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The Clark-Ocone formula in the theory of discrete-time chaotic calculus holds only for square integrable functionals of discrete-
time normal noises. In this paper, we aim at extending this formula to generalized functionals of discrete-time normal noises. Let𝑍 be a discrete-time normal noise that has the chaotic representation property. We first prove a result concerning the regularity of
generalized functionals of 𝑍. Then, we use the Fock transform to define some fundamental operators on generalized functionals of𝑍 and apply the abovementioned regularity result to prove the continuity of these operators. Finally, we establish the Clark-Ocone
formula for generalized functionals of𝑍 and show its application results, which include the covariant identity result and the variant
upper bound result for generalized functionals of 𝑍.

1. Introduction

One of the important theorems in Privault’s discrete-time
chaotic calculus [1, 2] is its Clark-Ocone formula, which reads

𝜉 = E𝜉 + ∞∑
�푘=0

𝑍�푘E [𝜕�푘𝜉 | F�푘−1] , 𝜉 ∈ L
2 (𝑍) , (1)

where𝑍 = (𝑍�푘) is a discrete-time normal noise,L2(𝑍) is the
space of square integrable functionals of 𝑍,F�푘 is the 𝜎-field
generated by (𝑍�푗; 0 ≤ 𝑗 ≤ 𝑘), 𝜕�푘 is the annihilation operator
onL2(𝑍), and the series on the right-hand side converges in
the norm ofL2(𝑍).

The Clark-Ocone formula (1) directly gives the pre-
dictable representation of functionals of 𝑍, which implies
the predictable representation property of discrete-timemar-
tingales associated with 𝑍. The formula can also be used
to establish the corresponding covariant identities [1]. More
importantly, as was shown by Gao and Privault [3], this
formula plays an important role in proving logarithmic
Sobolev inequalities for Bernoulli measures. There are other
applications based on the formula [2].

Despite its multiple uses, however, the Clark-Ocone
formula (1) still suffers from a main drawback. That is, it

holds only for the square integrable functionals 𝜉 of𝑍, which
excludes many other interesting functionals of 𝑍.

On the other hand, as is shown in [4], one can use the
canonical orthonormal basis ofL2(𝑍) to construct a nuclear
space S(𝑍) such that S(𝑍) is densely contained in L2(𝑍).
Thus, by identifying L2(𝑍) with its dual, one can get a
Gel’fand triple

S (𝑍) ⊂ L
2 (𝑍) ⊂ S

∗ (𝑍) , (2)

where S∗(𝑍) is the dual of S(𝑍), which is endowed with the
strong topology, which cannot be induced by any norm [5].
As usual, S(𝑍) is called the testing functional space of 𝑍,
while S∗(𝑍) is called the generalized functional space of 𝑍.
It turns out [6] that the generalized functional space S∗(𝑍)
can accommodate many quantities of theoretical interest that
cannot be covered byL2(𝑍).

In this paper, we would like to extend the Clark-Ocone
formula (1) to the generalized functionals of 𝑍. More pre-
cisely, we would like to establish a Clark-Ocone formula for
all elements of S∗(𝑍). Our main work is as follows.

We first prove a result concerning the regularity of
generalized functionals in S∗(𝑍) in Section 2. Then, in
Section 3, we use the Fock transform [6] to define some fun-
damental operators onS∗(𝑍) and apply the abovementioned
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regularity result to prove the continuity of these operators.
Finally, we establish our formula, namely, the Clark-Ocone
formula, for generalized functionals in S∗(𝑍) in Section 3
and show its application results in Section 4, which include
the covariant identity result and the variant upper bound
result for generalized functionals in S∗(𝑍).

Throughout this paper,N designates the set of all nonneg-
ative integers and Γ the finite power set of N; namely,

Γ = {𝜎 | 𝜎 ⊂ N, # (𝜎) < ∞} , (3)
where #(𝜎) means the cardinality of 𝜎 as a set. If 𝑘 ∈ N and𝜎 ∈ Γ, then we simply write 𝜎∪𝑘 for 𝜎∪ {𝑘}. Similarly, we use𝜎 \ 𝑘.
2. Generalized Functionals of Discrete-Time
Normal Noises

In all the following sections, we always assume that (Ω,F, 𝑃)
is a given probability space.We useE tomean the expectation
with respect to 𝑃. As usual,L2(Ω,F, 𝑃) denotes the Hilbert
space of square integrable complex-valued measurable func-
tions on (Ω,F, 𝑃). We use ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ to mean the
inner product and norm of L2(Ω,F, 𝑃), respectively. By
convention, ⟨⋅, ⋅⟩ is conjugate-linear in its first argument and
linear in its second argument.

2.1. Discrete-Time Normal Noises. A sequence𝑍 = (𝑍�푛)�푛∈N of
integrable random variables on (Ω,F, 𝑃) is called a discrete-
time normal noise if it satisfies

(i) E[𝑍�푛 | F�푛−1] = 0 for 𝑛 ≥ 0;
(ii) E[𝑍2�푛 | F�푛−1] = 1 for 𝑛 ≥ 0.

Here, F−1 = {0, Ω}, F�푛 = 𝜎(𝑍�푘; 0 ≤ 𝑘 ≤ 𝑛) for 𝑛 ∈ N and
E[⋅ | F�푛] means the conditional expectation givenF�푛.

Example 1. Let 𝜁 = (𝜁�푛)�푛∈N be an independent sequence of
random variables on (Ω,F, 𝑃) with

𝑃 {𝜁�푛 = −1} = 𝑃 {𝜁�푛 = 1} = 12 , 𝑛 ∈ N. (4)

Write G−1 = {0, Ω} and G�푛 = 𝜎(𝜁�푘; 0 ≤ 𝑘 ≤ 𝑛) for 𝑛 ∈ N.
Then, one can immediately see that

(i) E[𝜁�푛 | G�푛−1] = 0 for 𝑛 ≥ 0;
(ii) E[𝜁2�푛 | G�푛−1] = 1 for 𝑛 ≥ 0.

Thus, 𝜁 is a discrete-time normal noise. Note that, by letting𝑋 = (𝑋�푛) be the partial sum sequence of 𝜁, one gets the
classical random walk.

