard
type inequalities under the assumption that the function 𝑓
is a coordinated (𝑠, 𝑚)-𝑃-convex function. Motivated by the
ideas of work [16], in this paper we study Hermite-Hadamard

type inequalities related to the convexity of second-order
mixed derivatives of 𝑓. More precisely, we focus on estab-
lishing some new Hermite-Hadamard type inequalities for
functions whose second-order mixed derivatives are coordi-
nated (𝑠, 𝑚)-𝑃-convex. For convenience of our discussions in
subsequent sections, we begin with recalling some relevant
definitions.

Definition 1. A function 𝑓 : 𝐼 ⊆ R → R is said to be convex
function if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) (2)

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].
Definition 2 (see [5]). We say that a map 𝑓 : 𝐼 ⊆ R → R

belongs to the class𝑃(𝐼) if it is nonnegative and for all 𝑥, 𝑦 ∈ 𝐼
and 𝑡 ∈ [0, 1] satisfies the following inequality:

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) . (3)

In [17], the concept of 𝑚-convex functions was intro-
duced as follows.
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Definition 3 (see [17]). For 𝑓 : [0, 𝑏] ⊆ R0 = [0, +∞) → R

and𝑚 ∈ (0, 1], if
𝑓 (𝑡𝑥 + 𝑚 (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + 𝑚 (1 − 𝑡) 𝑓 (𝑦) (4)

is valid for all 𝑥, 𝑦 ∈ [0, 𝑏] and 𝑡 ∈ [0, 1], then we say that 𝑓 is
a𝑚-convex function on [0, 𝑏].

In [18], the concept of 𝑠-convex functions was presented
as follows.

Definition 4 (see [18]). Let 𝑠 ∈ (0, 1]. A function 𝑓 : 𝐼 ⊆ R →
R is said to be 𝑠-convex (in the second sense) if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑠𝑓 (𝑥) + (1 − 𝑡)𝑠 𝑓 (𝑦) (5)

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].
Definition 5 (see [19]). For (𝑠, 𝑚) ∈ (0, 1] × (0, 1], a function𝑓 : [0, 𝑏] → R is said to be (𝑠, 𝑚)-convex if

𝑓 (𝑡𝑥 + 𝑚 (1 − 𝑡) 𝑦) ≤ 𝑡𝑠𝑓 (𝑥) + 𝑚 (1 − 𝑡)𝑠 𝑓 (𝑦) (6)

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].
Definition 6 (see [20]). For some 𝑠 ∈ [−1, 1], a function 𝑓 :𝐼 ⊆ R → R is said to be extended 𝑠-convex if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑠𝑓 (𝑥) + (1 − 𝑡)𝑠 𝑓 (𝑦) (7)

is valid for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ (0, 1).
Dragomir [21] and Dragomir and Pearce [22] considered

the convexity of a function on the coordinates and put
forward the following definition.

Definition 7 (see [21, 22]). A function 𝑓 : Δ = [𝑎, 𝑏] × [𝑐, 𝑑] ⊆
R2 → R is said to be convex on the coordinates on Δ with𝑎 < 𝑏 and 𝑐 < 𝑑 if the partial functions

𝑓𝑦 : [𝑎, 𝑏] → R,
𝑓𝑦 (𝑢) = 𝑓 (𝑢, 𝑦) ,

𝑓𝑥 : [𝑐, 𝑑] → R,
𝑓𝑥 (V) = 𝑓 (𝑥, V) ,

(8)

are convex for all 𝑥 ∈ (𝑎, 𝑏) and 𝑦 ∈ (𝑐, 𝑑).
It should be noted that a formal definition for coordinated

convex functions is stated as follows.

Definition 8 (see [21, 22]). A function 𝑓 : Δ = [𝑎, 𝑏] × [𝑐, 𝑑] ⊆
R2 → R is said to be convex on the coordinates on Δ with𝑎 < 𝑏 and 𝑐 < 𝑑 if the partial function

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑧, 𝜆𝑦 + (1 − 𝜆)𝑤)
≤ 𝑡𝜆𝑓 (𝑥, 𝑦) + 𝑡 (1 − 𝜆) 𝑓 (𝑥, 𝑤) + (1 − 𝑡) 𝜆𝑓 (𝑧, 𝑦)
+ (1 − 𝑡) (1 − 𝜆) 𝑓 (𝑧, 𝑤)

(9)

holds for all 𝑡, 𝜆 ∈ [0, 1], (𝑥, 𝑦), (𝑧, 𝑤) ∈ Δ.

