
Research Article
Free Subspaces of Free Locally Convex Spaces

Saak S. Gabriyelyan1 and Sidney A. Morris 2,3

1Department of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva, Israel
2Faculty of Science and Technology, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia
3Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia

Correspondence should be addressed to Sidney A. Morris; morris.sidney@gmail.com

Received 24 September 2017; Accepted 10 December 2017; Published 24 January 2018

Academic Editor: Hugo Leiva

Copyright © 2018 Saak S. Gabriyelyan and Sidney A.Morris.This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

If 𝑋 and 𝑌 are Tychonoff spaces, let 𝐿(𝑋) and 𝐿(𝑌) be the free locally convex space over 𝑋 and 𝑌, respectively. For general 𝑋
and 𝑌, the question of whether 𝐿(𝑋) can be embedded as a topological vector subspace of 𝐿(𝑌) is difficult. The best results in
the literature are that if 𝐿(𝑋) can be embedded as a topological vector subspace of 𝐿(I), where I = [0, 1], then 𝑋 is a countable-
dimensional compact metrizable space. Further, if𝑋 is a finite-dimensional compact metrizable space, then 𝐿(𝑋) can be embedded
as a topological vector subspace of𝐿(I). In this paper, it is proved that𝐿(𝑋) can be embedded in𝐿(R) as a topological vector subspace
if 𝑋 is a disjoint union of a countable number of finite-dimensional locally compact separable metrizable spaces. This is the case
if 𝑋 = R𝑛, 𝑛 ∈ N. It is also shown that if G and 𝑄 denote the Cantor space and the Hilbert cube IN, respectively, then (i) 𝐿(𝑋) is
embedded in 𝐿(G) if and only if𝑋 is a zero-dimensional metrizable compact space; (ii) 𝐿(𝑋) is embedded in 𝐿(𝑄) if and only if 𝑌
is a metrizable compact space.

1. Introduction

For a Tychonoff space 𝑋, we denote by 𝐿(𝑋), V(𝑋), 𝐹(𝑋),
and 𝐴(𝑋) the free locally convex space, the free topological
vector space, the free topological group, and the free abelian
topological group over 𝑋, respectively. These spaces and
groups always exist and are essentially unique; see [1–5].

Let 𝑋 and 𝑌 be Tychonoff spaces. The questions of
whether 𝐿(𝑋) and V(𝑋) can be embedded as a topological
vector space in 𝐿(𝑌) and V(𝑌), respectively, and whether𝐹(𝑋) and 𝐴(𝑋) can be embedded as a topological group
in 𝐹(𝑌) and 𝐴(𝑌), respectively, have been studied for many
years; see for example [6–8]. The case 𝑌 = I fl [0, 1] was
studied in [7] where the following result is obtained.

Theorem 1 (see [7]). If 𝐾 is a finite-dimensional metric
compact space, then 𝐿(𝐾) is embedded in 𝐿(I) as a topological
vector space.

The proof of this theorem in [7] is nontrivial and uses
the deep and powerful Kolmogorov Superposition Theorem

which answered Hilbert’s 13th Problem. In the last section of
this paper, we give a simpler application of the Kolmogorov
SuperpositionTheorem to obtainTheorem 1.

In this paper we answer similar questions for when I is
replaced with the Cantor spaceG or the Hilbert cube𝑄 = IN.
We determine what Tychonoff spaces 𝑌 are such that 𝐿(𝑌)
can be embedded as a topological vector subspace in 𝐿(G)
and 𝐿(𝑄), respectively.