For a discrete-time normal noise 𝑍 = (𝑍�푛)�푛∈N on(Ω,F, 𝑃), one can construct a corresponding family {𝑍�휎 |𝜎 ∈ Γ} of random variables on (Ω,F, 𝑃) in the following
manner:

𝑍0 = 1,
𝑍�휎 = ∏

�푖∈�휎

𝑍�푖,
𝜎 ∈ Γ, 𝜎 ̸= 0.

(5)

We call {𝑍�휎 | 𝜎 ∈ Γ} the canonical functional system of 𝑍.

Lemma 2 (see [1, 2, 7]). Let 𝑍 = (𝑍�푛)�푛∈N be a discrete-
time normal noise on (Ω,F, 𝑃). Then, its canonical functional
system {𝑍�휎 | 𝜎 ∈ Γ} forms a countable orthonormal system in
L2(Ω,F, 𝑃).

LetF∞ = 𝜎(𝑍�푛; 𝑛 ∈ N) be the 𝜎-field over Ω generated
by a discrete-time normal noise 𝑍 = (𝑍�푛)�푛∈N on (Ω,F, 𝑃).
Then, the canonical functional system {𝑍�휎 | 𝜎 ∈ Γ} is also
a countable orthonormal system in the spaceL2(Ω,F∞, 𝑃)
of square integrable complex-valuedmeasurable functions on(Ω,F∞, 𝑃).

In the literature,F∞-measurable functions onΩ are also
known as functionals of 𝑍. Thus, elements ofL2(Ω,F∞, 𝑃)
are naturally called square integrable functionals of 𝑍.
Definition 3. A discrete-time normal noise 𝑍 = (𝑍�푛)�푛∈N on(Ω,F, 𝑃) is said to have the chaotic representation property
if its canonical functional system {𝑍�휎 | 𝜎 ∈ Γ} is total in
L2(Ω,F∞, 𝑃), whereF∞ = 𝜎(𝑍�푛; 𝑛 ∈ N).

Thus, if a discrete-time normal noise 𝑍 has the chaotic
representation property, then its canonical functional system{𝑍�휎 | 𝜎 ∈ Γ} is actually an orthonormal basis ofL2(Ω,F∞,𝑃).
2.2. Generalized Functionals. From now on, we always
assume that 𝑍 = (𝑍�푛)�푛∈N is a given discrete-time normal
noise on (Ω,F, 𝑃) that has the chaotic representation prop-
erty.

For brevity, we use L2(𝑍) to denote the space of square
integrable functionals of 𝑍; namely,

L
2 (𝑍) = L

2 (Ω,F∞, 𝑃) , (6)

whereF∞ = 𝜎(𝑍�푛; 𝑛 ∈ N). For 𝑘 ≥ 0, we denote byF�푘 the𝜎-field generated by (𝑍�푗; 0 ≤ 𝑗 ≤ 𝑘); namely,

F�푘 = 𝜎 (𝑍�푗; 0 ≤ 𝑗 ≤ 𝑘) . (7)

We note thatL2(𝑍) shares the same inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖ with L2(Ω,F, 𝑃), and moreover the canonical
functional system {𝑍�휎 | 𝜎 ∈ Γ} of 𝑍 forms a countable
orthonormal basis for L2(𝑍), which we call the canonical
orthonormal basis ofL2(𝑍).
Lemma 4 (see [4]). Let 𝜎 → 𝜆�휎 be the N-valued function onΓ given by

𝜆�휎 = {{{
∏
�푘∈�휎

(𝑘 + 1) , 𝜎 ̸= 0, 𝜎 ∈ Γ;
1, 𝜎 = 0, 𝜎 ∈ Γ. (8)

Then, for 𝑝 > 1, the positive term series ∑�휎∈Γ 𝜆−�푝�휎 converges
and moreover

∑
�휎∈Γ

𝜆−�푝�휎 ≤ exp[∞∑
�푘=1

𝑘−�푝] < ∞. (9)
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Using the N-valued function defined by (8), we can
construct a chain of Hilbert spaces consisting of functionals
of 𝑍 as follows. For 𝑝 ≥ 0, we put

S�푝 (𝑍) = {𝜉 ∈ L
2 (𝑍) | ∑

�휎∈Γ

𝜆2�푝�휎 ⟨𝑍�휎, 𝜉⟩2 < ∞} (10)

and define

⟨𝜉, 𝜂⟩�푝 = ∑
�휎∈Γ

𝜆2�푝�휎 ⟨𝑍�휎, 𝜉⟩ ⟨𝑍�휎, 𝜂⟩ , 𝜉, 𝜂 ∈ S�푝 (𝑍) . (11)

It is not hard to check that, with ⟨⋅, ⋅⟩�푝 as the inner product,
S�푝(𝑍) becomes a Hilbert space.We write ‖𝜉‖�푝 = √⟨𝜉, 𝜉⟩�푝 for𝜉 ∈ S�푝(𝑍). Clearly, it holds that

𝜉2�푝 = ∑
�휎∈Γ

𝜆2�푝�휎 ⟨𝑍�휎, 𝜉⟩2 , 𝜉 ∈ S�푝 (𝑍) . (12)

Lemma 5 (see [4, 6]). For 𝑝 ≥ 0, one has {𝑍�휎 | 𝜎 ∈ Γ} ⊂
S�푝(𝑍) and moreover the system {𝜆−�푝�휎 𝑍�휎 | 𝜎 ∈ Γ} forms an
orthonormal basis for S�푝(𝑍).

It is easy to see that 𝜆�휎 ≥ 1 for all 𝜎 ∈ Γ. This implies that‖ ⋅ ‖�푝 ≤ ‖ ⋅ ‖�푞 andS�푞(𝑍) ⊂ S�푝(𝑍)whenever 0 ≤ 𝑝 ≤ 𝑞. Thus,
we actually get a chain of Hilbert spaces of functionals of 𝑍:

⋅ ⋅ ⋅ ⊂ S�푝+1 (𝑍) ⊂ S�푝 (𝑍) ⊂ ⋅ ⋅ ⋅ ⊂ S1 (𝑍) ⊂ S0 (𝑍)
= L
2 (𝑍) . (13)

We now put

S (𝑍) = ∞⋂
�푝=0

S�푝 (𝑍) (14)

and endow it with the topology generated by the norm
sequence {‖ ⋅ ‖�푝}�푝≥0. Note that, for each 𝑝 ≥ 0, S�푝(𝑍) is just
the completion of S(𝑍) with respect to ‖ ⋅ ‖�푝. Thus, S(𝑍) is
a countably Hilbert space [5, 8]. The next lemma, however,
shows that S(𝑍) even has a much better property.