Definition 9 (see [16]). For some 𝑚 ∈ (0, 1] and 𝑠 ∈ [−1, 1],
a function 𝑓 : [0, 𝑏] × [𝑐, 𝑑] → R is said to be coordinated(𝑠, 𝑚)-𝑃-convex on [0, 𝑏] × [𝑐, 𝑑] with 0 < 𝑏 and 𝑐 < 𝑑, if

𝑓 (𝑡𝑥 + 𝑚 (1 − 𝑡) 𝑧, 𝜆𝑦 + (1 − 𝜆)𝑤)
≤ 𝑡𝑠 [𝑓 (𝑥, 𝑦) + 𝑓 (𝑥, 𝑤)]
+ 𝑚 (1 − 𝑡)𝑠 [𝑓 (𝑧, 𝑦) + 𝑓 (𝑧, 𝑤)]

(10)

holds for all 𝑡 ∈ (0, 1), 𝜆 ∈ [0, 1] and (𝑥, 𝑦), (𝑧, 𝑤) ∈ [0, 𝑏] ×[𝑐, 𝑑].
Dragomir [21] and Dragomir and Pearce [22] established

the following result.

Theorem 10 (see [21, 22]). Let 𝑓 : Δ = [𝑎, 𝑏]× [𝑐, 𝑑] be convex
on the coordinates on Δ = [𝑎, 𝑏] × [𝑐, 𝑑] with 𝑎 < 𝑏 and 𝑐 < 𝑑.
Then, one has the inequalities:

𝑓(𝑎 + 𝑏2 , 𝑐 + 𝑑2 ) ≤ 12 [ 1𝑏 − 𝑎 ∫
𝑏

𝑎
𝑓(𝑥, 𝑐 + 𝑑2 )𝑑𝑥

+ 1𝑑 − 𝑐 ∫
𝑑

𝑐
𝑓(𝑎 + 𝑏2 , 𝑦) 𝑑𝑦] ≤ 1(𝑏 − 𝑎) (𝑑 − 𝑐)

⋅ ∫𝑏
𝑎
∫𝑑
𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

≤ 14 [ 1𝑏 − 𝑎 (∫
𝑏

𝑎
𝑓 (𝑥, 𝑐) 𝑑𝑥 + ∫𝑏

𝑎
𝑓 (𝑥, 𝑑) 𝑑𝑥)

+ 1𝑑 − 𝑐 (∫
𝑑

𝑐
𝑓 (𝑎, 𝑦) 𝑑𝑦 + ∫𝑑

𝑐
𝑓 (𝑏, 𝑦) 𝑑𝑦)]

≤ 𝑓 (𝑎, 𝑐) + 𝑓 (𝑏, 𝑐) + 𝑓 (𝑎, 𝑑) + 𝑓 (𝑏, 𝑑)4 .

(11)

In this paper, we shall establish some new integral
inequalities of Hermite-Hadamard type for coordinated(𝑠, 𝑚)-𝑃-convex functions.
2. Lemma

Lemma 11 (see [23]). If 𝑓 : Δ = [𝑎, 𝑏] × [𝑐, 𝑑] ⊆ R2 → R

has partial derivatives and 𝜕2𝑓/𝜕𝑥𝜕𝑦 ∈ 𝐿1(Δ) with 𝑎 < 𝑏 and𝑐 < 𝑑, then

𝑃 (𝑎, 𝑏, 𝑐, 𝑑) ≜ 1(𝑏 − 𝑎) (𝑑 − 𝑐) ∫
𝑏

𝑎
∫𝑑
𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

+ 𝑓(𝑎 + 𝑏2 , 𝑐 + 𝑑2 ) − 1𝑏 − 𝑎 ∫
𝑏

𝑎
𝑓(𝑥, 𝑐 + 𝑑2 )𝑑𝑥
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− 1𝑑 − 𝑐 ∫
𝑑