It is well-known that G is universal for all zero-
dimensional compact metrizable spaces and 𝑄 is universal
for all compact metrizable spaces. So it is straightforward to
prove that if 𝑍 is a compact metrizable space, then 𝐿(𝑍) can
be embedded as a topological vector subspace in 𝐿(𝑄), and if𝑍 is a zero-dimensional compact metrizable space, then 𝐿(𝑍)
can be embedded as a topological vector subspace of 𝐿(G).
Of course both of these embeddings are the natural ones. But
are there other Tychonoff spaces 𝑍 such that 𝐿(𝑍) can be
embedded as a topological vector subspace of 𝐿(𝑄) or 𝐿(G) in
a less natural way? A partial answer to this question was given
in [8] where this was answered in the negative for compact
spaces.
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Theorem 2 (see [8]). If 𝑍 is a compact Hausdorff space, then

(i) 𝐿(𝑍) is embedded as a topological vector subspace of𝐿(𝑄) if and only if 𝑍 is metrizable;
(ii) 𝐿(𝑍) is embedded as a topological vector subspace

of 𝐿(G) if and only if 𝑍 is metrizable and zero-
dimensional.

In Theorem 11 of this paper we prove that the condition
“compact” is unnecessary, more precisely, if 𝐿(𝑍) is embed-
ded in 𝐿(𝑄) or 𝐿(G), then 𝑍must to be compact.

Related questions are as follows: let 𝑌 be a compact
metrizable space and 𝑋 a subspace of 𝑌. What are the
conditions on 𝑋 under which each of the following is true:
(i) 𝐿(𝑋) can be embedded as a topological vector subspace
of 𝐿(𝑌); (ii) V(𝑋) can be embedded as a topological vector
subspace of V(𝑌); 𝐹(𝑋) can be embedded as a topological
subgroup of 𝐹(𝑌); 𝐴(𝑋) can be embedded as a topological
subgroup of 𝐴(𝑌). For the special case 𝑌 = I complete
answers to this question are given in [7, 9].

Theorem3. For a subspace𝑋 of I the following are equivalent:

(i) ([7]) 𝐴(𝑋) is embedded into 𝐴(I) as a topological
subgroup;

(ii) ([9])V(𝑋) is embedded intoV(I) as a topological vector
subspace;

(iii) 𝑋 is locally compact.

In particular, 𝐴(0, 1) can be embedded in 𝐴(I) as a topological
subgroup and V(0, 1) can be embedded in V(I) as a topological
vector subspace.

For the case of free locally convex spaces on compact
metrizable spaces𝑌, ourTheorem 8 gives a complete descrip-
tion of those subspaces𝑋 of𝑌with the property that𝐿(𝑋) can
be embedded as a topological vector subspace of 𝐿(𝑌). Our
proof is based on significant generalizations of some results
in [7].

2. The Free Locally Convex Spaces on the
Cantor Space and the Hilbert Cube

Let us recall (see [1]) that the free locally convex space 𝐿(𝑋)
on a Tychonoff space𝑋 is a pair consisting of a locally convex
space 𝐿(𝑋) and a continuous map 𝑖 : 𝑋 → 𝐿(𝑋) such that
every continuousmap𝑓 from𝑋 to any locally convex space𝐸
gives rise to a unique continuous linear operator 𝑓 : 𝐿(𝑋) →𝐸 with 𝑓 = 𝑓 ∘ 𝑖. The free locally convex space 𝐿(𝑋) always
exists and is essentially unique.The set𝑋 forms aHamel basis
for 𝐿(𝑋), and the map 𝑖 is a topological embedding [3, 10].

It is well-known (see [3]) that the dual space of 𝐿(𝑋) is
canonically isomorphic to the space 𝐶(𝑋) of all continuous
real-valued functions on 𝑋. The space 𝐶(𝑋) endowed with
the pointwise topology or with the compact-open topology is
denoted by 𝐶𝑝(𝑋) and 𝐶𝑘(𝑋), respectively. Denote by 𝐿𝑝(𝑋)
the space 𝐿(𝑋) endowed with the weak topology. Then the
spaces 𝐿𝑝(𝑋) and 𝐶𝑝(𝑋) are in duality.

Firstly we note the following useful necessary condition
for the existence of an embedding for free locally convex
spaces which easily follows from general facts of locally
convex space theory.

Proposition 4. Let𝑋 and 𝑌 be Tychonoff spaces.