Lemma 6 (see [4, 6]). The space S(𝑍) is a nuclear space;
namely, for any 𝑝 ≥ 0, there exists 𝑞 > 𝑝 such that the inclusion
mapping 𝑖�푝�푞 : S�푞(𝑍) → S�푝(𝑍) defined by 𝑖�푝�푞(𝜉) = 𝜉 is a
Hilbert-Schmidt operator.

For 𝑝 ≥ 0, we denote by S∗�푝(𝑍) the dual of S�푝(𝑍)
and ‖ ⋅ ‖−�푝 the norm of S∗�푝(𝑍). Then, S∗�푝(𝑍) ⊂ S∗�푞 (𝑍) and‖ ⋅ ‖−�푝 ≥ ‖ ⋅ ‖−�푞 whenever 0 ≤ 𝑝 ≤ 𝑞. The lemma below
is then an immediate consequence of the general theory of
countably Hilbert spaces (see, e.g., [8] or [5]).

Lemma 7 (see [4, 6]). Let S∗(𝑍) be the dual of S(𝑍) and
endow it with the strong topology. Then,

S
∗ (𝑍) = ∞⋃

�푝=0

S
∗
�푝 (𝑍) (15)

and moreover the inductive limit topology overS∗(𝑍) given by
space sequence {S∗�푝(𝑍)}�푝≥0 coincides with the strong topology.

Wemention that, by identifyingL2(𝑍) with its dual, one
comes to a Gel’fand triple

S (𝑍) ⊂ L
2 (𝑍) ⊂ S

∗ (𝑍) , (16)

which we refer to as the Gel’fand triple associated with the
discrete-time normal noise 𝑍.
Theorem 8 (see [6]). The system {𝑍�휎 | 𝜎 ∈ Γ} is contained in
S(𝑍) and moreover it forms a basis for S(𝑍) in the sense that

𝜉 = ∑
�휎∈Γ

⟨𝑍�휎, 𝜉⟩ 𝑍�휎, 𝜉 ∈ S (𝑍) , (17)

where ⟨⋅, ⋅⟩ is the inner product of L2(𝑍) and the series
converges in the topology of S(𝑍).
Definition 9 (see [4, 6]). Elements of S∗(𝑍) are called
generalized functionals of 𝑍, while elements of S(𝑍) are
called testing functionals of 𝑍.

Thus,S∗(𝑍) andS(𝑍) can be accordingly called the gen-
eralized functional space and the testing functional space of𝑍, respectively. It turns out [6] thatS∗(𝑍) can accommodate
many quantities of theoretical interest that cannot be covered
byL2(𝑍).

In the following, we denote by (⋅, ⋅) the canonical
bilinear form on S∗(𝑍) × S(𝑍) given by

(Φ, 𝜉) = Φ (𝜉) , Φ ∈ S
∗ (𝑍) , 𝜉 ∈ S (𝑍) . (18)

Note that (⋅, ⋅) is different from the inner product ⟨⋅, ⋅⟩ of
L2(𝑍).
Definition 10 (see [6]). For Φ ∈ S∗(𝑍), its Fock transform is
the function Φ̂ on Γ given by

Φ̂ (𝜎) = (Φ,𝑍�휎), 𝜎 ∈ Γ, (19)

where(⋅, ⋅) is the canonical bilinear form.
It is easy to verify that, for Φ, Ψ ∈ S∗(𝑍), Φ = Ψ if

and only if Φ̂ = Ψ̂. Thus, a generalized functional of 𝑍 is
completely determined by its Fock transform. The following
theorem characterizes generalized functionals of 𝑍 through
their Fock transforms.

Theorem 11 (see [6]). Let 𝐹 be a function on Γ. Then, 𝐹 is
the Fock transform of an element Φ of S∗(𝑍) if and only if it
satisfies

|𝐹 (𝜎)| ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ (20)

for some constants 𝐶 ≥ 0 and 𝑝 ≥ 0. In that case, for 𝑞 >𝑝 + 1/2, one has
‖Φ‖−�푞 ≤ 𝐶[∑

�휎∈Γ

𝜆−2(�푞−�푝)�휎 ]
1/2

(21)

and in particular Φ ∈ S∗�푞 (𝑍).
The theorembelow describes the regularity of generalized

functionals of 𝑍 via their Fock transforms.
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Theorem 12. Let Φ ∈ S∗(𝑍) and 𝑝 ≥ 0. Then, Φ ∈ S∗�푝(𝑍) if
and only if

∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2 < ∞. (22)

In that case, the norm ‖Φ‖−�푝 of Φ in S∗�푝(𝑍) satisfies
‖Φ‖2−�푝 = ∑

�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2 . (23)

Proof. The “Only If” Part. By the well-known Riesz represen-
tation theorem [9], there exists a unique 𝜂 ∈ S�푝(𝑍) such that‖𝜂‖�푝 = ‖Φ‖−�푝 and

Φ (𝜉) = ⟨𝜂, 𝜉⟩�푝 , 𝜉 ∈ S�푝 (𝑍) . (24)

Thus,

∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2 = ∑
�휎∈Γ

𝜆−2�푝�휎 ⟨𝑍�휎, 𝜂⟩�푝2

= ∑
�휎∈Γ

𝜆2�푝�휎 ⟨𝑍�휎, 𝜂⟩2 = 𝜂2�푝 = ‖Φ‖2−�푝 ,
(25)

which implies (22) and (23).
The “If” Part. For each 𝜉 ∈ S(𝑍), using Theorem 8, we

have

Φ (𝜉) =
∑�휎∈Γ ⟨𝑍�휎, 𝜉⟩Φ (𝑍�휎)

 =
∑�휎∈Γ ⟨𝑍�휎, 𝜉⟩ Φ̂ (𝜎)

≤ [∑
�휎∈Γ

𝜆2�푝�휎 ⟨𝑍�휎, 𝜉⟩2]
1/2

[∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2]
1/2

= 𝜉�푝 [∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2]
1/2

.