𝑐
𝑓(𝑎 + 𝑏2 , 𝑦) 𝑑𝑦 = (𝑏 − 𝑎) (𝑑 − 𝑐)

⋅ ∫1
0
∫1
0
𝐾 (𝑡, 𝜆) 𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑) 𝑑𝑡 𝑑𝜆,
(12)

where

𝐾 (𝑡, 𝜆)

=

{{{{{{{{{{{{{{{{{{{{{{{{{

𝑡𝜆, (𝑡, 𝜆) ∈ [0, 12] × [0, 12] ,
𝑡 (𝜆 − 1) , (𝑡, 𝜆) ∈ [0, 12] × (12 , 1] ,
(𝑡 − 1) 𝜆, (𝑡, 𝜆) ∈ (12 , 1] × [0, 12] ,
(𝑡 − 1) (𝜆 − 1) , (𝑡, 𝜆) ∈ (12 , 1] × (12 , 1] .

(13)

3. Main Results

In this section, we establish some Hermite-Hadamard type
integral inequalities for functions whose second-order mixed
derivatives are coordinated (𝑠, 𝑚)-𝑃-convex on the planeR0×
R.

Theorem 12. Suppose that the function 𝑓 : R0 × R →
R has continuous partial derivatives of the second-order and𝜕2𝑓/𝜕𝑥𝜕𝑦 ∈ 𝐿1([0, 𝑏∗/𝑚] × [𝑐, 𝑑]) with 0 ≤ 𝑎 < 𝑏 ≤ 𝑏∗,𝑐 < 𝑑, for some 𝑚 ∈ (0, 1] and 𝑠 ∈ [−1, 1]. If |𝜕2𝑓/𝜕𝑥𝜕𝑦|𝑞 is
coordinated (𝑠, 𝑚)-𝑃-convex functions on [0, 𝑏∗/𝑚]× [𝑐, 𝑑] for𝑞 ≥ 1, then

(1) if 𝑠 ∈ (−1, 1], we have

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐)23 × 2(𝑠+1)/𝑞 {[ 1𝑠 + 2Δ 1 (𝑞)

+ 𝑚 2𝑠+2 − 𝑠 − 3(𝑠 + 1) (𝑠 + 2)Δ 2 (𝑚, 𝑞)]
1/𝑞

+ [ 2𝑠+2 − 𝑠 − 3(𝑠 + 1) (𝑠 + 2)Δ 1 (𝑞) + 𝑚𝑠 + 2Δ 2 (𝑚, 𝑞)]
1/𝑞} ,

(14)

(2) if s = −1, we have

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐)8
× {[Δ 1 (𝑞) + 𝑚 (2 ln 2 − 1) Δ 2 (𝑚, 𝑞)]1/𝑞

+ [(2 ln 2 − 1) Δ 1 (𝑞) + 𝑚Δ 2 (𝑚, 𝑞)]1/𝑞} ,
(15)

where

Δ 1 (𝑞) =

𝜕2𝑓 (𝑎, 𝑐)𝜕𝑥𝜕𝑦


𝑞 + 

𝜕2𝑓 (𝑎, 𝑑)𝜕𝑥𝜕𝑦

𝑞 ,

Δ 2 (𝑚, 𝑞) =

𝜕2𝑓 (𝑏/𝑚, 𝑐)𝜕𝑥𝜕𝑦


𝑞 + 

𝜕2𝑓 (𝑏/𝑚, 𝑑)𝜕𝑥𝜕𝑦

𝑞 .

(16)

Proof. By Lemma 11 and Hölder’s integral inequality, we have

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐) (∫1
0
∫1
0
|𝐾 (𝑡, 𝜆)| 𝑑𝑡 𝑑𝜆)1−1/𝑞

× {{{
[∫1/2
0

∫1/2
0

𝑡𝜆 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ [∫1
1/2

∫1/2
0

𝑡 (1 − 𝜆) 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ [∫1/2
0

∫1
1/2

(1 − 𝑡) 𝜆 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ [∫1
1/2

∫1
1/2

(1 − 𝑡) (1 − 𝜆) 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞}}}

.