(i) If the space 𝐿(𝑋) can be embedded into 𝐿(𝑌) as a
locally convex subspace, then also the space 𝐿𝑝(𝑋) can
be embedded into 𝐿𝑝(𝑌) as a locally convex subspace.

(ii) The space 𝐿𝑝(𝑋) can be embedded into 𝐿𝑝(𝑌) as a
locally convex subspace if and only if𝐶𝑝(𝑋) is an image
of 𝐶𝑝(𝑌) under a linear continuous surjection.

Consequently, if 𝐿(𝑋) can be embedded into 𝐿(𝑌) as a locally
convex subspace, then there is a linear continuous surjection 𝑇
from 𝐶𝑝(𝑌) onto 𝐶𝑝(𝑋).
Proof. (i) follows fromTheorem 8.12.2 of [11], and (ii) follows
from Theorems 8.10.5 and 8.13.2 of [11] applying to X fl𝐶𝑝(𝑌) andY fl 𝐶𝑝(𝑋).

Note that the converse assertion in (i) of Proposition 4
holds; for example, if 𝐿(𝑋) is barrelled, see Corollary 11.3.7
of [11]. However, the condition on 𝐿(𝑋) to be a barrelled space
is very restrictive: the space 𝐿(𝑋) is barrelled if and only if𝑋
is discrete; see Theorem 6.4 of [4].

Let 𝑋 and 𝑌 be Tychonoff spaces. To obtain sufficient
conditions on𝑋 and𝑌 forwhich𝐿(𝑋) is embedded into𝐿(𝑌),
by Proposition 4, it is sufficient to find conditions on 𝑋 and𝑌 under which the converse assertion in (i) of Proposition 4
holds. The case when 𝑌 is compact (or, more generally, 𝑌 is a𝑘𝜔-space) is the most natural and important.

Recall that a Tychonoff space 𝑋 is called Dieudonné
complete if its topology is induced by a complete uniformity.
Every Lindelöf space (in particular, every 𝑘𝜔-space) and every
metrizable space is Dieudonné complete. We shall use the
following result of Arhangelskii.

Theorem 5 (see [12]). Let 𝑋 and 𝑌 be Dieudonné complete
spaces. If a linear map ℎ : 𝐶𝑝(𝑋) → 𝐶𝑝(𝑌) is continuous, thenℎ is continuous as a map 𝐶𝑘(X) → 𝐶𝑘(𝑌).

Recall that a map 𝑓 : 𝑋 → 𝑌 is called compact-covering if
for every compact subset 𝐶 of 𝑌 there is a compact subset 𝐾
of𝑋 such that 𝑓(𝐾) = 𝐶.
Proposition 6. Let 𝑋 be a Dieudonné complete space and let𝑌 be a 𝑘𝜔-space. If 𝑇 : 𝐶𝑝(𝑌) → 𝐶𝑝(𝑋) is a linear continuous
surjection, then 𝑋 is also a 𝑘𝜔-space and 𝑇 : 𝐶𝑘(𝑌) → 𝐶𝑘(𝑋)
is a quotient compact-covering map. If 𝑌 is additionally a
compact space, then 𝑋 is a compact space. If 𝑌 is compact
metrizable, then so is𝑋.

Proof. Since any 𝑘𝜔-space is Dieudonné complete, the map𝑇 is also continuous with respect to the compact-open
topologies on both spaces byTheorem5.As𝐶𝑘(𝑌) is a Fréchet
space, the Open Mapping Theorem [11, Theorem 14.4.6]
implies that 𝑇 : 𝐶𝑘(𝑌) → 𝐶𝑘(𝑋) is open, and hence it is a
quotient map.Therefore𝐶𝑘(𝑋) is also a Fréchet space, so𝑋 is
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a 𝑘𝜔-space. Since𝐶𝑘(𝑌) and𝐶𝑘(𝑋) are completely metrizable
and 𝑇 is open, the map 𝑇 is compact-covering by Theorem1.2 of [13]. If, in addition, 𝑌 is a (metrizable) compact space,
then 𝐶𝑘(𝑌) is a (separable) Banach space, so is 𝐶𝑘(𝑋). Thus𝑋 is also a (metrizable) compact space.