(26)

Thus, Φ is a bounded functional on the space (S(𝑍), ‖ ⋅ ‖�푝),
which implies Φ ∈ S∗�푝(𝑍) since S(𝑍) is dense in S�푝(𝑍).
Remark 13. There exists a continuous linear mapping R :
L2(𝑍) → S∗(𝑍) such that

(R𝜂, 𝜉) = ⟨𝜂, 𝜉⟩ , 𝜂 ∈ L
2 (𝑍) , 𝜉 ∈ S (𝑍) , (27)

where(⋅, ⋅) is the canonical bilinear form onS∗(𝑍)×S(𝑍).
We call R the Riesz mapping.

Theorem 14 (see [10]). Let Φ, Φ�푛 ∈ S∗(𝑍), 𝑛 ≥ 1, be
generalized functionals of𝑍.Then, the sequence (Φ�푛) converges
strongly to Φ in S∗(𝑍) if and only if it satisfies the following:

(1) Φ̂�푛(𝜎) → Φ̂(𝜎) for all 𝜎 ∈ Γ.
(2) There are constants 𝐶 ≥ 0 and 𝑝 ≥ 0 such that

sup
�푛≥1

Φ̂�푛 (𝜎) ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ. (28)

3. Clark-Ocone Formula for
Generalized Functionals

In this section, we first introduce some fundamental opera-
tors on the space S∗(𝑍). And then we establish our Clark-
Ocone formula for functionals in S∗(𝑍).
3.1. Annihilation and Creation Operators

Theorem 15. Let 𝑘 ∈ N. Then, there exists a continuous linear
operator a�푘 : S∗(𝑍) → S∗(𝑍) such that
â�푘Φ (𝜎) = [1 − 1�휎 (𝑘)] Φ̂ (𝜎 ∪ 𝑘) ,

𝜎 ∈ Γ, Φ ∈ S
∗ (𝑍) . (29)

Proof. For each Φ ∈ S∗(𝑍), by Theorem 11, there exist
constants 𝐶, 𝑝 ≥ 0 such that

Φ̂ (𝜎) ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ, (30)

which means that the function 𝜎 → [1 − 1�휎(𝑘)]Φ̂(𝜎 ∪ 𝑘)
satisfies[1 − 1�휎 (𝑘)] Φ̂ (𝜎 ∪ 𝑘) ≤ [1 − 1�휎 (𝑘)] 𝐶𝜆�푝

�휎∪�푘

= [1 − 1�휎 (𝑘)] 𝐶 (1 + 𝑘)�푝 𝜆�푝�휎 ≤ 𝐶 (1 + 𝑘)�푝 𝜆�푝�휎,
𝜎 ∈ Γ,

(31)

which, together with Theorem 11, implies that there exists a
unique ΨΦ ∈ S∗(𝑍) such that

Ψ̂Φ (𝜎) = [1 − 1�휎 (𝑘)] Φ̂ (𝜎 ∪ 𝑘) , 𝜎 ∈ Γ. (32)

Now, consider the mapping a�푘 : S∗(𝑍) → S∗(𝑍) defined by

a�푘Φ = ΨΦ, Φ ∈ S
∗ (𝑍) . (33)

It is not hard to verify that a�푘 is a linear operator and satisfies
(29). To complete the proof, we still need to show that a�푘 :
S∗(𝑍) → S∗(𝑍) is continuous with respect to the strong
topology over S∗(𝑍).

Let 𝑝 ≥ 0 and denote by j�푘 : S∗�푝(𝑍) → S∗(𝑍) the
inclusion mapping; namely, j�푘 is the mapping defined by

j�푘 (Φ) = Φ, Φ ∈ S
∗
�푝 (𝑍) . (34)

Then, the composition mapping a�푘 ∘ j�푘 is a linear operator
from S∗�푝(𝑍) to S∗(𝑍). For each Φ ∈ S∗�푝(𝑍), we have

∑
�휎∈Γ

𝜆−2�푝�휎  ̂a�푘 ∘ j�푘 (Φ) (𝜎)2 = ∑
�휎∈Γ

𝜆−2�푝�휎 â�푘Φ (𝜎)2

= ∑
�휎∈Γ

𝜆−2�푝�휎 [1 − 1�휎 (𝑘)] Φ̂ (𝜎 ∪ 𝑘)2

= ∑
�푘∉�휎∈Γ

(1 + 𝑘)2�푝 𝜆−2�푝�휎∪�푘 Φ̂ (𝜎 ∪ 𝑘)2

≤ (1 + 𝑘)2�푝∑
�휏∈Γ

𝜆−2�푝�휏 Φ̂ (𝜏)2 ,

(35)
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which together with Theorem 12 implies that a�푘 ∘ j�푘(Φ) ∈
S∗�푝(𝑍) and

a�푘 ∘ j�푘 (Φ)−�푝 ≤ (1 + 𝑘)�푝 ‖Φ‖−�푝 . (36)

Thus, a�푘 ∘j�푘(S∗�푝(𝑍)) ⊂ S∗�푝(𝑍) and a�푘 ∘j�푘 : S∗�푝(𝑍) → S∗�푝(𝑍) is
a bounded operator, which implies that a�푘 ∘ j�푘 is continuous
as an operator from S∗�푝(𝑍) to S∗(𝑍).

Since the choice of the above 𝑝 ≥ 0 is arbitrary, we
actually arrive at a conclusion that the composition mapping
a�푘 ∘ j�푘 : S∗�푝(𝑍) → S∗(𝑍) is continuous for all 𝑝 ≥ 0.
Therefore, a�푘 : S∗(𝑍) → S∗(𝑍) is continuous with respect to
the inductive limit topology overS∗(𝑍), which together with
Lemma 7 implies that a�푘 : S∗(𝑍) → S∗(𝑍) is continuous
with respect to the strong topology over S∗(𝑍).

Carefully checking the proof of Theorem 15, one can find
the next result already proven.

Theorem 16. Let 𝑘 ∈ N. Then, for each 𝑝 ≥ 0, S∗�푝(𝑍) keeps
invariant under the action of a�푘, and moreover

a�푘Φ−�푝 ≤ (1 + 𝑘)�푝 ‖Φ‖−�푝 , Φ ∈ S
∗
�푝 (𝑍) . (37)

With the same arguments, we can prove the next two
theorems, which are dual forms of Theorems 15 and 16,
respectively.