(17)
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A straightforward computation gives

∫1/2
0

𝜆 𝑑𝜆 = ∫1
1/2

(1 − 𝜆) 𝑑𝜆 = 18 ,
∫1/2
0

𝑡𝑠+1𝑑𝑡 = ∫1
1/2

(1 − 𝑡)𝑠+1 𝑑𝑡
= 12𝑠+5 (𝑠 + 2) , for 𝑠 ∈ (−1, 1] ,

∫1/2
0

𝑡 (1 − 𝑡)𝑠 𝑑𝑡 = ∫1
1/2

(1 − 𝑡) 𝑡𝑠𝑑𝑡
= 2𝑠+2 − 𝑠 − 32𝑠+5 (𝑠 + 1) (𝑠 + 2) ,

for 𝑠 ∈ (−1, 1] ,
∫1/2
0

𝑡−1+1𝑑𝑡 = ∫1
1/2

(1 − 𝑡)−1+1 𝑑𝑡 = 12 ,
∫1/2
0

𝑡 (1 − 𝑡)−1 𝑑𝑡 = ∫1
1/2

(1 − 𝑡) 𝑡−1𝑑𝑡 = ln 2 − 12 ,
∫1
0
∫1
0
|𝐾 (𝑡, 𝜆)| 𝑑𝑡 𝑑𝜆 = 116 .

(18)

Now, by using the coordinated (𝑠, 𝑚)-𝑃-convexity of|𝜕2𝑓/𝜕𝑥𝜕𝑦|𝑞, it follows that if −1 < 𝑠 ≤ 1, we have
∫1/2
0

∫1/2
0

𝑡𝜆 
𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)
𝑞 𝑑𝑡 𝑑𝜆

≤ ∫1/2
0

∫1/2
0

𝑡𝜆 [𝑡𝑠Δ 1 (𝑞) + 𝑚 (1 − 𝑡)𝑠
⋅ Δ 2 (𝑚, 𝑞)] 𝑑𝑡 𝑑𝜆 = 12𝑠+5 (𝑠 + 2)Δ 1 (𝑞)
+ 𝑚 (2𝑠+2 − 𝑠 − 3)
2𝑠+5 (𝑠 + 1) (𝑠 + 2)Δ 2 (𝑚, 𝑞) ,

(19)

and if 𝑠 = −1, we have
∫1/2
0

∫1/2
0

𝑡𝜆 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞𝑑𝑡 𝑑𝜆

≤ ∫1/2
0

∫1/2
0

𝑡𝜆 [𝑡−1Δ 1 (𝑞) + 𝑚 (1 − 𝑡)−1 Δ 2 (𝑚, 𝑞)] 𝑑𝑡 𝑑𝜆
= 116 [Δ 1 (𝑞) + 𝑚 (2 ln 2 − 1) Δ 2 (𝑚, 𝑞)] .

(20)

By a similar argument, we obtain

∫1
1/2

∫1/2
0

𝑡 (1 − 𝜆)
⋅ 

𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)

𝑞 𝑑𝑡 𝑑𝜆

≤ 12𝑠+5
× {{{{{

1𝑠 + 2Δ 1 (𝑞) + 𝑚 2𝑠+2 − 𝑠 − 3(𝑠 + 1) (𝑠 + 2)Δ 2 (𝑚, 𝑞) , −1 < 𝑠 ≤ 1,
Δ 1 (𝑞) + 𝑚 (2 ln 2 − 1) Δ 2 (𝑚, 𝑞) , 𝑠 = −1,

∫1/2
0

∫1
1/2

(1 − 𝑡)
⋅ 𝜆 

𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)

𝑞 𝑑𝑡 𝑑𝜆

≤ 12𝑠+5
× {{{

2𝑠+2 − 𝑠 − 3(𝑠 + 1) (𝑠 + 2)Δ 1 (𝑞) + 𝑚𝑠 + 2Δ 2 (𝑚, 𝑞) , −1 < 𝑠 ≤ 1,
(2 ln 2 − 1) Δ 1 (𝑞) + 𝑚Δ 2 (𝑚, 𝑞) , 𝑠 = −1,

∫1
1/2

∫1
1/2

(1 − 𝑡) (1 − 𝜆)
⋅ 

𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)

𝑞 𝑑𝑡 𝑑𝜆

≤ 12𝑠+5
× {{{{{

2𝑠+2 − 𝑠 − 3(𝑠 + 1) (𝑠 + 2)Δ 1 (𝑞) + 𝑚𝑠 + 2Δ 2 (𝑚, 𝑞) , −1 < 𝑠 ≤ 1,
(2 ln 2 − 1) Δ 1 (𝑞) + 𝑚Δ 2 (𝑚, 𝑞) , 𝑠 = −1.