The equivalence (i)⇔(ii) in the next theorem generalizes
Lemma 3.2 of [7] and has an essentially simpler proof.

Proposition 7. Let𝑋 be aDieudonné complete space and let𝑌
be a 𝑘𝜔-space (a compact space or ametrizable compact space).
Then the following assertions are equivalent:

(i) 𝐿(𝑋) can be embedded into 𝐿(𝑌) as a locally convex
subspace.

(ii) 𝐿𝑝(𝑋) can be embedded into 𝐿𝑝(𝑌) as a locally convex
subspace.

(iii) There is a linear continuous surjection of 𝐶𝑝(𝑌) onto𝐶𝑝(𝑋).
If (i)–(iii) hold, the space 𝑋 is a 𝑘𝜔-space (a compact space or
a metrizable compact space, resp.).

Proof. (i)⇒(ii) and (ii)⇔(iii) follow from Proposition 4. Let
us prove (ii)⇒(i).

Let ℎ : 𝐿𝑝(𝑋) → 𝐿𝑝(𝑌) be an embedding of locally
convex spaces.Then the dual linearmapℎ∗ : 𝐶𝑝(𝑌) → 𝐶𝑝(𝑋)
is a continuous surjection by Theorems 8.10.5 and 8.11.3
of [11]. By Proposition 6, 𝑋 is a 𝑘𝜔-space (a compact space
or a metrizable compact space, resp.) and ℎ∗ : 𝐶𝑘(𝑌) →𝐶𝑘(𝑋) is a quotient compact-covering map. Hence the dual
continuous map ℎ∗∗ of ℎ∗ from the space 𝐶𝑘(𝐶𝑘(𝑋)) to𝐶𝑘(𝐶𝑘(𝑌)) is an embedding of 𝐶𝑘(𝐶𝑘(𝑋)) into 𝐶𝑘(𝐶𝑘(𝑌)) as
a locally convex subspace. Observe that since 𝑋 and 𝑌 are𝑘𝜔-spaces, 𝐿(𝑋) and 𝐿(𝑌) are locally convex subspaces of𝐶𝑘(𝐶𝑘(𝑋)) and𝐶𝑘(𝐶𝑘(𝑌)), respectively, by [10, 14] (for amore
general assertion, see Theorem 1.2 of [15]). This observation
and the fact that ℎ coincides with the restriction of ℎ∗∗ to𝐿(𝑋) imply that the map ℎ is an embedding of 𝐿(𝑋) into𝐿(𝑌).

We can now easily deduce the following main result from
Proposition 7 and Lemma 3.3 of [16].
Theorem8. Let𝑋 be a subspace of a compactmetrizable space𝐾. Then 𝐿(𝑋) can be embedded into 𝐿(𝐾) as a locally convex
subspace if and only if𝑋 is closed.

Proof. Assume that 𝐿(𝑋) embeds into 𝐿(𝐾). Then 𝑋 is
compact by Proposition 7, and so 𝑋 is closed. The converse
assertion follows from Lemma 3.3 of [16].

It follows immediately from Theorem 8 that 𝐿(0, 1) is
not embedded in 𝐿(I). This fact contrasts with the facts,
mentioned in Theorem 3, that 𝐴(0, 1) can be embedded as
a topological subgroup of 𝐴(I) and V(0, 1) can be embedded
as a topological vector subspace of V(I).

It turns out that the existence of a linear continuous
surjection 𝑇 from 𝐶𝑝(𝑌) onto 𝐶𝑝(𝑋) in Propositions 4 and
7 is also a sufficiently strong condition as the following easy
corollary of Uspenskĭı’s theorems [17] shows.