Theorem 17. Let 𝑘 ∈ N. Then, there exists a continuous linear
operator a†�푘 : S∗(𝑍) → S∗(𝑍) such that

â†
�푘
Φ (𝜎) = 1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘) , 𝜎 ∈ Γ, Φ ∈ S

∗ (𝑍) . (38)

Proof. For each Φ ∈ S∗(𝑍), by Theorem 11, there exist
constants 𝐶, 𝑝 ≥ 0 such that

Φ̂ (𝜎) ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ, (39)

which means that the function 𝜎 → 1�휎(𝑘)Φ̂(𝜎 \ 𝑘) satisfies
1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘) ≤ 1�휎 (𝑘) 𝐶𝜆�푝

�휎\�푘

= 1�휎 (𝑘) 𝐶 (1 + 𝑘)−�푝 𝜆�푝�휎
≤ 𝐶 (1 + 𝑘)−�푝 𝜆�푝�휎, 𝜎 ∈ Γ,

(40)

which, together with Theorem 11, implies that there exists a
unique ΘΦ ∈ S∗(𝑍) such that

Θ̂Φ (𝜎) = 1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘) , 𝜎 ∈ Γ. (41)

Now, consider the mapping a†�푘 : S∗(𝑍) → S∗(𝑍) defined by

a
†
�푘Φ = ΘΦ, Φ ∈ S

∗ (𝑍) . (42)

It is not hard to verify that a†�푘 is a linear operator and satisfies
(38). To complete the proof, we still need to show that a†�푘 :
S∗(𝑍) → S∗(𝑍) is continuous with respect to the strong
topology over S∗(𝑍).

Let 𝑝 ≥ 0 and denote by j�푘 : S∗�푝(𝑍) → S∗(𝑍) the
inclusion mapping. Then, the composition mapping a†�푘 ∘ j�푘 is
a linear operator fromS∗�푝(𝑍) toS∗(𝑍). For eachΦ ∈ S∗�푝(𝑍),
we have

∑
�휎∈Γ

𝜆−2�푝�휎  ̂a†
�푘
∘ j�푘 (Φ) (𝜎)

2 = ∑
�휎∈Γ

𝜆−2�푝�휎 â†�푘Φ (𝜎)
2

= ∑
�휎∈Γ

𝜆−2�푝�휎 1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘)2

= ∑
�푘∈�휎∈Γ

(1 + 𝑘)−2�푝 𝜆−2�푝�휎\�푘 Φ̂ (𝜎 \ 𝑘)2

≤ (1 + 𝑘)−2�푝∑
�휏∈Γ

𝜆−2�푝�휏 Φ̂ (𝜏)2 ,

(43)

which together with Theorem 12 implies that a†�푘 ∘ j�푘(Φ) ∈
S∗�푝(𝑍) and

a†�푘 ∘ j�푘 (Φ)−�푝 ≤ (1 + 𝑘)−�푝 ‖Φ‖−�푝 . (44)

Thus, a†�푘 ∘j�푘(S∗�푝(𝑍)) ⊂ S∗�푝(𝑍) and a†�푘 ∘j�푘 : S∗�푝(𝑍) → S∗�푝(𝑍) is
a bounded operator, which implies that a†�푘 ∘ j�푘 is continuous
as an operator from S∗�푝(𝑍) to S∗(𝑍).

Since the choice of the above 𝑝 ≥ 0 is arbitrary, we
actually arrive at a conclusion that the composition mapping
a†�푘 ∘ j�푘 : S∗�푝(𝑍) → S∗(𝑍) is continuous for all 𝑝 ≥ 0.
Therefore, a†�푘 : S∗(𝑍) → S∗(𝑍) is continuous with respect to
the inductive limit topology overS∗(𝑍), which together with
Lemma 7 implies that a†�푘 : S∗(𝑍) → S∗(𝑍) is continuous
with respect to the strong topology over S∗(𝑍).

From the proof of Theorem 17, we can easily get the next
result concerning the operator a†�푘.

Theorem 18. Let 𝑘 ∈ N. Then, for each 𝑝 ≥ 0, S∗�푝(𝑍) keeps
invariant under the action of a†�푘, and moreover

a†�푘Φ−�푝 ≤ (1 + 𝑘)−�푝 ‖Φ‖−�푝 , Φ ∈ S
∗
�푝 (𝑍) . (45)

Remark 19. For 𝑘 ≥ 0, the corresponding annihilation
operator 𝜕�푘 onL2(𝑍) and its dual 𝜕∗�푘 (known as the creation
operator) admit the property

𝜕�푘𝑍�휎 = 1�휎 (𝑘) 𝑍�휎\�푘,
𝜕∗�푘𝑍�휎 = [1 − 1�휎 (𝑘)] 𝑍�휎∪�푘,

𝜎 ∈ Γ.
(46)

And moreover, they satisfy the canonical anticommutation
relation (CAR) in equal-time

𝜕∗�푘 𝜕�푘 + 𝜕�푘𝜕∗�푘 = 𝐼, (47)

where 𝐼 means the identity operator on L2(𝑍). We refer to
[2, 6] and for details about these operators.

The next theorem shows the link between a�푘 and 𝜕�푘, as
well as between a†�푘 and 𝜕∗�푘 .



6 Journal of Function Spaces

Theorem 20. Let 𝑘 ≥ 0. Then, the operators a�푘 and a†�푘 satisfy

a�푘R = R𝜕�푘,
a
†
�푘R = R𝜕∗�푘 , (48)

where R is the Riesz mapping as indicated in Remark 13.

Proof. Let 𝜂 ∈ L2(𝑍). Then, for all 𝜎 ∈ Γ, we have
â�푘R𝜂 (𝜎) = [1 − 1�휎 (𝑘)] ⟨𝜂, 𝑍�휎∪�푘⟩ = ⟨𝜂, 𝜕∗�푘𝑍�휎⟩

= ⟨𝜕�푘𝜂, 𝑍�휎⟩ = R̂𝜕�푘𝜂 (𝜎) , (49)

which implies a�푘R𝜂 = R𝜕�푘𝜂. It then follows by the arbitrari-
ness of 𝜂 ∈ L2(𝑍) that a�푘R = R𝜕�푘. Similarly, we can prove
a†�푘R = R𝜕∗�푘 .