(21)
Applying (18) and inequalities (19)–(21) into inequality (17),
we get (14) and (15). This completes the proof of Theorem 12.

Corollary 13. Under the assumptions of Theorem 12, if 𝑞 = 1,
then

(1) if 𝑠 ∈ (−1, 1], then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)|
≤ (𝑏 − 𝑎) (𝑑 − 𝑐) (2𝑠+1 − 1)

2𝑠+3 (𝑠 + 1) (𝑠 + 2) [Δ 1 (1) + 𝑚Δ 2 (𝑚, 1)] ,
(22)

(2) if 𝑠 = −1, then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)|
≤ (𝑏 − 𝑎) (𝑑 − 𝑐) ln 24 [Δ 1 (1) + 𝑚Δ 2 (𝑚, 1)] . (23)

Corollary 14. Under the assumptions of Theorem 12, if 𝑞 =𝑚 = 1, then
(1) if 𝑠 ∈ (−1, 1], then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐) (2𝑠+1 − 1)

2𝑠+3 (𝑠 + 1) (𝑠 + 2)
× [

𝜕2𝑓 (𝑎, 𝑐)𝜕𝑥𝜕𝑦
 +


𝜕2𝑓 (𝑎, 𝑑)𝜕𝑥𝜕𝑦

 +

𝜕2𝑓 (𝑏, 𝑐)𝜕𝑥𝜕𝑦


+ 

𝜕2𝑓 (𝑏, 𝑑)𝜕𝑥𝜕𝑦
] ,

(24)

(2) if 𝑠 = −1, then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐) ln 24 × [

𝜕2𝑓 (𝑎, 𝑐)𝜕𝑥𝜕𝑦


+ 
𝜕2𝑓 (𝑎, 𝑑)𝜕𝑥𝜕𝑦

 +

𝜕2𝑓 (𝑏, 𝑐)𝜕𝑥𝜕𝑦

 +

𝜕2𝑓 (𝑏, 𝑑)𝜕𝑥𝜕𝑦

] .
(25)
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Furthermore, if 𝑞 = 𝑚 = 1, 𝑠 = 0, then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐)16 × [

𝜕2𝑓 (𝑎, 𝑐)𝜕𝑥𝜕𝑦


+ 
𝜕2𝑓 (𝑎, 𝑑)𝜕𝑥𝜕𝑦

 +

𝜕2𝑓 (𝑏, 𝑐)𝜕𝑥𝜕𝑦

 +

𝜕2𝑓 (𝑏, 𝑑)𝜕𝑥𝜕𝑦

] .
(26)

Theorem 15. Suppose that the function 𝑓 : R0 × R →
R has continuous partial derivatives of the second-order and𝜕2𝑓/𝜕𝑥𝜕𝑦 ∈ 𝐿1([0, 𝑏∗/𝑚] × [𝑐, 𝑑]) with 0 ≤ 𝑎 < 𝑏 ≤ 𝑏∗,𝑐 < 𝑑, and 0 ≤ 𝑟 ≤ 𝑞, −1 < ℓ ≤ 𝑞. If |𝜕2𝑓/𝜕𝑥𝜕𝑦|𝑞 is
coordinated (𝑠, 𝑚)-𝑃-convex functions on [0, 𝑏∗/𝑚]× [𝑐, 𝑑] for
some𝑚 ∈ (0, 1], 𝑠 ∈ (−1, 1], and 𝑞 > 1, then

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐)
[2ℓ (ℓ + 1)]1/𝑞 (

(𝑞 − 1)2
(2𝑞 − 𝑟 − 1) (2𝑞 − ℓ − 1) (12)

(4𝑞−𝑟−ℓ−2)/(𝑞−1))
1−1/𝑞

× {[ Δ 1 (𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1) +
2−𝑠𝑚Δ 2 (𝑚, 𝑞)𝑟 + 1 2𝐹1 (−𝑠, 𝑟 + 1, 𝑟 + 2, 2−1)]