Theorem 9 (see [7]). Let 𝑇 : 𝐶𝑝(𝑌) → 𝐶𝑝(𝑋) be a linear
continuous surjection. If 𝑌 is a metrizable compact space, then
so is 𝑋.

Proposition 4 and Theorem 9 immediately imply the
following result.

Corollary 10. Let 𝑋 be a Tychonoff space and let 𝐾 be a
compact metrizable space. If 𝐿(𝑋) can be embedded into 𝐿(𝐾)
as a locally convex subspace, then𝑋 is compact andmetrizable.

Corollary 10 and Theorem 2 imply the following surpris-
ing complete descriptions of Tychonoff spaces 𝑋 for which𝐿(𝑋) is embedded in 𝐿(𝑄) and 𝐿(𝑋) is embedded in 𝐿(G).
Theorem 11. For a Tychonoff space 𝑋 the following assertions
are equivalent:

(i) 𝐿(𝑋) can be embedded into 𝐿(𝑄) as a locally convex
subspace.

(ii) There is a linear continuous surjection of 𝐶𝑝(𝑄) onto𝐶𝑝(𝑋).
(iii) 𝑋 is a compact metrizable space.

Proof. (i)⇒(ii) follows from Proposition 4, (ii)⇒(iii) follows
fromTheorem 9, and (iii)⇒(i) follows fromTheorem 2.

Theorem 12. For a Tychonoff space𝑋 the following assertions
are equivalent:

(i) 𝐿(𝑋) can be embedded into 𝐿(G) as a locally convex
subspace.

(ii) There is a linear continuous surjection of 𝐶𝑝(G) onto𝐶𝑝(𝑋).
(iii) 𝑋 is a compact zero-dimensional metrizable space.

Proof. (i)⇒(ii) follows from Proposition 4. (ii)⇒(i): byTheo-
rem9,𝑋 is compact andmetrizable andProposition 7 applies.

(i)⇒(iii): If 𝐿(𝑋) can be embedded into 𝐿(G), then 𝑋 is
compact andmetrizable by Corollary 10.Therefore𝑋 is zero-
dimensional byTheorem 2. (iii)⇒(i) follows fromTheorem 2.

Corollary 13. Let 𝐾 be a zero-dimensional metrizable com-
pact space and 𝑋 a Tychonoff space. If 𝐿(𝑋) can be embedded
into 𝐿(𝐾) as a locally convex subspace, then 𝑋 is a compact
zero-dimensional metrizable space.

Proof. By Theorem 12, 𝐿(𝐾) is embedded into 𝐿(G) and
Theorem 12 applies once again.

Note that the locally compact pseudocompact space𝜔1(= [0, 𝜔1)) is not Dieudonné complete and its Dieudonné
completion is the compact space 𝜔1 + 1. By [18, Example3.1.27]; the restriction continuous map 𝑅 : 𝐶𝑝(𝜔1 + 1) →𝐶𝑝(𝜔1) is bijective. However 𝑅 is not open because the set

𝑅 ({𝑓 ∈ 𝐶 (𝜔1 + 1) : 𝑓 (𝜔1) ≤ 1}) (1)

is not a neighborhood of zero in 𝐶𝑝(𝜔1).
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Question 14. Do there exist a compact (nonmetrizable) space𝐾 and a non-Dieudonné complete subspace𝑋 of𝐾 such that𝐿(𝑋) cannot be embedded into 𝐿(𝐾)?What can be said about
the specific case: 𝐾 = 𝜔1 + 1 and𝑋 = 𝜔1?
3. Embedding into 𝐿(𝑋) and the Kolmogorov
Superposition Theorem

Nowwe consider an important case when a linear continuous
surjection of 𝐶𝑝(𝑌) onto 𝐶𝑝(𝑋) can be easily constructed
using the following deep result of Kolmogorov [19] in the
version of Lorentz [20, Theorem 11.1].
Theorem 15 (Kolmogorov superposition theorem). For every𝑛 ∈ N there exist strictly increasing functions 𝜑1, . . . , 𝜑2𝑛+1 ∈𝐶(I) with values in I and constants 𝜆1, . . . , 𝜆𝑛 ∈ (0, 1] such
that for every function𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐶(I𝑛) there is a function𝑔 ∈ 𝐶[0, 𝑛] such that