In view ofTheorem 20, we give the following definition to
name the operators a�푘 and a†�푘.

Definition 21. For 𝑘 ≥ 0, the operators a�푘 and a†�푘 are
called the annihilation and creation operators on generalized
functionals of 𝑍, respectively.

Much like the operators {𝜕�푘, 𝜕∗�푘 } onL2(𝑍), the operators{a�푘, a†�푘} also satisfy a canonical anticommutation relation
(CAR) in equal-time.

Theorem 22. Let 𝐼 be the identity operator on S∗(𝑍). Then,
for 𝑘 ≥ 0, it holds that

a
†
�푘a�푘 + a�푘a

†
�푘 = 𝐼. (50)

Proof. Let Φ ∈ S∗(𝑍). Then, for any 𝜎 ∈ Γ, it follows from
(29) and (38) that

â†
�푘
a�푘Φ (𝜎) = 1�휎 (𝑘) â�푘Φ (𝜎 \ 𝑘) = 1�휎 (𝑘) Φ̂ (𝜎) ,

â�푘a
†
�푘
Φ (𝜎) = (1 − 1�휎 (𝑘)) â†�푘Φ (𝜎 ∪ 𝑘)

= (1 − 1�휎 (𝑘)) Φ̂ (𝜎) ,
(51)

and thus

̂(a†
�푘
a�푘 + a�푘a

†
�푘
)Φ (𝜎) = â�푘a

†
�푘
Φ (𝜎) + â�푘a

†
�푘
Φ (𝜎)

= Φ̂ (𝜎) , (52)

which implies that (a†�푘a�푘 + a�푘a
†
�푘)Φ = Φ. It then follows from

the arbitrariness of Φ ∈ S∗(𝑍) that a†�푘a�푘 + a�푘a
†
�푘 = 𝐼.

3.2. Expectation and Conditional Expectation Operators. For
the Riesz mapping R, using Theorem 12, we can prove that
R𝜂 ∈ S∗0 (𝑍) for all 𝜂 ∈ L2(𝑍). In particular, we have R1 ∈
S∗0 (𝑍).
Theorem 23. The mapping E : S∗(𝑍) → S∗(𝑍) defined by

EΦ = Φ̂ (0)R1, Φ ∈ S
∗ (𝑍) , (53)

is a continuous linear operator from S∗(𝑍) to itself. And,
moreover,

ÊΦ (𝜎) = Φ̂ (0) ⟨1, 𝑍�휎⟩ , 𝜎 ∈ Γ, Φ ∈ S
∗ (𝑍) . (54)

Proof. Clearly, E : S∗(𝑍) → S∗(𝑍) is a linear operator and
satisfies (54). Next, let us show that E : S∗(𝑍) → S∗(𝑍) is
continuous with respect to the strong topology over S∗(𝑍).

Let 𝑝 ≥ 0 and denote by j�푘 : S∗�푝(𝑍) → S∗(𝑍) the
inclusion mapping. Then, the composition mapping E ∘ j�푘 is
a linear operator fromS∗�푝(𝑍) toS∗(𝑍). For eachΦ ∈ S∗�푝(𝑍),
we have

∑
�휎∈Γ

𝜆−2�푝�휎  ̂E ∘ j�푘 (Φ) (𝜎)2 = ∑
�휎∈Γ

𝜆−2�푝�휎 ÊΦ (𝜎)2

= ∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (0) ⟨1, 𝑍�휎⟩2 ≤ ∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎)2 ,
(55)

which together with Theorem 12 implies that E ∘ j�푘(Φ) ∈
S∗�푝(𝑍) and

E ∘ j�푘 (Φ)−�푝 ≤ ‖Φ‖−�푝 . (56)

Thus,E ∘ j�푘(S∗�푝(𝑍)) ⊂ S∗�푝(𝑍) andE ∘ j�푘 : S∗�푝(𝑍) → S∗�푝(𝑍) is
a bounded operator, which implies that E ∘ j�푘 is continuous
as an operator from S∗�푝(𝑍) to S∗(𝑍).

Since the choice of the above 𝑝 ≥ 0 is arbitrary, we
actually arrive at a conclusion that the composition mapping
E ∘ j�푘 : S∗�푝(𝑍) → S∗(𝑍) is continuous for all 𝑝 ≥ 0.
Therefore,E : S∗(𝑍) → S∗(𝑍) is continuous with respect to
the inductive limit topology overS∗(𝑍), which together with
Lemma 7 implies that E : S∗(𝑍) → S∗(𝑍) is continuous
with respect to the strong topology over S∗(𝑍).
Definition 24. The operator E is called the expectation
operator on generalized functionals of 𝑍.

Since 1 ∈ L2(𝑍), the expectation E with respect to 𝑃 is
actually a bounded operator from L2(𝑍) to itself. The next
theorem shows the link between the operatorsE andE, which
justifies the above definition.

Theorem 25. It holds that ER = RE, where R is the Riesz
mapping.

Proof. For any 𝜉 ∈ L2(𝑍) and any 𝜎 ∈ Γ, by a direct com-
putation, we have

R̂E𝜉 (𝜎) = ⟨E𝜉, 𝑍�휎⟩ = ⟨𝜉, 𝑍0⟩ ⟨1, 𝑍�휎⟩
= R̂𝜉 (0) ⟨1, 𝑍�휎⟩ = ÊR𝜉 (𝜎) . (57)

Thus, ER = RE.

Theorem 26. Let 𝑘 ≥ 0. Then, there exists a continuous linear
operator E�푘 : S∗(𝑍) → S∗(𝑍) such that

Ê�푘Φ (𝜎) = 1Γ𝑘] (𝜎) Φ̂ (𝜎) , 𝜎 ∈ Γ, (58)

where Γ�푘] = {𝜎 ∈ Γ | max𝜎 ≤ 𝑘} and 1Γ𝑘](⋅) denotes the indi-
cator of Γ�푘].
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Proof. We omit the proof because it is quite similar to that of
Theorem 15.