1/𝑞

+ [[𝐵 (𝑟 + 1, 𝑠 + 1) − 2−𝑠2𝐹1 (−𝑟, 𝑠 + 1, 𝑠 + 2, 2−1)] Δ 1 (𝑞)𝑠 + 1 + 𝑚Δ 2 (𝑚, 𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1)]
1/q} ,

(27)

where Δ 1(𝑞) and Δ 2(𝑚, 𝑞) are defined as in (16), and 𝐵(𝛼, 𝛽)
is the beta function defined by

𝐵 (𝛼, 𝛽) = ∫1
0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 𝑑𝑡, 𝛼, 𝛽 > 0, (28)

and 2𝐹1(𝑐, 𝑑, 𝑒, 𝑧) is the hypergeometric function defined by

2𝐹1 (𝑐, 𝑑, 𝑒, 𝑧)
= Γ (𝑒)Γ (𝑑) Γ (𝑒 − 𝑑) ∫

1

0
𝑡𝑑−1 (1 − 𝑡)𝑒−𝑑−1 (1 − 𝑧𝑡)−𝑐 𝑑𝑡 (29)

for 𝑒 > 𝑑 > 0, |𝑧| < 1, 𝑐 ∈ R, 𝑢 > 0.
Proof. Using Lemma 11 and Hölder’s integral inequality, we
obtain

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐){{{
(∫1/2
0

∫1/2
0

𝑡(𝑞−𝑟)/(𝑞−1)𝜆(𝑞−ℓ)/(𝑞−1)𝑑𝑡 𝑑𝜆)1−1/𝑞

× [∫1/2
0

∫1/2
0

𝑡𝑟𝜆ℓ 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ (∫1
1/2

∫1/2
0

𝑡(𝑞−𝑟)/(𝑞−1) (1 − 𝜆)(𝑞−ℓ)/(𝑞−1) 𝑑𝑡 𝑑𝜆)1−1/𝑞

× [∫1
1/2

∫1/2
0

𝑡𝑟 (1 − 𝜆)ℓ 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ (∫1/2
0

∫1
1/2

(1 − 𝑡)(𝑞−𝑟)/(𝑞−1) 𝜆(𝑞−ℓ)/(𝑞−1)𝑑𝑡 𝑑𝜆)1−1/𝑞

× [∫1/2
0

∫1
1/2

(1 − 𝑡)𝑟 𝜆ℓ 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞

+ (∫1
1/2

∫1
1/2

(1 − 𝑡)(𝑞−𝑟)/(𝑞−1) (1 − 𝜆)(𝑞−ℓ)/(𝑞−1) 𝑑𝑡 𝑑𝜆)1−1/𝑞

× [∫1
1/2

∫1
1/2

(1 − 𝑡)𝑟 (1 − 𝜆)ℓ 
𝜕2𝜕𝑥𝜕𝑦𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)


𝑞 𝑑𝑡 𝑑𝜆]1/𝑞}}}

.

(30)
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After some calculations, it follows that

∫1/2
0

∫1/2
0

𝑡(𝑞−𝑟)/(𝑞−1)𝜆(𝑞−ℓ)/(𝑞−1)𝑑𝑡 𝑑𝜆
= ∫1
1/2

∫1/2
0

𝑡(𝑞−𝑟)/(𝑞−1) (1 − 𝜆)(𝑞−ℓ)/(𝑞−1) 𝑑𝑡 𝑑𝜆
= ∫1/2
0

∫1
1/2

(1 − 𝑡)(𝑞−𝑟)/(𝑞−1) 𝜆(𝑞−ℓ)/(𝑞−1)𝑑𝑡 𝑑𝜆
= ∫1
1/2

∫1
1/2

(1 − 𝑡)(𝑞−𝑟)/(𝑞−1) (1 − 𝜆)(𝑞−ℓ)/(𝑞−1) 𝑑𝑡 𝑑𝜆

= (𝑞 − 1)2
(2𝑞 − 𝑟 − 1) (2𝑞 − ℓ − 1) × 2−(4𝑞−𝑟−ℓ−2)/(𝑞−1).