𝑓 = 2𝑛+1∑
𝑞=1

𝑔( 𝑛∑
𝑖=1

𝜆𝑖𝜑𝑞 (𝑥𝑖)) . (2)

Corollary 16. Let 𝐾 be a finite-dimensional compact metriz-
able space. Then there is a linear continuous surjective map 𝑇
from 𝐶𝑝(I) onto 𝐶𝑝(𝐾).
Proof. By the Embedding Theorem [21, Theorem 1.11.4],
every finite-dimensional compact metrizable space 𝐾 is
embedded intoR𝑛 for some 𝑛 ∈ N. Now the Tietze–Urysohn
Theorem shows that to prove the corollary it is sufficient to
construct a linear continuous surjective map 𝑇 from 𝐶𝑝(I)
onto 𝐶𝑝(I𝑛).

Define the homeomorphism ℎ : [0, 𝑛] → Ibyℎ(𝑥) fl 𝑥/𝑛.
Now, using (2) we define the operator 𝑇 : 𝐶𝑝(I) → 𝐶𝑝(I𝑛) by
𝑇 (𝑔) (𝑥1, . . . , 𝑥𝑛) fl 2𝑛+1∑

𝑞=1

𝑔 ∘ ℎ( 𝑛∑
𝑖=1

𝜆𝑖𝜑𝑞 (𝑥𝑖)) ,
𝑔 ∈ 𝐶 (I) .

(3)

It is clear that 𝑇 is linear, and 𝑇 is surjective by the
KolmogorovTheorem. To check that𝑇 is continuous, fix 𝑧𝑗 =(𝑥𝑗1, . . . , 𝑥𝑗𝑛), 𝑗 = 1, . . . , 𝑚, and 𝜀 > 0. Denote by 𝐹 the finite
family of all points in I of the following form:

ℎ( 𝑛∑
𝑖=1

𝜆𝑖𝜑𝑞 (𝑥𝑗𝑖 )) , 𝑗 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 2𝑛 + 1. (4)

Then, if 𝑔 belongs to the standard open pointwise neighbor-
hood {𝑓 ∈ 𝐶(I) : |𝑓(𝑥)| < 𝜀/(2𝑛+1) ∀𝑥 ∈ 𝐹} of zero function
in 𝐶𝑝(I), we obtain
𝑇 (𝑔) (𝑧𝑖) ≤

2𝑛+1∑
𝑞=1

𝑔 ∘ ℎ(
𝑛∑
𝑖=1

𝜆𝑖𝜑𝑞 (𝑥𝑗𝑖 ))
 < 𝜀,
𝑗 = 1, . . . , 𝑚.

(5)

Thus 𝑇 is continuous.

Remark 17. Levin informed the authors that a linear contin-
uous surjective map 𝑇 from 𝐶𝑝(I) onto 𝐶𝑝(𝐾) can even be
chosen to be open; see [22].

We now observe the following proof of Theorem 1.

Proof. Theorem 1 follows immediately from Proposition 7
and Corollary 16.

Now we consider a noncompact case, namely, when 𝑋 =
R. First we recall the following definition motivated by the
Kolmogorov SuperpositionTheorem 15.

Definition 18 (see [23]). Let𝑋 be a Tychonoff space. A family
Φ ⊆ 𝐶(𝑋) is said to be basic for 𝑋 if each 𝑓 ∈ 𝐶(𝑋) can be
written as

𝑓 = 𝑛∑
𝑞=1

(𝑔𝑞 ∘ Φ𝑞) ,
for some Φ1, . . . , Φ𝑛 ∈ Φ, 𝑔1, . . . , 𝑔𝑛 ∈ 𝐶 (R) , 𝑛 ∈ N.

(6)

We shall use the following noncompact version of the
Kolmogorov SuperpositionTheorem.