Using Theorems 12 and 26, we can easily prove the next
theorem, which shows that the operator E�푘 has a type of
contraction property on S∗(𝑍).
Theorem 27. Let 𝑘 ≥ 0. Then, for each 𝑝 ≥ 0, S∗�푝(𝑍) keeps
invariant under the action of E�푘, and moreover

E�푘Φ−�푝 ≤ ‖Φ‖−�푝 , ∀Φ ∈ S
∗
�푝 (𝑍) . (59)

Definition 28. The operators E�푘, 𝑘 ≥ 0, are called the
conditional expectation operators on generalized functionals
of 𝑍.

For 𝑘 ≥ 0, we set 𝑃�푘 = E[⋅ | F�푘], the expectation given
F�푘, where F�푘 is the 𝜎-field generated by (𝑍�푗; 0 ≤ 𝑗 ≤ 𝑘)
as mentioned above. 𝑃�푘 is usually known as a conditional
expectation operator on square integrable functionals of 𝑍.
The theorem below then justifies Definition 28.

Theorem 29. For each 𝑘 ≥ 0, it holds that E�푘R = R𝑃�푘, where
R is the Riesz mapping.

Proof. Let 𝑘 ≥ 0. Then, for any 𝜉 ∈ L2(𝑍) and any 𝜎 ∈ Γ, by
a direct computation, we have

R̂𝑃�푘𝜉 (𝜎) = ⟨𝑃�푘𝜉, 𝑍�휎⟩ = ⟨𝜉, 𝑃�푘𝑍�휎⟩ = 1Γ𝑘] (𝜎) ⟨𝜉, 𝑍�휎⟩
= 1Γ𝑘] (𝜎) R̂𝜉 (𝜎) = Ê�푘R𝜉 (𝜎) . (60)

Thus, E�푘R = R𝑃�푘.
3.3. Clark-Ocone Formula for Generalized Functionals. In
this subsection, we establish our Clark-Ocone formula for
generalized functionals of 𝑍.
Theorem 30. For all generalized functionals Φ ∈ S∗(𝑍), it
holds that

Φ = EΦ + ∞∑
�푘=0

E�푘a
†
�푘a�푘Φ, (61)

where the series on the right-hand side converges strongly in
S∗(𝑍).
Proof. Let Φ ∈ S∗(𝑍) and Ψ�푛 = ∑�푛�푘=0E�푘a†�푘a�푘Φ for 𝑛 ≥ 0.
Then, for 𝜎 ∈ Γ, by a direct computation, we have

Ψ̂�푛 (𝜎) = �푛∑
�푘=0

1Γ𝑘] (𝜎) 1�휎 (𝑘) Φ̂ (𝜎)

=
{{{{{{{{{

0, 𝜎 = 0;
0, 𝜎 ̸= 0, 𝑛 < max𝜎;
Φ̂ (𝜎) , 𝜎 ̸= 0, 𝑛 ≥ max𝜎.

(62)

It then follows that Ψ̂�푛(𝜎) → Φ̂ − EΦ(𝜎) for all 𝜎 ∈ Γ as 𝑛 →∞. On the other hand, byTheorem 11, there are constants𝐶 ≥0 and 𝑝 ≥ 0 such thatΦ̂ (𝜎) ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ, (63)

which together with (62) gives

sup
�푛≥0

Ψ̂�푛 (𝜎) ≤ Φ̂ (𝜎) ≤ 𝐶𝜆�푝�휎, 𝜎 ∈ Γ. (64)

Therefore, by Theorem 14, we know (Ψ�푛) converges strongly
to Φ − EΦ in S∗(𝑍). This completes the proof.

Proposition 31. For each 𝑘 ≥ 0, it holds that
E�푘a
†
�푘 = a
†
�푘E�푘,

E�푘a�푘 = E�푘−1a�푘, (65)

where E−1 = E.

Proof. Let 𝑘 ≥ 0. Then, for all Φ ∈ S∗(𝑍) and 𝜎 ∈ Γ, by
Theorems 17 and 26, we get

Ê�푘a
†
�푘
Φ (𝜎) = 1Γ𝑘] (𝜎) 1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘)

= 1Γ𝑘] (𝜎 \ 𝑘) 1�휎 (𝑘) Φ̂ (𝜎 \ 𝑘)
= â†
�푘
E�푘Φ (𝜎) ,

(66)

where equality 1Γ𝑘](𝜎)1�휎(𝑘) = 1Γ𝑘](𝜎 \ 𝑘)1�휎(𝑘) is used. Thus,
E�푘a
†
�푘 = a†�푘E�푘 holds. Similarly, we can verify E�푘a�푘 = E�푘−1a�푘.

Combining Theorem 30 with Proposition 31, we arrive
at the next interesting result, which we call the Clark-Ocone
formula for generalized functionals of 𝑍.
Theorem 32. For all generalized functionals Φ ∈ S∗(𝑍), it
holds that

Φ = EΦ + ∞∑
�푘=0

a
†
�푘E�푘−1a�푘Φ, (67)

whereE−1 = E and the series on the right-hand side converges
strongly in S∗(𝑍).
Remark 33. As mentioned above, 𝜕�푘 and 𝜕∗�푘 are the anni-
hilation and creation operators on L2(𝑍), respectively, and𝑃�푘 = E[⋅ | F�푘] is the conditional expectation operator on
L2(𝑍). It can be verified that

𝜕∗�푘𝑃�푘−1𝜂 = 𝑍�푘𝑃�푘−1𝜂, ∀𝑘 ≥ 0, ∀𝜂 ∈ L
2 (𝑍) , (68)

where 𝑃−1 = E and 𝑍�푘 is the 𝑘-component of the discrete-
time normal noise 𝑍. Thus, the Clark-Ocone formula (1) can
be rewritten as the following form:

𝜉 = E𝜉 + ∞∑
�푘=0

𝜕∗�푘𝑃�푘−1𝜕�푘𝜉, 𝜉 ∈ L
2 (𝑍) , (69)

where the series on the right-hand side converges in the norm
of L2(𝑍). This observation justifies calling formula (67) the
Clark-Ocone formula for generalized functionals of 𝑍.
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4. Applications

In the final section, we show some applications of our Clark-
Ocone formula.