(31)

From the coordinated (𝑠, 𝑚)-𝑃-convexity of |𝜕2𝑓/𝜕𝑥𝜕𝑦|𝑞, we
deduce that

∫1/2
0

∫1/2
0

𝑡𝑟𝜆ℓ 
𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)
𝑞 𝑑𝑡 𝑑𝜆

≤ 2−(ℓ+1)ℓ + 1 ∫1/2
0

𝑡𝑟 [𝑡𝑠Δ 1 (𝑞) + 𝑚 (1 − 𝑡)𝑠

⋅ Δ 2 (𝑚, 𝑞)] 𝑑𝑡 = 2−(ℓ+1)ℓ + 1 [ Δ 1 (𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1)
+ 2−𝑠𝑚Δ 2 (𝑚, 𝑞)𝑟 + 1 2𝐹1 (−𝑠, 𝑟 + 1, 𝑟 + 2, 2−1)] ,

∫1
1/2

∫1/2
0

𝑡𝑟 (1 − 𝜆)ℓ 
𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)
𝑞 𝑑𝑡 𝑑𝜆

≤ 2−(ℓ+1)ℓ + 1 [ Δ 1 (𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1) +
2−𝑠𝑚Δ 2 (𝑚, 𝑞)𝑟 + 1

⋅ 2𝐹1 (−𝑠, 𝑟 + 1, 𝑟 + 2, 2−1)] ,
∫1/2
0

∫1
1/2

(1 − 𝑡)𝑟 𝜆ℓ 
𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)
𝑞 𝑑𝑡 𝑑𝜆

≤ 2−(ℓ+1)ℓ + 1 [[𝐵 (𝑟 + 1, 𝑠 + 1) − 2−𝑠2𝐹1 (−𝑟, 𝑠 + 1, 𝑠
+ 2, 2−1)] × Δ 1 (𝑞)𝑠 + 1 + 𝑚Δ 2 (𝑚, 𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1)] ,

∫1
1/2

∫1
1/2

(1 − 𝑡)𝑟 (1 − 𝜆)ℓ 
𝜕2𝜕𝑥𝜕𝑦

⋅ 𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝜆𝑐 + (1 − 𝜆) 𝑑)
𝑞 𝑑𝑡 𝑑𝜆

≤ 2−(ℓ+1)ℓ + 1 [[𝐵 (𝑟 + 1, 𝑠 + 1) − 2−𝑠2𝐹1 (−𝑟, 𝑠 + 1, 𝑠
+ 2, 2−1)] × Δ 1 (𝑞)𝑠 + 1 + 𝑚Δ 2 (𝑚, 𝑞)2𝑟+𝑠+1 (𝑟 + 𝑠 + 1)] .

(32)

Applying (31) and inequalities (32) into inequality (30),
we get inequality (27). The proof of Theorem 15 is complete.

Corollary 16. Under the assumptions of Theorem 15, if 𝑟 = 0,
then

|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)| ≤ (𝑏 − 𝑎) (𝑑 − 𝑐)
[2𝑠+ℓ+1 (𝑠 + 1) (ℓ + 1)]1/𝑞 (

(𝑞 − 1)2
(2𝑞 − 1) (2𝑞 − ℓ − 1) (12)

(4𝑞−ℓ−2)/(𝑞−1))
1−1/𝑞

× {[Δ 1 (𝑞) + 𝑚 (2𝑠+1 − 1)Δ 2 (𝑚, 𝑞)]1/𝑞 + [(2𝑠+1 − 1)Δ 1 (𝑞) + 𝑚Δ 2 (𝑚, 𝑞)]1/𝑞} .
(33)

In particular, if 𝑟 = ℓ = 0, then
|𝑃 (𝑎, 𝑏, 𝑐, 𝑑)|
≤ (𝑏 − 𝑎) (𝑑 − 𝑐)
[2𝑠+1 (𝑠 + 1)]1/𝑞 (

𝑞 − 12𝑞 − 1 (12)
(2𝑞−1)/(𝑞−1))2(1−1/𝑞)

× {[Δ 1 (𝑞) + 𝑚 (2𝑠+1 − 1)Δ 2 (𝑚, 𝑞)]1/𝑞
+ [(2𝑠+1 − 1)Δ 1 (𝑞) + 𝑚Δ 2 (𝑚, 𝑞)]1/𝑞} .

(34)
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