Theorem 19 (see [24]). If 𝑋 is a finite-dimensional locally
compact separable metrizable space, then 𝑋 has a finite basic
family.

Analogously toCorollary 16we easily obtain the following
result.

Corollary 20. Let 𝑋 be a finite-dimensional locally compact
separable metrizable space. Then there is an 𝑛 ∈ N such that𝐶𝑝(𝑋) is the image of (𝐶𝑝(R))𝑛 under a continuous linear
surjective map 𝑇.
Proof. ByTheorem 19 there exists a basic family {Φ𝑛, . . . , Φ𝑛}
for𝑋. Then the map

𝑇 : (𝐶𝑝 (R))𝑛 → 𝐶𝑝 (𝑋) ,
𝑇 (𝑔1, . . . , 𝑔𝑛) fl 𝑛∑

𝑖=1

(𝑔𝑖 ∘ Φ𝑖) , (7)

is linear and surjective. Let us check that 𝑇 is continuous.
Fix a standard neighborhood {𝑓 ∈ 𝐶(𝑋) : |𝑓(𝑥)| <𝜀 ∀𝑥 ∈ 𝐹} of zero in 𝐶𝑝(𝑋), where 𝐹 ⊆ 𝑋 is finite and 𝜀 > 0.

Denote by 𝐹 the finite set of all points inR of the formΦ𝑖(𝑧),
where 𝑧 ∈ 𝐹 and 1 ≤ 𝑖 ≤ 𝑛. If 𝑔1, . . . , 𝑔𝑛 ∈ {ℎ ∈ 𝐶(R) :|ℎ(𝑧)| < 𝜀/𝑛 ∀𝑧 ∈ 𝐹}, we obtain

𝑇 (𝑔1, . . . , 𝑔𝑛) (𝑧) =

𝑛∑
𝑖=1

(𝑔𝑖 ∘ Φ𝑖) (𝑧)
 < 𝜀, ∀𝑧 ∈ 𝐹. (8)

Therefore 𝑇 is continuous.

Proposition 21. Let𝑋 = ⨆𝑛∈N𝑋𝑛 be a disjoint union of finite-
dimensional locally compact separable metrizable spaces. Then
there is a continuous linear surjective map 𝑇 from 𝐶𝑝(R) onto𝐶𝑝(𝑋).
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Proof. ByCorollary 20, for every 𝑛 ∈ N, we can choose an 𝑠𝑛 ∈
N and a continuous linear surjective map 𝑇𝑛 : (𝐶𝑝(R))𝑠𝑛 →𝐶𝑝(𝑋𝑛). Then the map

𝑇: (𝐶𝑝 (R))N = ∞∏
𝑛=1

(𝐶𝑝 (R))𝑠𝑛 → ∞∏
𝑛=1

𝐶𝑝 (𝑋𝑛)
= 𝐶𝑝 (𝑋) ,

𝑇 ((𝑓𝑛)) fl (𝑇𝑛 (𝑓𝑛)) ,
(9)

is continuous, linear, and surjective. It is known (see [25,
Section 177]) that there is a linear homeomorphism 𝑆 from𝐶𝑝(R) onto (𝐶𝑝(R))N. Thus the map 𝑇 ∘ 𝑆 is as desired.

Now Propositions 7 and 21 immediately imply the main
result of this section.

Theorem 22. If 𝑋 = ⨆𝑛∈N𝑋𝑛 is a disjoint union of finite-
dimensional locally compact separable metrizable spaces, then𝐿(𝑋) can be embedded into 𝐿(R) as a locally convex subspace.
In particular, for every 𝑛 ∈ N, 𝐿(R𝑛) can be embedded into𝐿(R) as a locally convex subspace.

We conclude by noting that Theorem 22 implies that if𝑋 is the countable-dimensional locally compact separable
metrizable space ⨆𝑛∈NR𝑛, then 𝐿(𝑋) can be embedded as a
locally convex subspace of 𝐿(R).
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