For 𝑝 ≥ 0 and Φ, Ψ ∈ S∗(𝑍), we define ⟨Φ,Ψ⟩−�푝 as
⟨Φ,Ψ⟩−�푝 = ∑

�휎∈Γ

𝜆−2�푝�휎 Φ̂ (𝜎) Ψ̂ (𝜎) (70)

provided the series on the right-hand side absolutely con-
verges. Note that if Φ, Ψ ∈ S∗�푝(𝑍), then by Theorem 12 the
series in (70) absolutely converges, and hence ⟨Φ,Ψ⟩−�푝makes
sense, and in particular

⟨Φ,Φ⟩−�푝 = ‖Φ‖2−�푝 . (71)

Definition 34. For generalized functionals Φ, Ψ ∈ S∗(𝑍),
their 𝑝-covariant cov�푝(Φ,Ψ), 𝑝 ≥ 0, is defined as

cov�푝 (Φ,Ψ) = ⟨Φ − EΦ,Ψ − EΨ⟩−�푝 (72)

provided the right-hand side makes sense.

By convention, var�푝(Φ) ≡ cov�푝(Φ,Φ) is called the 𝑝-
variant of generalized functional Φ. Clearly, var�푝(Φ) = ‖Φ −
EΦ‖2−�푝 if Φ ∈ S∗�푝(𝑍).
Theorem 35. Let Φ, Ψ ∈ S∗�푝(𝑍) for some 𝑝 ≥ 0. Then, their𝑝-covariant cov�푝(Φ,Ψ) makes sense, and moreover

cov�푝 (Φ,Ψ) = ∞∑
�푘=0

⟨E�푘a†�푘a�푘Φ,E�푘a†�푘a�푘Ψ⟩
−�푝

. (73)

Proof. ByTheorem 12, the series on the right-hand side of (73)
converges absolutely. On the other hand, by Theorem 30, we
have

cov�푝 (Φ,Ψ) = ∑
�휎∈Γ

𝜆−2�푝�휎 Φ̂ − EΦ (𝜎) Ψ̂ − EΨ (𝜎)

= ∑
�휎∈Γ

𝜆−2�푝�휎 [∞∑
�푘=0

1Γ𝑘] (𝜎) 1�휎 (𝑘) Φ̂ (𝜎)]

⋅ [∞∑
�푘=0

1Γ𝑘] (𝜎) 1�휎 (𝑘) Ψ̂ (𝜎)] ,

(74)

which together with the fact

1Γ𝑗] (𝜎) 1�휎 (𝑗) 1Γ𝑘] (𝜎) 1�휎 (𝑘) = 0,
𝑗 ̸= 𝑘, 𝑗, 𝑘 ≥ 0, 𝜎 ∈ Γ, (75)

gives

cov�푝 (Φ,Ψ) = ∑
�휎∈Γ

𝜆−2�푝�휎
∞∑
�푘=0

1Γ𝑘] (𝜎) 1�휎 (𝑘) Φ̂ (𝜎) Ψ̂ (𝜎)

= ∞∑
�푘=0

∑
�휎∈Γ

𝜆−2�푝�휎 [1Γ𝑘] (𝜎) 1�휎 (𝑘) Φ̂ (𝜎)]
⋅ [1Γ𝑘] (𝜎) 1�휎 (𝑘) Ψ̂ (𝜎)]
= ∞∑
�푘=0

∑
�휎∈Γ

𝜆−2�푝�휎 ̂E�푘a†�푘a�푘Φ (𝜎) ̂E�푘a†�푘a�푘Ψ (𝜎)

= ∞∑
�푘=0

⟨E�푘a†�푘a�푘Φ,E�푘a†�푘a�푘Ψ⟩
−�푝

.

(76)

This completes the proof.

Theorem 35 sets up covariant identities for generalized
functionals of 𝑍. The next theorem then gives meaningful
upper bounds to variants of generalized functionals of 𝑍.
Theorem 36. Let Φ ∈ S∗�푝(𝑍) for some 𝑝 ≥ 0. Then, its 𝑝-
variant var�푝(Φ) makes sense, and moreover

var�푝 (Φ) ≤ ∞∑
�푘=0

a†�푘a�푘Φ2−�푝 . (77)

Proof. By Theorems 16, 18, and 27, we know that E�푘a
†
�푘a�푘Φ

belongs to S∗�푝(𝑍) and
E�푘a†�푘a�푘Φ−�푝 ≤ a†�푘a�푘Φ−�푝 , 𝑘 ≥ 0. (78)

This together with (71) and (73) yields

var�푝 (Φ) = ∞∑
�푘=0

E�푘a†�푘a�푘Φ2−�푝 ≤
∞∑
�푘=0

a†�푘a�푘Φ2−�푝 . (79)

This completes the proof.

A sequence 𝑢 = (𝑢�푘) of generalized functionals in S∗(𝑍)
is said to be (E�푘)-predictable if

𝑢�푘 = E�푘−1𝑢�푘, 𝑘 ≥ 0. (80)

It is said to be (a†�푘)-integrable if the series∑∞�푘=0 a†�푘𝑢�푘 converges
strongly in S∗(𝑍). In that case, we call ∑∞�푘=0 a†�푘𝑢�푘 the
generalized stochastic integral of 𝑢 with respect to (a†�푘) and
write

I (𝑢) = ∞∑
�푘=0

a
†
�푘𝑢�푘. (81)

Theorem 37. Let Φ ∈ S∗(𝑍). Then, the sequence 𝑢 =(E�푘−1a�푘Φ)�푘≥0 of generalized functionals in S∗(𝑍) is (E�푘)-
predictable and (a†�푘)-integrable, and moreover

Φ = EΦ + I (𝑢) . (82)
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Proof. This is an immediate consequence ofTheorem 32.

Remark 38. A generalized functional of 𝑍, or, in other
words, a generalized functional in S∗(𝑍), can be interpreted
as a generalized random variable on the probability space(Ω,F, 𝑃). Accordingly, a sequence of generalized functionals
of 𝑍 can be viewed as a generalized stochastic process. The-
orem 37 then shows that each generalized random variable
on (Ω,F, 𝑃) can be represented as the generalized stochastic
integral of an (E�푘)-predictable generalized stochastic process
with respect to (a†�푘).
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